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Semiclassical approach to quantum-electromagnetic excitations in metals
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A semiclassical approach to quantum-electromagnetic excitations for metals in the collisionless-damping regime at
strong magnetic fields is carried out. The quantization of energy levels results in different values of the
electromagnetic wave vector, whose numbers are increased by an increase in the magnetic field. The theory,
specialized for bismuth, explains correctly most of the experimental results found in a previous paper.

I. INTRODUCTION

In a recent paper (in the following referred to
as I),' a set of experimental results of microwave
absorption as a function of an external magnetic
field has been presented. The existence of absorp-
tion resonances due to the Landau levels has been
found and, in particular, it has been shown that
these resonances are analogous to the giant quan-
tum oscillations of ultrasound. However, some
peculiar effects are present, the most important
of which is the disappearance of resonance above
a certain value of the magnetic field. To explain
such experimental results, in this paper we pre-
sent a theory of electromagnetic excitations in
metals at strong magnetic fields. We consider
a plane monochromatic electromagnetic wave
with frequency co propagating in an infinite metal
with wave vector k forming an angle 3 to the
direction of the static magnetic field. To obtain
the spectrum and the damping of the electromag-
netic wave we assume "quantum" conditions, that
is to say, the conditions ~» m, cur»1, &„»kT
(where 0 is the cyclotron frequency, r is the
relaxation time, &~ is the Fermi level, T is the
absolute temperature and k the Boltzmann con-
stant).

Because of the quantization of the energy levels
for the carriers in a magnetic field, different
values of the wave vector k are found, each of
them connected to a particular Landau level. When
the magnetic field is increased, the number of the
possible k values increases. On the basis of this
result, as will be seen, a possible explanation of
the disappearance of the quantum oscillations in
the microwave absorption is found.

The present theory, beginning with general con-
siderations, is able to point out the right approxi-
mations which allow us to obtain analytic results
suitable for explaining most of the measurements
reported in I for bismuth. In particular, the semi-
classic approach is used with kR &1, where 8
is the Larmor's radius. The return to this

II. BASIC EQUATIONS

The spectrum of the electromagnetic excitations
in metals in a static magnetic field will be looked
for in the frame of the semiclassical quantum the-
ory under the anomalous skin-effect condition.
The solution will be found in working out, simul-
taneously, the Maxwell and the transport kinetic
equations according to Azbel'. " Two reference
systems will be used: the reference x, q, f with
xq plane coinciding with the surface of the metal
which is thought to fill the semispace g~ 0, and
the reference xy~ with z axis along the static
magnetic field Il (Fig. 1). xqf is the natural frame
for the electromagnetic field propagation because

vacuum

Y

sample

FIG. 1. Sketch of the two reference frames used. k
is the electromagnetic wave vector, H is the magnetic
field rotating in g& plane. The plane xg is the sample
sllrf ace.

argument follows from the fact that the current
theories are not specific and are difficult to use
in looking into the actual physical situations. '4

In Sec. II we present the basic equations of the
theory, in Sec. III the kinetic equation solution,
in Sec. IV the conductivity tensor calculation,
and in Sec. V the dispersion law and absorption
coefficient for the electromagnetic field in bismuth
semimetal.
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the z axis is directed along the wave vector k of
the electromagnetic field, while xy~ is the natural
frame for the study of the energy levels of
carriers. With reference to Fig. 1, 3 is the angle
between III and k with H rotating in the 'gg plane.
The kinetic problem will be solved in. the hays

frame. Once the conductivity tensor is found, we
shall go to the xpP frame and, by means of the
Maxwell equations, the spectrum and absorption
of the electromagnetic field will be calculated.

With regard to the kinetic equation for the col-
lision integral, the relaxation time approximation
will be used. This approximation is well stated
at the high-frequency regime, +7»1.' The
Boltzmann equation, linearized in the wave elec-
tric field which is dependent on space and time
as E exp(ik ~ r —i(uf), is

sf,[i(k v —~)+v]f+ . ~ (vxv, f)=eE v ', (1)

where f=f(p„p„,p, )' is the Fourier component of
the nonequilibrium part of the distribution function,
f, is the Fermi distribution, v =1/v is the collision
frequency for the carriers, and v =+~a(P, ,P„,P,).

When the static magnetic field is present, it is
useful to specify the carrier state by means of the
motion constants e, p„and the quantity y =At,
instead of the momentum components P„,P„P,.
The quantity y is the angle that locates the point
I' representative of the carrier state on the orbit
I' given by the intersection of the energy constant
surface e(p„p„,p, ) =e with the plane p, = const
orthogonal to the magnetic field 5. Assuming
for the carriers an ellipsoidal dispersion law cen-
tered in the origin of the momentum space (Fig.
2),

it is-possible to write the second term on the left-
hand side of Eq. (1) as follows:

eA ~ eA (o. o.„)"' Sf

eH 9f sf
cm, ey

where &=e5/(em, ) is the cyclotron frequency,
m, =m, /(a„o„)'~2 is the cyclotron mass, and the
coefficients n„, n„are given in (a) of the Appendix.
Then, Eq. (1) becomes

(
8 sf+i(k. v-(o)+v f(~ p y)=eE v

8y »0

whose formal solution is

f(&,p, p p) =
d weO

x exp (
' (p-y')0

&v'" v(m")
~
.0
(3)

III. KINETIC EQUATION SOLUTION

To solve Eq. (3), the velocity components as
a function of a, p„and y are calculated taking
into account Eq. (2). After cumbersome calcula-
tions one obtains

v„=u„cosa cosy —u„sinn siny,

v„=u„sinn cosy+u„cosa siny,

v, =u„u, cosy+u~ u, siny+u, ,
e = (Qgp„+Q~p +Q~sp

1
+2nzap, Py+2nxsPzP~+2~2s&y&a) ~418o

p
lk

Z

(2)

where u„,u„u„u„u, = n, p, /m„and the angle o.
are dependent on effective mass coefficients and
the angle 8, as specified in (a) of the Appendix.
In Eq. (3), having the wave vector k components
k„=0, k, =ksin8, andk, =kcos3, the second term
of the exponential becomes

ye

i —~ dy" v(y") =iA (sing' —sing)0

H
+iB(cosy —cosy ')

py +i ~ p,(q'-y),

FIG. 2. P is the representative point of the carrier
state for an ellipsoida1 dispersion law, both in the ref-
erence p„,p~, andp» and in the reference a, p», .and y.

where y, = n, k,/m„

A. = k(u„sins sinn+u, u, cosa)/0,

8 = k(u„sin8 coasu+, u, c ops) Q/.
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One can see that in the exponential of Eq. (3),
as given by Eq. (5), the terms expressing functions
of cosy and sing are present. That results in very
complicated formal equations where the exponen-
tials will be deve]oped as a series of Bessel
functions. However, both cosy and sing terms
must be retained if the magnetic field direction
is left variable with respect to the sample sur-
face. So the following developments are used:

exp(iD siny) = g &, (D) exp(isy},

exp(iD cosy) = Q i'J', (D) exp(isy),
S'= ao

with J, the integer-order Bessel function.
Putting in Eq. (3) the values v„, v„and v, given

by Eq. (4) and the Bessel-function developments
(6), one obtains the expression of f(e,p„y). Now,
to obtain the conductivity tensor o, , (i, k stand
for x, y, z), the current density j must: be cal-
culated. 'This, among other things, involves the
calculation of integrals similar to J „"dy v, (y)f(y).
'Then it is necessary to compute terms of the type

(
cos&I

2Ã

dy siny exp(-Py+i& cosy- iA siny}

cosp' I

dy' sing' exp p'+iA. Sing —N cosp',

where p =[v —(i&d —y p )]/0 and KI, K2 are qllall-
tities independent of y. Equation (&) ls a syn-
thetic form to represent nine integrals obtained
by combining the terms in the square brackets.

Cohen et al. ,
' using the ultrasound-absorption

calculation, have found expressions (used also by
Platzman and Wolff in the microwave absorption')
similar to Eq. ('I) [see Eq. (3.8) of their paper].
However, unlike the previous authors who have
developed the calculation in the classic case (low
magnetic fields and ~r « I), in this paper we con-

S S 8
(

')s'+s'
( 1)s +s'

„J,Q)Z, (&)&, Q)&,- (II) [p,.(. ..)]
[p+ i(s + s')]'+ 1

Here, and throughout the following, the summation
indices s, s', s-", and s'" fulfill the equation
s+s'+s" +s"'=-0. If, in the condition ~T'»1, the
factor

[P+i(s+s')]/& [P+i(s+s')]'+1]
is calculated by means of the identity

1 1
1lIIl . = P I+5I( I)qx
-o x —sv x

Eq. (8) becomes the sum of a quantum part 9,
following from the delta function 5(x) and a classic
part g, following from the principal part P(1/x).
The word "quantum" is used because the 5 func-
tion, whose argument is (&u —y, p, ), gives the mo-
mentum and energy conservation laws in the photon
absorption by electrons when transitions between
Landau levels 'are forbidden (&n = 0), as follows
from our physical condition 0» ~. So, Eq. (8)
becomes

sider the opposite limiting physical conditions:
high magnetic fields (0» ~ and kB (I), low tem-
perature, and high purity of samples (&uv» 1).
In these conditions, as will be shown in the fol-
lowing each conductlvlty coefflclent can be
divided into two terms. The first term gives the
contribution of the electrons which do not change
the Landau level and, in the absorption or emission
of the electromagnetic field, conserve the energy
and momentum as in the interaction of the electron-
photon quasiparticles. This term assumes an
essential rule in the diagonal elements of the
conductivity tensor. The second term gives the
contribution of all the Landau levels and furnishes
the Hall part in the nondiagonal elements of the
conductivity tensor.

In the calculations of Eq. (7), by means of Eq.
(6), we will stress, in the following, only the
essential points and the approximations used:

(i) Let us consider the combination cosy cosy',
then Eq. (7) becomes

S S'2S 2$

(-I)""'(i)"'"'(-i)w& —, — —'-=-=——
' —,J' (A)Z, (B)J „(A)Z „.(8)

~-~ i —(s+s:)Il
0' [e y P (s+s')0]'

Using Eq. (2.27) of the book by Tranter, ' the quan-
tum part is g +2. f p g2((~2 +II2)l/2}

y
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(ii) Equation (9) is also valid for the term
sing sing'.

(iii) The quantum part 8, coming from the term
sing cosg' is zero, while the classic one Q, is
still given by the first part of Eq. (9), provided
that the quantity [~ —y,p, —(s+s')&] in the num-
erato r ls substituted b y +.

(iv) The integral .,'J coming from the term
cosy sing' is the same as 4 coming from sing cosy'
with a negative sign, as is necessary because of
Onsager's relations for the conductivity tensor.
In fact, these terms give the contributions versus
1/H of nondiagonal elements, and changing from
sing cosy' to cosy sing' is equivalent to considering
o,.~ and O~„respectively.

(v) The term K,K„which contributes to the
element 0„, gives for 8 the expression

Pj

( 1)s' +s"
( )

s' +s'"

(g —y, p, —(s+s')0

2 2

J =1- —f—(a)
rk

0 2@2

Starting from Eqs. (9), (10), and (11), one can
see that the conductivity-tensor elements are
linear combinations, with coefficients depending
on the angle 3 and effective masses of the fol-
lowing terms (for each of them the behavior versus
H is stressed):

dP 6 — -—2020 ———
Tf

(2vk) d& 2~1s 'Y s

2 0
+ 277 p J2 2 +2 1/2

y. y.

IV. CONDUCTIVITY TENSOR

(vj) The terms Kcosy and Ksiny in Eq. (7)
make 8=0.

r', ( iis')= — -f sa ' f ds, (-i s;-)

xnan, g- ——' 2mo,

Using the variables E, p„and p, the current
density is given by

I =
(

— -)s VFPB d'EdPsdy

taking into account that the integral in the vari-
able p has been carried out in the preceding sec-
tion. As is well known, the semic]. assical method
considers the carrier energy-level function of
the Landau quantum number n and the quasi-
momentum p, . For an ellipsoidal dispersion l.aw

for the carriers, as in Eq. (2), the energy is
g = (yy. + s')jzg+ p', /(2m, ) (with m, =tno/5, ) and the

integral in the variable e in Eq. (12) is replaced
by a summation

I', (-I/H) =
( )3

de

m, ( P,' 't
x dP, 'i —— -i2vm„~ n &-2 .&

28 dfo
(2va)' d~

d(" =e
0 n=o

As we have said, we assume that the magnetic
field H is so large that kA &1. In these conditions
we shall maintain only terms up to (k/&)'. In
particular, as the argument of the Bessel function,
in Eqs. (10) and (11), is (A'+8')'~'=krf(a)/&,
where f(9) and r are given in (b) of the Appendix,
we can set

I'3 is not dependent on H; In fact, coming from
Eq. (11), it gives the conductivity o„along the
external magnetic field. I'„coming from the
term siny cosy' of Eq. (7), gives the Hall con-
tribution. I', and I', come from. the term cosy cosy'.

In conclusion, the components o",~ are
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o = m, ' ~„cos'n+ K, sin'n I",+ I', ,

o„=g m, '(n, sin'n+ n„cos'n)(I', + I',),

0 = rn, n u, +Q. u, I'+I", +I' = I'

0„= mo z„u ' I'0,

This equation is similar to Eq. (4.3) of the paper
by Kaner and Skobov' and other similar expressions
found for quantum ultrasound absorption' that show
the amplitude of absorption resonances increasing
with the magnetic field. However, in the argument
of cosh of Eq. (20) is present the term e/y, which,
as we shall show, is a very complicated function
of k and H. As a consequence the absorption will
be a function of I",.

Finally, I', is given by

(17) (O'H

k' cos'3

3e pro
8w8'kTc n,

a =- y, m, ' &„n, "'I'„
cosh '

n=0

1e~- (n+-,')80-
2m y

In the quantum terms I', and I", we have set

o,„=— y„m, ' n„n, '~'I', ,

where the i index varies with different carriers.
In the expressions of the nondiagonal elements
we have neglected the terms dependent on 1/H'
with respect to I',. The same has been done for

The explicit expression for the coefficient I',

2

' = ——cosh '[(a —e„~ )/(2kT)].

V. DISPERSION LAW AND ABSORPTION
COEFFICIENT FOR THE ELECTROMAGNETIC FIELD

IN BISMUTH SEMIMETAL

To find the dispersion relation and absorption
of the electromagnetic field, it is suitable to pass
to the xg( frame with the xq plane coinciding with
the surface of the sample and the ( axis along the
k vector. Following the works by Kaner and Sko-
bov,"the Maxwell equations become

where

S(E,p, ) = 2 vm, [e p,'/(2r—n.,)]/(n, n, )"' .

Assuming (df, /de) =-5(& —ez) for kT«e» one
obtains

k'E, —,(V„E„+a' E„)+2E„'(0)=0,
C

k'E„- , (c„„E„+c„—„E„)+2E„(0)= O,c

with

(22)

(dI,=-i
H

kH
cos3

ptloc Q
FA„Ay

e'm 0
16cmkT

(20)

28 momcc
V( )(2vk)' H

where V(&~) is the volume inside the Fermi sur-
face. As N=2V(e„)/(2vk)' is the carrier number,
we have the Hall term

ecX (n, n )"'
m',

For the coefficients I', and I", we have

ue CBo a
ag ~g

t:4
(23)

where a ~ are the conductivity tensor elements
in the xqf frame. The quantities E„'(0) and E„'(0)
are a consequence of the fact that the metal fills
a semispace. '

The dispersion ~(k) and the absorption are ob-
tained by setting equal to zero the determinant of
Eq. (22). Changing o,.~ of Eq. (17) (determined in
xyz frame) into o z in the xqf frame, the calcula-
tion of 5,~ and, subsequently, ~(k) is extremely
complicated.

If we consider the bismuth semimetal, taking
into account that it has an equal number of holes
and electrons, from Eqs. (17) and (18) we have

o„,=O. As a first solution, because the meaning-
ful experimental results found in Bi (Ref. 1) are
present for angles s near v/2, we will neglect
cos'3 with respect to cos3. In this case 5 ~

be-
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(24)o =2o sin 3,
2 2

X'fl gX

'
n as in Bi for a large range'
n as in i of the angle

s due to the erm
of the magnetic iedifferent ranges of

' ution of the electronsseparate eth quantum contribution o e

E. (17)th o l i-

is the Alfven velocity of the p asm

where

'~' 'ff' f'(3)(2a sin'3+a„)c~-
8 2&TZ~/2
mo eH

1/2 (26)

2a a sin'g+g„X' (2a sin'8+a )
(27)

and holemegal ($1s a»c" "
@ see the Appendix).es and the angle 3 seeeffective masses

ual to zero the coefficiennt determinant
r the g antities o. d Pin Eq. (22), we obtain for the quan

in the case +&1

1 —(n' —p 1+c, '( p)l+, p (,p) o-,
( )

2 [1+c2G (Q~ P)]+c1G(Q)P =Oq

'- n' p') —sjn'(2npa) sinh a
2 ~ 2

)
2

(
2 2 2)Q 2 2 p2)

' 2 2 2[cos'(2oPa) cosh a(x„—n=O
(28)

, eeH4Q~~Ncos 3
( 1) ( )x=

H m,c

(29}
2

(20)mom.
2kTn cos 3 '

locit at & =a~ and nth Landau

25the second of Eqs. in
)=0 ri
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Alfven oscillations exist for the sample widths
l &4.5 mm; for 4.5&l &5.0 the Alfven oscillations
modulated by the quantum electromagnetic oscil-
lations (QEO) still exist (as already seen for elec-
trons by Dinger and Lawson"); for l &5.0 mm
only QEO are present. As a conclusion, according
to the provision that the solution f =1 of Eqs.
(25) is always present, we have measured both
the Alfven field and QEO for the same value of
8 and the same range of H. The width ) of the
sample is the physical parameter which controls
the presence either one or the other type of oscil-
lations. The theory of Kaner and Skobov" did not
gjve the presence of both solutions for classic
and quantum fields.

Now let us consider in Fig. 3 E($) for relatively
low magnetic fields. In addition to the solution
$ =1 there is another solution connected to a par-
ticular Landau level n which, as H increases,
exists for values of $ closer and closer to zero.
The solution $ =0 is obtained at a certain value
H„of the magnetic field when the nth Landau level
crosses the Fermi surface. For H&H„. but closer
to it no quantum solution of E($) =0 exists. With H
still increasing, the (n —l)th level comes into the
solution range (0-1) for $, and so on. This pic-
ture clearly explains the microwave absorption as
the quantum ultrasound oscillations, in particular
the initial oscillating part of our measurements
(Fig. 1 of I).

For higher magnetic field more solutions for
E(g) =0 exist in the range (0-1); in other words,
different quantum electromagnetic fields are sim-
ultaneously present in the metal. As a model,
hence, one can think that from a certain value of
H the quantum oscillations become less and less
resonant (as opposed to the other quantum effects
that always increase with the magnetic field) be-
cause many levels take part in the absorption.

The absorption P obtained from Eqs. (25) is

(31)

In Eq. (31), $ enters as a parameter whose values
are found by means of the graphic method above
described. Because the calculation of P is dif-
ficult, we assume that the linewidth of the spikes
related to Landau levels of Fig. 3 is small. The
values for F($) =0 are then approximated to those
for which the function E(g) assumes a relative
minimum. The computer calculation of P as func-
tion of H for different values of 8 is shown in Fig.

As a conclusion the experimental results that
are correctly explained by the theory are the fol-
lowing.

(i) In Fig. 4, as one can see, with increasing

P(H) 8 -75'

80'

84'

86'

~ ~l3J Jz~ ~
90'

l

H {kG)
15

FIG. 4. Computer solution of microwave absorption
P(H) versus the magnetic field for different values of
the angle 3.

H, oscillations disappear. We want to stress
that this is the goal of our theory because it is
able to explain the peculiar aspect of QEO we
observed in Bi.

(ii) The reducing of the amplitude of oscillations
as a function of the angle n =v/2 —3 between H
and the sample surface. The resonances in Fig.
4 reduce 90%%uo for

~

n
~

& 15', according to measures
reported at (iii) of Sec. III of I.

(iii) The linewidth of resonaces in Fig. 4 is
proportional to 1/a, where a is given by Eq. (30).
For 8-v/2 we have 1/a-0. The quantity P, and
so the resonance amplitude, remains finite for
3-v/2, and, as a consequence, a resonance with
finite amplitude and a linewidth zero is not ob-
servable. This is in agreement with measure-
ments reported in (ii) of Sec. III of I.

VI. CONCLUSION

The theory presented for the quantum microwave
absorption, correctly taking into account that many
values of the wave vector k exist for the electro-
magnetic field in a metal in the presence of a
static magnetic field, is able to explain some ex-
perimental results previously found for bismuth.
However, there are some discrepancies between
theory and measurements. In particular, the
behavior of n „(that is, the last level for which
resonances are measured) as a function of the
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cross sectional area S~ of the Fermi surface is
not completely in agreement with the experimental
results of Fig. 11 of I. The iricreasing of n „
with S~ is not logarithmic but almost linear.
Further, when the magnetic field II is parallel
to the sample surface within +1' the value of n „
goes to zero. We think that these discrepancies
have to be ascribed to the drastic approximation
used to obtain Eq. (24).

APPENDIX

We discuss the following.
(a) To write Eq. (2) in the frame &, p„and y

one must remember that p is the angular variable
that locates the point representative, in momentum
space, of the carrier state on the orbit given by
the intersection of the energy constant surface
e(p) = c with the plane p, = const orthogonal to the
magnetic field 5 (Fig. 2). If one uses the trans-
lation

p„=e„'-a, f, =P,'- &,

and, subsequently, the rotation

p„'=p„cosa —p, sine, p,'=p„sinn+p, cosa,

Eq. (2) becomes

2m, (e —o.,p,') = n„p„'+ n, p,',
provided that-

a 22 13 23 12
p p,

2a a —a a
4a11a» —a12

z
—

x

b 11 23 13 12

4all a22 al22

-(a„—a„)+ [(a„—a„)'+a,'J'/'
tann =—

a12

2 2
Q a33 +a 2 y + a12y y„+a» y„-a» y„—a23 y

11C S ++ 22 ++ 12sln& COS&

&„=a» sin a+ a„cos n - a, sino. cosa.~ 2 2

To introduce the angular variable p =t, it is
sufficient to set

f '(s) =[(K„)'/'sinn sins

+ (K„)'/'cosa(y„coso. +y, sino. )]'

+[(o.,)'/' cosa sins

+ (o.',)'/' cosa(y„coso.' —y„sinn)]'//m', ,

,(2a, sin 3+a
+ ~ ~ ~

x y ) electrons

where the ellipsis represents an analogous term
for holes,

a„=
I

n„cos n+n„san Q

Q Q

Q» sin (x + Q„cos A

Q Q

r yp„= (z ),/, cosy, p, = /z»/, sing,
x

where r'= 2mgc —o.,p', j(2m, )]. Then, the quan-
tities v„, v„and v, are given by Eq. (4) with

~(~ )I/2 y(~ )1/2
Q . = x

Q
0 0

Q1 = y„cos&+y, sin~, u2 = y cosQ —y„sine .
Further, it is easy to see that for the cyclotron
mass one obtains

1 sS(e, p.) m,
2w . &e (

— —)~/2

vrhere 8 is the area of the ellipse I' of Fig. 2.
(b) The expressions of f'(8), 5, a„, and a, are
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