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Relation between conductivity and transmission matrix
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The dc conductance 1 of a finite system with static disorder is related to its transmission ma-

trix t by the simple relation 1 = (e /2nt) Tr(t t). This relation is derived from the Kubo for-

mula and is valid for any number of scattering channels with or without time-reversal sym-

metry. Differences between various definitions of the conductance of a finite system are dis-

cussed.

Some time ago Landauer' proposed that the dc
conductance I' of noninteracting (spinless) electrons
in a disordered medium in strictly one dimension is
given by I' = (e'/2vrh)

~
r ~'/~ r (' where t and r are the

transmission and reflection amplitudes. A relation of
this kind, especially if it can be generalized to higher
dimensions, is of great interest for at least two
reasons. First, the cost of numerical computation
may be greatly reduced compared with the conven-
tional use of the Kubo formula. '~ Second, such a
relation emphasizes the fundamental role of the con-
ductance which is assumed to be the only relevant
variable in a recent scaling theory treatment of the
localization problem. " This point of view was dis-
cussed in a recent analysis of the conductivity of a
one-dimensional (ID) chain9 in which Landauer's ex-
pression was used. The argument given by Landauer
is a heuristic one and not easily generalized to higher
dimensions.

Recently Economou and Soukoulis' derived from
the Kubo formula an expression for the conductance
of a one-dimensional chain, I' = (e'/2mt)

~
t ~'. This

result is in agreement with Landauer for long chains
for which ~r ~2 —I, but in disagreement with his
result for short chains. Their derivation is, however,
also restricted to 1D. In this paper a completely gen-
eral relation between the conductance and the
transmission matrix is derived, and some implications
for numerical calculations are discussed.

In the derivation of Landauer' and Anderson
et al. the conductance is obtained by dividing the
current I by the chemical potential difference, Ap„
between the left and the right of the sample. (To
avoid additional complications of long-range
Coulomb interaction, we consider the transport of
neutral particles. ) Thus some inelastic scattering
mechanism must be introduced outside the sample to
allow the regions to the left and right to reach local
thermal equilibrium. The interface between the
nonequilibrium region in the sample and the outside
regions is difficult to treat, particularly in the mul-
tichannel case. However, even in the absence of a
precise tre'atment, it is clear that in the limit of a per-

feet sample ( ~
t

~

= 1), d p, must vanish and the con-
ductance will be infinite, a feature satisfied by the
Landauer formula. Traditionally the nonequilibrium
problem is bypassed using the.Kubo formula, which
relates via linear response the conductance to the
equilibrium properties of the system. However, in

applying the Kubo formula to a finite sample, we are
faced with some ambiguity. If the sample is isolated,
its energy levels are discrete and a. (ru) is a sum of
closely spaced 5 functions. Some procedure for
averaging over these 8 functions is then necessary in
order to obtain a useful result. Alternatively, we
can embed the disordered region of interest in an in-

finite system with no disorder, and probe the system
with an electric field (or potential gradient) of fre-
quency cu which exists only in the vicinity of the
disordered region. The energy spectrum for the
whole system will be continuous and o.(cu) will be
smooth with a well-defined limit as cv 0. This latter
procedure was used by Economou and Soukoulis, and
we shall adopt it here. The result, however, has the
feature that the conductance is finite in the limit of a
perfect conductor. This is because in the presence of
a finite electric field, there is no mechanism for
establishing thermal equilibrium outside the sample,
a situation that can be realized if the frequency is

high compared with the inelastic scattering rate.
While a fully satisfactory expression for the conduc-
tance based on the chemical potential difference is
not yet available, the expectation9 is that in the limit
of a large number of channels, I' = (ez/2rrt) Tr(ttr),
a result that we shall derive here from the Kubo for-
mula. In most cases of interest (2D, 3D, and t « I
in ID) the difference between the different defini-
tions of conductance will be small.

To be specific we consider a disordered sample of
length L in the z direction (0 & z & L) and cross-
sectional area A. Perfect regions of cross section 3
are attached to the + z directions so that the total
length of the system is A (to be taken to infinity),
and we assume periodic boundary conditions in the
transverse directions [ p = (x,y) ] for the entire sys-
tem. We apply an electric field in the z direction with
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frequency «) to the disordered region. The energy absorption rate P is related to the conductance I'{(«) of the sys-

tem by I' = I E,'~,1.2, where E,m, is the root-mean-square electric field. Standard linear-response theory then gives,

at zero temperature, '0

m' L,2

I"(«)) =——
~- dE $ dz J t)(z) 8(E+«) Ett)—8(E —E )

Cd aP

where the sum is over eigenstates 4) ( r ) of the entire system [ r = ( p, z) ] with the restriction that E & Et & Ett,
where EF is the Fermi energy. The matrix element of the current in the z direction between states n and P is

(2)

(For ease of presentation we work in a continuum representation; in a tight-binding picture derivatives become
finite differences. ) Conservation of current implies that

(4)

The energy E of the Green's functions will henceforth be taken to be EF and mill be suppressed. The zerc, —

frequency limit of the conductance given by Eq. {1)thin becomes

—e2I'=I"{«)=0) = — z, Tr —,—(G +~ —G ')(G —G ) +(O'+ —G ~)—,(G —G )4m' {2n)' Bz' Bz Bz 8z

J.,(*,) —J.p(*,)= J( dz fdP('. (r)(p(r) .

Following Economou and Soukoulis, we note from Eq. (3) that in the limit «) 0, J t)(z) is independent of z

and hence the integral over z in Eq. (1) can be done trivially. In particular, J t) can be evaluated outside of the
disordered region, where the eigenstates sufficiently far from the disordered region will be simple combinations
of plane ~aves. Each plane wave corresponds to a scattering channel b characterized by spin o-q, transverse mo-
ments qb, and z moments kb, with energy E = (I/2m)(kb'+ lqbl ). e note that only a certain fraction of the
possible transverse momenta q will be allo~ed for each energy E; the others will correspond to exponential
growth or decay in the z direction and hence will be negligible except near the disordered region. All sums over
"channels" b will include only the allowed wave vectors.

It is convenient to define the Green's functions G —(E) = (E + i ri H) ' with —matrix elements between
scattering channels b and a.

Gb(,+-'(zz') =& '
Jl d p J)d p exp( iqb p—) exp(iq, p )(r, oblG'-'lr', (r, )

——(O'" —G' '), (G —O )—,(O'" —O' ')—(O"—G ') . (5)
8z Qz Qz 8z

where the trace is over the channel index and G~+-~ is
the matrix Gbt;+~(z, z') (over the channel indices a, b)
and O'-" = O„'-"(z',z).

%e can now proceed in analogy with the well-
known scattering problem, "except that the scattering
geometry here is such that there are plane ~aves in-
stead of spherical ~aves outside the scattering region.
%e may take z' && 0 and z && L so that the wave
functions assume their asymptotic form. Then G~~+'

consists of outgoing waves only (the exponentially
decaying parts can be ignored) so that Gb+(z, z ) is
proportional to exp( —ik, z') and exp(ikbz) Similarly.
6 ' consists only of incoming ~aves. The z deriva-
tives in Eq. (5) can hence be done trivially and have
the effect of converting the G + —G~ ' in the last
two terms to G + +O' . Equation (4) then simpli-
fies to

2

X(IG.'"(; ') I'+Io.'"{', ) l'I .
ab

where vb = kb/m (or more generally dE/dkb) is the
velocity in channel b.

It'remains to relate the Green's function to the
transmission matrix. Again in analogy with the
scattering problem, we find the stationary scattering
state

where p, is the plane wave (AL) 'tzexp(ik, z
+i q, ~ p ). The function (II~, consists of incoming
and outgoing (fcflcctcd) plallc waves to thc left of
the disordered region and purely outgoing (transmit-
ted) waves to the right. It is natural to define the
matrix t~ as the amplitude of the transmitted wave
from the left; i.e., (1)t., (z) Xb tb, Qb(z) for z &) L
This can be calculated using the relation

(Al vl4t,. ) =A '(vbtb (8)

where V is the scattering potential. Equation (g) is
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derived along the same lines as an analogous relation
for the spherical scattering geometry. " We next in-
sert Eq. (7) into Eq. (8) and eliminate V(r ) and
V( r ) in favor of V2 and "7' using the equations
satisfied by the Green's function. After a number of
partial integrations we obtain

exp[ —t(kbz —k,z')] ' j
I ubtbrr =

)2
+ Ikb

zation is then simply related to t defined above by

tbL, = (ub/u, ) '12tb, .

The reflection matrices r and r normalized to unit
flux may be analogously defined. In terms of these,
the S matrix relating incident to scattered waves is

simply
r

~L gR

gL ~R ~

By combining Eqs. (6), (10), and (11) we obtain for
the conductance

where z2, z2 & L and zl, zl & 0 are any~here outside
the disordered region. Now we again take z2, z2 to
the asymptotic limit to the right and zl, zl to the left
so that the z derivatives again become simple. Only a
single term survives (z = ~, z' = —~) and we obtain

tb
—i uG +bt(z, z')exp[-i(kbz —k, z')] . (10)

A similar relation exists between the transmission
matrix from the right t and Gt+l( —~, m).

At this point it is necessary to discuss normaliza-
tion of the channels. In the present scattering
geometry, the conserved quantity is the total flux in
the z direction. It is therefore convenient to normal-
ize the channels to carry unit flux in the z direction
and define wave functions normalized in this
manner, i.e., d, u, 'ized, and Ptt+'= 'ut P 2,

L. The+) -l 2 ~+~

transmission matrix t corresponding to this normali-

I" X(ftL [2+ ftR )2)
ob

(13)

With the normalization to unit flux, conservation of
probability is equivalent to the unitarity of the S ma-
trix, S S =SS =l. This implies that the two terms
in Eq. (13) are actually equal after the sum over o
and b even if time-reversal symmetry is broken (i.e. ,
S W S). We hence conclude that

+2
I = Tr(ttt)

2nh

~here t is the transmission matrix from either the left
or the right,

The conductance as given by Eq. (14) can also be
obtained directly from Eq. (S) without use of scatter-
ing theory by directly calculating G'+'( r, r )
—Gt l(r, r ) and hence Gbt+2 —Gbt, 2. It is found
that

Gt+ (r, r ) —G' (r, r ) = —22ri Xp"(r)g (r )8(E —E )

= —2 A X [[y',"(")]"y',"("')+[yk."(")]"yk."( )]

for z and z' sufficiently far from the disordered re-
gion. The sum runs over the scattering states at en-
ergy F. normalized to unit flux. Note that the PL~+'

are neither conventionally normalized nor orthogo-
nal. The direct proof of Eq. (IS) involves averaging
over the actual eigenstates of a finite system, .and is
somewhat subtle; we will not discuss it here.

When the amount of disorder is reduced to zero,
there is no reflection and t = L The conductance
from the power absorption as given by Eq. (14) thus
remains finite and is equal to /q, e'/2rtf, where 1V, is
the number of allo~ed channels. This is because an
electric field imposed over a finite region of a perfect
conductor can be absorbed. For a translationally in-
variant system, such as a perfect conductor, the I"(tu)
discussed here is related to o (q, tu) by

r

ggL
I'(tu) =, , sin' tr(q„=qy =O,q„bb)

2m q2

I

which is perfectly finite as co 0 for a perfect con-
ductor. It is only o (q =0, tu 0) which is infinite.
The discrepancy with the Landauer formula is due to
the fact that a finite electric field cannot be main-
tained across a perfect conductor if the outside wires
are in local equilibrium.

For a large disordered system, with both A —L~ '

and L large (where d is the dimensionality), it is na-
tural to relate the conductance I which we have cal-
culated to the zero-frequency conductivity o-. We
will assume o to be nonzero, i.e., that the system is a
metaL (We note that if all states are localized in two
dimensions, as obtained by Abrahams et ul. , ' then
the following analysis will only be valid in more than
two dimensions. ) In the limit as L

(17)

For any finite L, ho~ever, there will be corrections to
this which may arise from at least two sources. First,
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there will be corrections due to the lack of equilibri-
um in the region of the perfect conductor outside the
disordered region, as discussed in the opening para-
graphs. Second, there may be an effective boundary
resistance between the ordered and disordered re-
gions. Both of these effects will lead to corrections to
the conductivity of order I/L, and an underestimate
of o from Eqs. (14) and (17). We further note that
if the energy E+ is outside the band edge of the or-
dered region, Eq. (14) fails. The derivation becomes
invalid in this regime. because the eigenvalues are
discrete and the to 0 limit in Eq. (3) can no longer
be taken. Just inside the band edge the number of
allowed channels becomes small and the boundary
resistance becomes very large,

Finally, we comment on the numerical computa-
tion of the conductivity. In principle the most effi-
cient method to evaluate the transmission matrix is
to calculate the transfer matrix in a real-space
representation and then invert the transfer ma-
trix.""The cost for an L sample is L' in 2D and
L6 in 3D. However, the transfer matrix blows up ex-
ponentially so that the matrix inversion necessary to
obtain t rapidly becomes singular. This technique is
thus limited to relatively small L and hence will in-

volve relatively large errors, especially due to the
boundaries. Alternatively one can calculate the
Green's function via a generalization of the method

of Ref. 5 to higher dimensions. In this case the
transmission matrix can be calculated via Eq. (9). In
fact it is more efficient to bypass the transmission
matrix altogether and use Eq. (5) directly. The cost
is L in 2D and L in 3D with storage requirements
that go as L' and L4, respectively. These computa-
tional schemes have been implemented, and the
results will be presented elsewhere.

Note added in proof. After this work was complet-
ed, the authors received two reports of work prior to
publication (one by D. Langreth and E. Abrahams,
and the other by D. Thouless) on ID conductance
dealing with the effects of requiring charge neutrality
in the wires attached to the disordered sample. For
the one-channel ease, both papers obtain Landauer's
result, ' while for the many-channel case, the results
are rather complicated. %e should like to thank the
above authors for sending us copies of their papers
and for stimulating discussions.
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