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The lattice relaxation parameters in several ionic crystals doped with monovalent impurity

ions are calculated by energy minimization taking account of the Coulomb, overlap-repulsive

and three-body potential energies, the last of which was developed early in calculation of the

cohesive energy of ionic crystals by Lowdin. The displaced 256 ions around one substitutional

impurity ion are taken into consideration and the results are utilized to calculate the electric field

gradient (EFG) at the similar sites to (1,0,0), (1,1,0), (1,1,1), (2,0,0), and (2, 1,0) sites relative

to the impurity at (0,0,0). Both experimental and theoretical EFG's, types and asymmetry

parameters of the EFG tensors are compared with each other by using Lowdin-Satoh-Taki or
Ra-Abarenkov-Antonova models. The theoretical values of the crystals which do not contain

the potassium ions as the impurity or as the host ions, in both models, agree fairly well with the

experimental ones if we consider only nearest-neighbor overlaps. With respect to the crystals

containing these ions, agreement is also satisfactory when we assume a small quantity of co-

valency (several percent) between the nearest-neighbor cation and anion, where the extraordi-

narily large overlaps exist. On the other hand, the results of this study by using both models

show that the overlap integrals between the second-neighbor anion and anion in the practical

crystals will be extremely small compared with large values of those integrals obtained from the

atomic orbitals of the free ions.

I. INTRODUCTION

In the preceding paper, referred to as RII
hereafter, we obtained the experimental values of the
quadrupole frequency vg, the electric field gradient
(EFG), eq and the asymmetry parameter g of the
EFG at various sites around the monovalent substitu-
tional impurity ion in the impurity-doped single ionic
crystals. It was a most remarkable fact that the mea-
sured g's at (1,1,0) sites are fairly small values and

nearly equal for NaCl-Br, NaBr-C1, NaC1-I, NaBr-l,
and NaC1-K crystals which are inconsistent with the
previous theory on the EFG' ' giving the different
eq's and very large q's. Another lattice-relaxation
(the displacements of ions due to impurity substitu-
tion) approach in a number of alkali halides contain-
ing monovalent impurity ions was performed and
gave a good agreement with the calorimetric data of
heats. However, our calculation of the EFG' by

using both lattice-relaxation parameters and the elec-
tronic polarization of the ions obtained from this ap-
proach also gives disagreement with the empirical
data, and it is nearly independent of choice of the po-
larizabilities of the ions.

In calculation of both approaches the Born-Mayer
(BM) model of ionic crystals was adopted and the
Coulomb and the overlap-repulsive energies were
considered. This model succeeds quite well concern-

ing calculations of the cohesive energy using ob-
served lattice constants and bulk moduli, It is unsuc-
cessful in computing the elastic shear modulus and
the dielectric constants of these crystals. The EFG at
(1,1,0) sites around impurity ions seems to be related

to the problem of the shear modulus. On the other
hand, the overlap distortions of the electron wave

functions around the impurities were investigated and
their influences on the FFG were obtained by Iken-
berry and Das. The experimental eq at Na (1,0,0)
sites in NaCl-Br in RII agrees with their calculation.
However, their computations for the other crystals
do not agree with the empirical data, for instance, the

eq at Cl(1,0,0) in NaCl-K obtained from Slusher and
Hahn's and our experimental data, and also that of
Br(1,0,0) in KBr-Na obtained from Andersson's ex-
periments are very different from Ikenberry and
Das's calculated values.

Lowdin derived quantum mechanically the
cohesive energy, the interionic distance and elastic
constants of some ionic crystals by using the
Hartree-Fock wave functions of the free ions and ob-
tained very good agreement with the empirical
data. " The two-body term among the many-body
potentials will be contained within the overlap repul-
sion in the BM semiempirical theory. The three-body
term has an important ro)e for Lowdin's theoretical
values of the pure ionic crystals and is not included
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in the BM model, whereas the higher terms than this
potential give only a small contribution. It was ex-
pected that in this study of the ionic crystals doped
with impurity ions, the three-body potential should
play an important part in the lattice relaxation. A
modified form of the three-center integrals was
developed by Lowdin. " This form produces the
two-point-charge model effectively, instead of the ac-
tual overlap-charge distribution. This model applied
by us for the impurity-doped crystals will be denoted
as Lowdin-Satoh-Taki (LST) model hereafter.

Another approximation was adopted by Ra, "
Abarenkov, and Antonova. " In Ra's paper the
cohesive energies and short-range force constants in
alkaline-earth fluorides were calculated with three-
body interactions, and in the latter two-body and
three-body potentials in several alkali halides were
computed. From this approximation the three-
point-charge model is derived which will be called
Ra-Abarenkov-Antonova (RAA) model hereafter.
Their calculations were carried out for the pure or
homogeneously deformed crystals and it was recog-
nized that three-body terms between the second-
neighbor anion and anion are as important as those
of the nearest-neighbor cation-anion pair, in both
studies.

In order to calculate the change of the three-body
potentials due to impurity substitution, these approxi-
mations are essential and very effective means of fa-
cilitating the calculations. If the actual overlap-charge
distributions are used to compute this potential
change, the tremendously many programs are neces-
sary for computer calculations and it will take effort
to make them.

The overlap integrals of the nearest neighbors and
those of the next-nearest-neighbor ions in pure ionic
crystals have been calculated by many investiga-
tors. ' """ In the present study with the impurities
one needs the overlap integrals of the host ion pair
and also those of the impurity-host ion pair in the
crystals. Therefore we have computed many integrals
and their dependence on the lattice distance by using
the e-function technique, ""as shown in our
preceding paper, ' referred to as RI hereafter.

Townes and Dailey have shown early that existence
of the covalent bonding causes a large EFG at the
position of the nucleus. " The covalency in H2, F2,
or HF molecules was studied in connection with the
chemical shifts o- of the nuclear magnetic resonance
(NMR) lines. '8'9 Then the effects of covalency on
the chemical shifts and the spin-lattice relaxation
time T~ of the NMR in pure ionic crystals were in-
vestigated and the degree of covalency in some ionic
crystals was estimated from the observed chemical
shifts. ' Afterwards, however, it was reported that
the overlaps between the electron orbitals in the
nearest-neighbor ions also affect the 0- and T~ in ion-
ic crystals. '

In the present study both overlap and covalency af-
fect the lattice relaxation and their effects can be
computed separately. We have calculated the lattice-
relaxation parameters in the alkali halides with the
impurities by using LST or RAA model and obtained
the EFG and the q values at the near sites around
the impurity ions from these parameters. The new
characteristics of the present study are as follows.

(a) Inclusion of the three-body potentials within
the potential energies.

(b) Consideration of the electron-shell deforma-
tions due to the displacements of the concerned ions.
Both are very important for calculations of the EFG
since the previous computations' ' of the EFG
without them cannot explain most of the experimen-
tal results.

(c) Adoption of three adjustable parameters for
calculation of the EFG. The Sternheimer antishield-
ing factors and the proportionality constants connect-
ed with (b) above have been used as the parameters
to adjust the calculated EFG's to the empirical ones.
However, these parameters are not chosen for every
crystal, but each one for each approximation above
mentioned, is adopted, For the crystals containing
K+ ions, covalencies have been also used as the third
parameters.

(d)' Classification of the types of the EFG tensors
at the (1,1,0) sites in the crystals. The EFG-tensor
types at the (1,1,0) sites have been classified by us.
The types A and D in this classification were found
by the other investigators theoretically and experi-
mentally. " ' However, types Band C have been
found by us in both ways, in the RII' and this study
for the first time. The calculated values of the
EFG's, q's and these types at these sites have been
compared with those obtained from the experiments
and generally good agreements have been obtained,
though one needs the parameters as described in (c).

(e) Taking the many movable ions around impuri-
ties into consideration. While the previous investiga-
tors took only 26,"56, ' or 96 movable ions, we
have taken 256 ions around one impurity ion into
consideration. This enables us to calculate the
lattice-relaxation parameters and the EFG's more ac-
curately, though the calculations will be complicated.

In Sec. II the changes in Coulomb, overlap-
repulsive and three-body potentials due to impurity
substitution are described. The constants used in this
study and the overlap pairs are represented in the
next section. The calculations of the three-body po-
tentials by using two different (LST and RAA)
models are given in Secs. IV and V. In Sec. VI the
computations of EFG's are described and the types of
the EFG tensors at the (1,1,0) sites are classified.
The results of calculations on the lattice-relaxation
parameters and EFG's by using the methods
described in above sections are compared with the
experimental data in A and B of Sec. VII. In C and
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0 of this section influence of covalent bondings on
the EFG, and calculation including both nearest- and
next-nearest-neighbor overlap integrals are described,
respectively. Summary. and conclusions are given in
the last section.

iZ

II. ENERGY CHANGE AFTER
IMPURITY SUBSTITUTION

As mentioned in the Introduction, the change of
the total potential energy after substitution of the
monovalent impurity ions in ionic crystals will be

AE =hEg+AER+b, Ey

where the first term in the right-hand side expresses
the change in the total Coulomb energy among the
ions which have, as usual, the point charges +e or —e

(—e is an electronic charge), the second, that of the
repulsive energy arising from the overlaps between
electron orbitals of the nearest-neighbor ions, and
those between the next-nearest-neighbor ions and the
third, that of the three-center integrals which is relat-
ed to three nuclei as shown in Fig. 1 as an example. '"

Although we can understand this term also as a
change of the Coulomb energy, it will be convenient-
ly distinguished from AEc as the BM theory does not
include this term. As described in the next, we have
adopted the BM theory for the second term, DER and
this theory contains the two-body terms. Therefore,
the two-body terms should be strictly excluded from
calculations of hET in the computer programs though
exclusion of them is the complicated work. Normali-
zation of the electron charge produces the change of
the ionic charge, above-mentioned +e if there are
overlap charges. However, we will follow Lowdin's

FIG. . I. The three-center integral which is a potential en-
ergy of the overlapping charge between g and h ions, due to
the third ion p, as an example. ln this study p, and v

represent the atomic orbitals in the anion h and cation g,
respectively.

method'" " and treat this change together with the
overlap charges as shown in the three-body potentials
of Eq. (4). This method is convenient for computer
calculations.

The changes in the Coulomb energy are calculated
by using a method of the dipole-dipole interactions
and the terms up to the J ions (designation of the
displaced ions is given in Table I of the next section)
are in good agreement with the values available from
Douglas's paper. For the overlap-repulsive energy,
Huggins-Mayer-type potentials are used including
both the overlaps between the nearest-neighbor ions
and those between the next-nearest-neighbor ions.

If symmetric orthogonalization is applied for atomic
orbitals (AO's) of the ions, the three-body potential
jn atomjc unjts js represented as followslo

E,= —,
' g'T(g, h),

g, h

T(g, h) = g r(g, h,p)
p Wg, h

4~(1)C&„(l), C'„(1)4„(1) I' 4"„(I)4„(1)
V rip rip rip

(3)

(4)

where ep, rip, S„„are the charge of the ion p, the
distance between referred electron 1 and p ion, and
the overlap integral between p, and v electron orbi-
tals. The 4„and 4„express one-electron orbitals of
the free ion; X„'" „ the sum over all orbitals of ion h;

—, X'„, the sum over all different pairs of ions.

Although procedure of symmetric orthogonalization

I

is not necessarily correct for the crystals with the lo-
cal lattice deformation, yet it seems important to
study the effect of the three-body potentials with this
procedure before a perfect theory will become avail-
able. Expanding I/ri~ in the second term of Eq. (4)
into spherical harmonics about the ion h, we have the
next approximation'

4„'(I )4„(1) Mo(g, h) Ml, (g, h) (3cos'Hgp~ —I )
p, v 3

V rip rhp rhp
(5)
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TABLE I. Identification of ion shells and Cartesian coordinates of their ions in units of Ro after
impurity substitution.

Shell No.
Name of

shell
No. of

ions Coordinates

0
1

2

3
4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0

B
C
D
E
G
I
J
E
M
P
0
R

U

1

6
12

8
6

24
24
12
6

24
24
24

8

24
48

6

0,0,0
1+a,0,0
1+b, 1+b,0
1+c,1+c,1+c
2+2d, 0,0
2+2e, 1+f0
2+2g, 1+h, 1+h

2+2i, 2+2i,0
3+j,0,0
2+2k, 2+2k, 1+I

3+3m, 1+n, 0
3+3p, 1+p, 1+p
2+2q, 2+2q, 2+2q
3+3r, 2+2s, 0
3+3t, 2+2t, 1+t
4+4u, 0,0
3,2,2

4, 1,0
3,3,0
4, 1,1

3,3,1

4,2,0
4,2, 1

5,0,0

where Hg~~ is the angle between vectors rg —ri, and r~ —r~, and

(h) (g)

Mp(g, h) = $$ S~„

(g) OO

Mq(g, h) = —, X(S„'„r„p„—S„'„~„~,„)g
P„'„r„(r)r'dr, p, 6h

(6)

where P„»„is the normalized radial wave function.
The third term in Eq. (4) is approximated in the
same way as the second one. For treating the first
term in Eq. (4), two different ways have appeared so
far. One of them was shown by Lowdin" for the
pure ionic crystals and was applied by us for the
impurity-doped crystals. It is the LST model as men-
tioned in the Introduction. Another one was adopted
by Ra' and by Abarenkov and Antonova'3 (RAA
model). These two models calculating the three-body
potential will be stated separately in Secs. IV and V.

Before the detailed description of both models, the
constants and variables taken in this study will be ex-
plained in the next section.

III. CHOICE OF CONSTANTS AND VARIABLES,
OVERLAP PAIRS AND CHANGE OF PAIR DISTANCE

As shown in Table I, the displaced 256 ions classi-
fied into 15 groups with displacements a, . . . , u in
units of Ro around one 'substitutional impurity ion in
the crystals are taken into consideration, ~here Ro is
the nearest-neighbor distance in perfect salts in cgs
units, and further 8 groups of the undisplaced ions
are included in calculations in order to complete the
overlapping pair of the displaced ions. The reason
why so many displaced ions should be taken'is to cal-
culate the EFG at various sites as accurately as possi-
ble, by means of including the effects of the distant
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TABLE II. Overlap pairs and the change of pair distance, e in units of Rp.

Overlap
pair

No. of
overlap pairs Change of pair distance, ~

0-A
A-D
D-J
A-B

B-C
B-E
D-E
C-G

E-G

E-I
E-M

J-M

G-K

I-K
G-P
I-R
J-U
K-0
K-T

M-P

M-R

M-17

P-T
P-19
0-16
R-T

R-18

R-21

T-16

T-20

T-22

U-17
U-23

6
6
6

24

24

24

24
24

48

24

24

24

24
24
24

6
24
48

48

24

48
24
24

48

24

24

48

48

48

24
6

a
2d —a
3J —2d

b+ —a + —b —ab
1 2 1

2 2

c+b +c —2bc

-b+2e+ —(b +f )—bf
1

2

f +2(d +e ) —4de
—c+2g+c +h —2ch

h+2(e +g ) +—(f +h ) —4eg —fh

f +2j +2{e2+j2) 4e

3m —2e +—(f + n2) —nf
1

2

n + (—)(j2+m2) —9jm
9

2k —h+2(g +k )+—(h +l ) —4gk
2

—hl

l+4(i +k ) —8ik

3p —2g +h +p —2hp
3r —2i + 2(i +s ) —4is
4u —3j
2q -l+4(k'+q2) -8k'
3t —2k +2(k'+t ) —4kt

+—(l'+ t') —lt
2

p+( —)m +—n +5p —9mp —np

2s n + ( )(n1 +r ) —9mf
2

1—3m + rl
2

2t —p +5(p + t ) —10pt
—3p +p'
—2q +4q2

t+{—)r +2s +(—)t —9
9 13

2 2
—4st
—2s+(—)r9

2
—3r +2s2
—t+(—)t'13

2
—2t +5t2
—3t+{—)t2

2

8u2
—4u

displaced ions from the impurity ions.
For Rp, the same values have been used as those

of Douglas which are somewhat smaller than the
usual. However, these distances will be suitable for
our study since our data have been obtained at low
temperature as described in RII. %e have adopted
the Tessman, Kahn, and Shockley's (TKS) values for
the polarizabilities n of the ions throughout this
study. " Other polarizabilities also have been tried

and the various quantities in the EFG are nearly in-

dependent of the polarizabilities, calculations of
which will be included in Sec. VII B.

The nearest-neighboring ion pair whose electron
orbitals overlap each other, and the change of the
pair distance ~ after impurity substitution, are calcu-
lated by using the displacements a, . . . , u of the pair
ions as shown in Table II. The similar table con-
cerned with the second-neighbor ions is also obtained
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in the same way. These tables are utilized in the cal-
culation of dependence of the overlap integrals on
the lattice deformation in Secs. IV and V.

IV. LST MODEL

For practical applications of Eq. (4) „a modified
form was developed by Lowdin. " Expanding the
given Hartree-Fock AO's 4„and 4„ in terms of the
complete systems (dp c) and (4 c) constructed

around the nuclei g„and g„, respectively, we obtain

If p,
'

and v' are summed over all orbitals p, and 2 be-

longing to the same and lower principal quantum
numbers than p, and v, respectively, this form of the
charge density gives a very good approximation to the
nuclear attraction integrals. The right hand of Eq.

(9) has the correct total charge Jtdp~dp„du& = S„„and
the best values of the multipliers A.

~
and A2 may be

chosen so that the total electric dipole moment p,,
along the line p, -v would be given correctly. The cal-
culated values of p,, and their dependence on the
nearest-neighbor distance in some alkali halides have
been already obtained utilizing two-center integrals I;
as shown in RI.

First we shall investigate the case of outer-shell
electrons, then we have following five kinds of S„„
between the overlapping orbitals p and v. For (i),
4„=ns, the orbital of a cation and 4„=n's, that of
an anion where both orbitals overlap each other, we
get from the RI using Eq. (9),

I~ ——aS = h. 'I'ls c 'f@, 4&, r cosHdv~
1

n s;ns n p0;ns J n's n p0

+l f' S„.„,j d „,4„cc cocdd

+ —,aS (Z'I" —Z)") (10)

where r, 8, and Q represent the spherical coordinates
of the electron 1, and "a" is the nearest-neighbor
distance in atomic units and both p, - and v-quantized
axes were chosen as the positive z axis in Fig. 1 in
the same way as that used by Hafemeister and
Flygare. " When 4„and 4„are the AO's of anion
and cation respectively, for (ii), dp„= np0, 4„=n's,
(iii), 4„=ns, db„= n 'p0, (iv), 4&„=np 0, 4&„=n 'p0,
we have obtained three equations similar to Eq. (10).
For (v), db„= npl, 4& = n'pl, we have a simple equa-

Introducing two arbitrary multipliers A.
~

and A.q satis-

fying the condition X~ + A.2 =1, we have for the real
density

(9)

tion:

because of vanishing of S, and S
n s;np 1 ns;n p I'

Lowdin took the p, - and v-quantized axes to direc-
tions of negative and positive z axes, respectively,
therefore in the methods of Lowdin and
Hafemeister-Flygare, the signs of the overlap in-

tegrals containing the anion p0 orbitals, S
0

and
n p0;ns

S are different from each other. If we use
n p0;np0

Lowdin's quantized axes, then a negative sign should
be added to the first term of the right hand in Eq.
(10), and so on in (ii), (iii), and (iv) cases, accord-
ingly we have the same h. j'~ and XP values
(i = I, . . . , 5), respectively, in both methods. For
the practical use of Eq. (10), consequently, it will be
convenient to take the absolute values of I and S in
Eq. (10) and in the similar equations. Then we ob-
tain the same equations for both methods as follows:

It'll —
—,
' alsil = —) i "Is3I Jt e„,c, ,r cosedv,

—&&"I»l Jl d.,c„„"ogd. ,

+ —,'als, l() f'& —) )»), (12)

and three similar equations, where abbreviations S~
=S(n'sins), S2 =S(n'slnp0), S3 =S(n'p0lns), and

S4 =S(n'pOI np0) were used for convenience in the
same fashion as I; in RI. Since the integrals of the
first and second terms in the right-hand side of Eq.
(12) are single-center integrals, they are easily calcu-
lated as shown in Table II of RI and are independent
upon the change of the nearest-neighbor distance dis-

tinctly from all other quantities of this equation. For
Eq. (11), we have

,
' a Is, I

= —,
'—a—Is,l(&P' —&V'), (13)

with an abbreviation Sq=s(n'pl lnpl).
So far only the outer-shell electrons have been

treated. Here we will consider the inner-shell elec-
trons simultaneously. Most overlap integrals contain-
ing inner-shell electrons are very small and negligible
compared with those between outer-shell electrons.
However, the 1s in Na+ ions and 2s, 2p electrons in
K+ ions have some contribution in our studies.
When we take the inner-shell electrons, two contri-
butions to the overlapping charges are generally con-
sidered. First, the overlap between the inner-shell
electron and outer one contributes directly to the
overlap charges as shown in Table V of the RI, which
also produces X('~ and h. )'~ (i =6, 7, . . . , ) in ways
similar to Eq. (12). Secondly, these overlap integrals
accompanied by such single-center integrals as shown
on the last five rows in Table II of RI are added to
the second term of the right-hand side in Eq. (12)
and modify the h. Is and h.P values (i =1, . . . , 4)
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XI"= Zg+)t&'$~+ cga',

[ Ij [
= XII + Yike + Zij 'E

)S;) =Xs;+ Ys;e+Zsa' (i =1, . . . , 4)

(14)

(15)

(16)

—a =y+y =s—Qp(1 +E) (17)

where ao represents the nearest-neighbor distance in

the perfect crystal in a.u. For the outer-shell elec-
trons in the anion,

slightly.
%e expand the next quantities with respect to e.

These expansions are possible when Roe (& p or cr

(see Table II in this text and Tables III, IV, and V in

RI) as is 'the case in this study. Then we have

On the other hand,

p' = 4 „4A„por cosHd v&
An s

(20)

~S& I Xsj + Ysqe+Zsj& (21)

where j = I for S(Nals ~n's) and j=3 for
S(Nals n'p0) or j=1,2, 3, and 4 for S(K2s ~n's),
S(K2p0 n's), S(K2s(n'p0), and S(K2pO~n'p0),
respectively (n' denotes the principal quantum
number of the outer electron of the anion). If we

define the functions E and F as follows:

~(6 i.~) =—'P(si+P (s I (i«1 (22)

where A =Na, n"=1, n =2 for i =2, 4 of the Na
ion, while, A = K, n"=3, n =2 for i = I, 3 of the K

ion, and A = K, n" =2, n =3 for i =2„4 of the K
ion, respectively. And also we have

4, 4, r cosHdv~ns npo

and for the outer-shell electrons in the cation,

0 = —J«„,«„~ cosHd

(18) F(g, rt;I, m, n) —= agsi+Ptsm+P g +y4sn+yris«

(23)

then we obtain the internuclear-distance dependence
of h.

"and X)'

) ig=E(X;i + l, i)/F(X, O;min(i+2, i —2), i + l, i)
I

kI') = [E( Y;i + l, i) —XII)F( Y X;min(i +2, i —2), i + l, i) ]/F(X, O;min(i +2, i —2), i + l, i)

X )= [ E( Z; i + I, i) —
P I jrF(Z, Y;min (i + 2, i —2 ), i + I, i)

—hI'jF(YX;min(i+2, i —2), i +l, i) 1/F(X, O;min(i+2, i —2), i +l, i)

X()=1 —A.I) A. I'I = I —X'), and X()=1—X,), i = 1, . . . , 4

(24)

(25)

(26)

(27)

where the upper sign corresponds to i =1, 3, and the lower one to i =2, 4. Here "min" means that the
minimum value should be picked up out of the positive numbers in parentheses. If we replace ~I~ ~, ~S& ~, by

~
I5~,

~S5[, respectively, and remove the terms containing ~S2~ or ~S3~ in Eq. (12), then we get Eq. (13). Therefore
A. 151 and A.Pl are derived by utilizing Eqs. (24) —(27) as follows:

&[~x' = Xrs/(y Xss), —

&5 = [ Yrs &I x (y Yss+—yXs—s) ~/(yXs~),

&Iz'= [—Z —&N(yZs +y Ys5) —~")(y Y +yXs ))l/(yXs5) ~

) g = I —) @, ZPg = 1 —1 ', ~) .

For the overlap integrals with the inner-shell electrons, (which will be called S6 S7, . . . ), XI& and h.(q (i =6,
7, . . . , and A =X, YZ) are determined from the similar equations (without ~SJ'~ terms) to Eqs. (22) —(27).

Now we will first calculate the first term of the right-hand side in Eq. (4):
(" q «(I ) 4 (1)

r)(g, h, p) =4«, X QS~„
V r~p

(28)

(29)

(30)

(31)

(32)

Substituting Eq. (9) into this equation, we have two terms separately. If we expand I/r, in the integrand of
each separated term into spherical harmonics about h for the first, while about g for the second term, then the
single-center integrals alone are obtained. Secondly, combining these with the second and third terms of Eq. (4)
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by means of Eqs. (5), (6) and (7), we get the final
formulas

Qgo Qgo Qgi(3 cos'ggaf —I)tg, h,p =eg + +
rgg I'hp

where

Qg] (3 cos Hggg I )
3 g

fP

(33)

Q =4 g(ZI" ——,')S,', (34)

Q„=4 g (I ("——,')S,', (35)

Q„, =4[(gI"——,')S3 +(zI"—
—,)S4

-(I I"--,')S,']G, ,

Q„=4[(I("——,)S2 +(&V'- —,) 4

—() 55' —
—,')S5'jGg,

(36)

(37)

(38)

(39)

Gg = —' J1 P' (r) r'dr

Gg —
5 Jf Pggg ( f) f dl'

Summation about i includes contributions from both
outer- and inner-shell electrons and contains the term
with S5' doubly. According to Eq. (33), we note that
the first two terms offer a two-point-charge model in
which two overlap charges Qgo and Qgp are on the h
and g, respectively, and the remaining small terms
may be regarded as corrections. We have calculated

the lattice relaxation including these correction terms.
Since XI' +X)' =1 for all i, we have Qgp+Qgo=0,
assuring us of electroneutrality in the ~hole crystal at
the first-order approximation.

We shall investigate the distance dependence of
t(g, h, p) in which e's are taken to the extent of the
second order of ion displacements. In Tables VI and
Vli in RI, these dePendences of Qgp, Qgp and Qgl,

Qgl have already been calculated in terms of f;, q;, $;
and ot, , I3,, y', (i =1,2), respectively, where Qgp, Qgp
and Qgl Qg~ are multiplied by e'/R p and e'aH2/Rp,

respectively. '4 If the inner-shell electrons are omitted
in the calculation of Qgp (or Qgp), the relative errors
of gt (or (2), gt (or g2), and $~ (or fq) amount to
about 0.71, 0.75, and 0.78% for 1s electrons in Na+
and to 1.78, 1.94, and 2.28% for 2s and 2p electrons
in K+, respectively.

According to Eq. (33), it is noted that the depen-
dence of T(g, h) upon the nearest-neighbor distance
will consist of three parts:

(i) b, Tt(g, h): The potentials arising from the p ion
are constant and four charges consist of linear and
quadratic terms in e. Therefore,
Is, T)(g, h) =—(K —I)5( Qgo

—Qgo)+26(Qg~ —Qg~)

(40)
where K =1.747564 is the Madelung constant re-
ferred to Ro for the face-centered-cubic lattice",' and
the variation of charges, 4's, are composed of the
terms proportional to e and e'. By using Table II and
abbreviations I)bEf~/I)a =E„etc., where bEf~
= —, X'„It T~(g, h), we obtain the next equations:

E = lp Ip/4+(2mp +lp+mo/2)a —lpb —mpd

Eb = —lpa +4(lp+ mp) b —2lpc 4mpe ——lpf,
E, = 2lpb +4(lp—+ mp) c —4mpg —2lph

Ez = —mpa +4(lp+mp) d —4lpe —3mpj

E = 4mpb —4lpd + 16( lp —+ mp) e —8lpg 4loi —12mo—m

Ey = lpb +4(lp+ mp)—f 2lpll 4mpi —lpn-
Eg = 4mpc —8lpe —+16(lp+ mp)g —8lpk 12fltpp

Eg = 21pc —2lpf +8(l—p+mp)h —8nlpk 2lpl 2lpp

El = 4lpe —4m—pf +16(lp+mp)i —8lpk —12mpf 4lps

E, = 3mpd +9(lp+—mp) j—91pm 6mpu-
Eg = 81pg 8ll?ph 81pi +32(lp+ mp) k —8lptI —8(lp+3mp) t

El = 2loh +4(lo+ mp) I —4mpq —2lpt

E = 12rnpe —9lpj +3—6(lp+ mp) m —18lpp 9lpr-
E„= lpf +4(lp+mp) n —2lpp ——4mps

E& = 12mpg 2lph 18lpm 2lpn +44(lp+mp)p 4(5lp+2mp) t

Eg = —8 !ok —4mpl + 16.( Ip + lit p) q

E„=—12mpi 9lpm +36(lp+ flip)r —18lpt

E, = 4lpi —4mpn +—16(lp+ mp) s —8lpt

El = 8 ( lp +3 mp) k 2 lp I 4 ( 5 lp + 2 mp )P I 8 I pl' 8 lps + 1 1 2 ( Ip + lltp ) t

E„= 6mpj +16(lp+ mp) u

(41)
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Here only the first term in Eq. (40) was treated and

io = 6(—a 1)—(F12 —ri(), mo = —6(a —I ) ((2 —())
(42)

for the impurity-host ion pair, while, about the host-
host ion pair,

&0 = 24(& I ) (F12 ri] ), telo = 24(rr 1 ) (gp gi)

(43)

Here qi„f~ and qq, g2 satisfy Eqs. (19) and (20) in

RI, respectively.
(ii) 6 T2(g, h): Both the charges and the potentials

originating in the p ion have the linear terms with

respect to e.
(iii) AT3(g, h): This term is a combination

between four charges with 0th order of ~ and poten-
tials coming from the p ion which are the first or
second order of ~.

The calculation on AEq of the overlap integrals
between the second-neighbor anions was performed
similarly. In this case, however, 0&o and Qzo vanish

V. RAA MODEL

Another method treating the first term in Eq. (4)
was developed by Ra, "Abarenkov and AntonovaI3
as referred in the Introduction,

The charge distribution

(h) (g)

p(I) =4 X XS„.e„"(1)C„(I) (44)

is replaced with a point charge on the electric center
of gravity (ECG) of the distribution p(1) chosen to
provide the same "charge" and '"dipole moment. "
By means of this approximation Eq. (4) will be writ-
ten in the form

i) jfor the host-host ion pairs because h.I' = X(' = —, for

all i in these pairs. The potentials in AT& and AT3
for the nearest- and next-nearest-neighbor overlaps
were calculated by a computer (ACOS series 77
blFAC-Sgoo). "

(rg, A, p) = ep
W,„(g,i) W, (g, h) W, (g, h) W&(3 cos'&,&,

—I) W, (3 cos'6,„—I)+ + + +
fgh rhp re rhp rgp

(45)

Wgp(g, h) =4 $S~
I

WO(g, h) = —2 QS; = —2MO(g, h)
I

Wj, = —2M'(g, h)

Wg ———2M'(g, h), i = 1, . . . , 7, .

(46)

(48)

(49)

(50)

(51)

and r~hp represents the distance between the p ion
and the ECG of the charge distribution p(1). A

three-point-charge model will be produced from the
first three terms of Eq. (45), in which Wf„and Wo's

are on the ECG and on both sites of the overlapping
ion pair, respectively, provided that the other terms
are simply regarded as corrections. The inter-
nuclear-distance dependence of the charges Wzq (ac-
cordingly Wo) and Wq, W~ were already given as
h„p„v and p;, rr;, m; (i =1,2) in Tables VI and VII
of RI, ~here 8'~h and 8'h 8'~ were multiplied by
e'/Ro and e'aH/803, respectively. '

From the Eqs. (15) and (16) we have the first-
order equations with respect to e in the form

Il;I =Xf;+ I'i;e

IS I
= Xs + I's',

then

Sj Xgg +2'/' Fgl'~

IIiSiI=Xf&s;+(Xi &s+vn&s)e,

/ I P ~ ~ ~ f 6P ~ ~ ~ e

(52)

(53)

When the origin is taken at the anion site of the
nearest-neighbor overlap-ion pair, the distance from
the origin to the ECG, r6 will be

fa = 1 ——$ Si 4 ~fi cosg(glpdv) XS2

iG =1 —QXf;Xs; ao QXg; (56)

(54)

in units of the nearest-neighbor distance. Since these
integrals are exactly I;, we obtain the distance depen-
dence of rc.

mG =—XXf;Xsi XXs'; $2Xs Ys
, I

Q() g /

i

/X'( —$ (Xf; Ys;+ 1'f,Xs;) XXf Xs;
l

(57)
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e 2

Was(g, h) = Eg+Dr e+ Cga'
0

(58)

For the second-neighbor overlaps the equations simi-
lar to Eqs. (45)—(57) will be also written, however, it

may be important to examine if the origins of rg and
II coincide with each other. The calculated values of
lg and mg for the nearest- and next-nearest-neighbor
overlaps are shown in Table III. %e have computed
both overlap effects carefully including the distance
dependence of correction terms. As in the LST
model, AT(g, It) will consist of three parts I)tT~(g, h),
ATt(g, h), and ET3(g, h). Summing up Eq. (45)
about p in order to get AT~(g, h), the second and
third terms will cancel each other because of the op-
posite signs and same absolute values of the
Madelung potentials on both sites of the nearest-
neighbor overlapping ion pair, therefore the first
term will be the main term in the 5 T~ (g, h). If we
write down 8'~I, in the form

for the impurity-host ion pair, and

e 2

ass(g, h) =Er+Dya+Cya'
0

(59)

for the host-host ion pair, then Eqs. (42) anti (43)
will be replaced by

I() =6~gD„, mo =6KgC„,

Io 24KgDys fPlo 24K g Cyp

(60)

(61)

where ~g represents the Madelung potential at the
ECG except the contribution from overlap-pair ions
in order to exclude the two-body potential. There-
fore, the ~g corresponds to ~ —1 in the LST model.
And then Eqs. (41) still hold in the case of the
nearest-neighbor overlaps of RAA model. The ~g in
the crystals under study was calculated including the
contributions from 120' ions as shown in Table VIII
of RI. '6

TABLE III. Electric center of gravity of charge distribution, p(1) = X" Xts S „0&"(I)4„(I).
The distance from the origin to the electric center of gravity for the nearest-neighbor overlaps is
given by rg = lg +mgE (& s are shown in, Table II) in units of Ro where the origin is taken at the
anion site of the overlap pair, and that for the second-neighbor overlaps is rG = J2(IG+mGb) in
units of Ro where the origin is taken at the impurity anion site.

Neighbor Overlap pair lg mg

Nearest
neighbor

Second
neighbor

Na-F in NaF
Na-F in KF
K-F in KF
K-F in NaF
Na-Cl in NaCl
Na-Cl in NaBr
Na-Br in NaBr
Na-Br in NaCI
Na-Br in KBr
K-Cl in KC1
K-Cl in NaCl
K-CI in KBr
K-Br in KBr
Na-I in NaI
Na-Br in NaI
Na-Cl in NaI
Na-I in NaCl
Na-I in NaBr

Cl-Br in NaCl
Br-Cl in NaBr
Br-Cl in KBr
Cl-I in NaCl
I-Cl in NaI
I-Br in NaI
Br-I in NaBr

0.7247
0.7448
0.6447
0,6617
0.7686
0.7788
0.7882
0.7793
0.8044
0.6563
0.6338
0.6668
0.6806
0.8104
0.8005
0.7924
0.7917
0.7991

0.5613
0.4445
0.4500
0.5732
0.4319
0.4414
0.5605

0.1658
0.0947
0.3990
0.5967
0.0516
0.0430
0.0528
0.0666
0.0352
0.1307
0.1708
0.1152
0.1340
0.0370
0.0388
0.0357
0.0841
0.0634

0.5574
0.5095
0.4948
0.5171
0.4602
0.5014
0.5101
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The potential calculations of AT~(g, h) and
jt, T3(g, h) are very complicated; however, we note that
the first three terms are put together in the form

the computations of potentials are very tedious owing
to containing the ECG. Generally speaking, the LST
model is simpler than the RAA one.

r 1

+ 4XS;1 1 1 1

rgb p 2 re fgp
(62)

VI. ELECTRIC FIELD GRADIENTS

and the computations of ETq(g, h) and ET3(g, h) will

become comparatively simpler. We have calculated
the potentials of AT2 and AT3 in both the first- and
second-neighbor overlaps by the computer, '"

The LST model generally has a property that calcu-
lations of potentials from the p ion will be fairly
short, but those on charges are troublesome as seen
in the last section. On the other hand, in the RAA
model the charges are obtained much easier, while

Das and Dick investigated early the EFG in the
impurity-doped ionic crystals in a different way from
ours and obtained a general form of EFG-tensor
components at a point with Cartesian coordinates
(xl x2 x3) relative to the point dipole M whose direc-

tion cosines are (ll, lq, l3)."The point dipoles of the

displaced ions will consist of the displacements of the
ions and the electronic polarizations. We have ex-
tended their point dipoles as follows',

M& =qa+p~, M~= —q2' 'I) +pa. Mc=q3' '&+pc ~

Mo = q2d +—po, lsMs = q 2e +p Ex mEME 'qf + P EY

lGMG = —q2g +p, oy, mGMG = —gh +p Gy. MI = —q8'"i+~1

Mj q3J +p J mgMg = q2k +p gy, n~MK = ql +pKz

I~M~ = —q3m +p~~, mme = —qn +I MY lpMp q3p

mpMp = qp, Mq ———q(12) ' 'q, /RMR = q3r

m&M& = q2s, lqMq = —q3t, m~M~ = —q2t

nTMT= —qt, MU= —q4~,

(63)

where I;, m;, and n; stand for the direction cosines of
M; relative to the crystal axes and p. s are the elec-
tronic polarizations of the ions arising from the elec-
tric fields at their sites produced after impurity substi-

tution, and q =+1 or —1 are for the case of the
anion or cation impurity, respectively. The p, ; of the
i ion was evaluated by an equation:

0 k

k "ki
3 P

re
(64)

where n;, Qk, and rk; represent the polarizability of
the i ion, the charge of the k ion in units of e and the
distance between the i and k ion, respectively. Here
summation goes over all 256 ions including the im-

purity and excluding the i ion. In Eqs. (63) we have
ignored p, p, . . . , p, U because of very small quantities.
By using Das and Dick's general form we get the
EFG components at (1,0,0), (1,1,0), (1,1,1), (2,0,0),
(2, 1,0), and (4,0,0) sites in units of 3e/Ra3. "

Every point dipole M, except M, in Eq. (63) will

produce the EFG directly at the nuclear site of the i
ion in question (i =A, B, . . . , U). Distortions of the
electron shells in this i ion originating in the Mj also
will yield the EFG at the same nuclear site indirectly.
The latter called the antishielding effect is much

p+r —x,

q,

0,

q,

p+r x,

0, —2p —2r —x
=0 (65)

larger than the former and we have eq'
= Ei(1 —y ) 3e/Ro3 as the combined EFG, where
E»'s are the direct EFG (the subscripts of E, i, and j
represent the crystal axes) and I —y expresses the
Sternheimer antishielding factor. Another electron-
shell distortion in the i ion will be produced by means
of the displacement of the i ion itself due to impurity
substitution. This distortion also will give rise to the
EFG at the same nuclear site in the i ion. Since this
is a difficult problem to study, no one has ever inves-
tigated this effect on the EFG, therefore we have
adopted an approximation semiempirically in which it

is assumed that the distortion and accordingly the
EFG are proportional to the displacement of the con-
cerned i ion. This type of EFG's will be called eq"
hereafter. The proportionality. constant k will be ap-
propriate to the concerned ion and determined so
that the calculated EFG may coincide with the experi-
mental one, then this constant is applied to the same
ion in the other crystals.

For the ion at (1,1,0) site thus we have a secular
equation:
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where

p =E (1 —y )3e/Rp, q =E~(1 —y )3e/Rp, (66)

and

~here

p =E~(1 —y )3e/Rps, q =Err(1 —y )3e/Rp3, (71)

r =Eu(1 —y )3e/Rp3, s =E~(1 —y )3e/Rp3, (72)

r = kb (k; constant mentioned above). (67) t =k2e, u =k'f, (73)

Solving this equation we obtain the principal values
of the EFG:

and

p +q +r =0. (74)

, (1 —y„)(E +E~) +kb for (1, 1,0).
R 3 . Oo xtf xf

3e
s (1 —y )(E E~) +—kb for (1, 1,0),R3 xg

I
—IE ~ I

—IE ~ I. E ~
=—eq ~x x gz ' sg

rt = (E, , —E, , )/E, „0«71 «1xx yy ss'

(68)

(69)

where x', y', and z' represent the principal axes.
Therefore we will classify the types of EFG tensors
on the (1,1,0) site according to the direction cosines
of principal axes relative to the crystal axes:

x';(0, 0, 1)
A y';(1, 1,0),

z';(1, 1,0)

x';(1, 1, 0)
B y';(0, 0, 1),

z';(1, 1, 0)

x';(1, 1, 0)
C y';(0, 0, 1),

z';(1, 1,0)

x';(O, O, 1)
D'y';(1, 1, 0),

z';(1, 1,0)

x';(1, 1, 0)
Ey'; (1, 1, 0),

z';(0, 0, 1)

x';(1, 1,0)
F' y';(1, 1, 0)

z';(0, 0, 1)

Thus the definite assignment af the tensor types can
be carried out by calculation, but this is impossible
from the experiments on the first-order splittings of
the NMR lines as noted in RII since we can get
merely information that some crystal has the type A

or D and another one possesses B or C, etc. , from
the experimental data. A crystal of type E or F has
never been found empirically.

For the ion at the (2, 1,0) site a similar procedure
will be applied and- we then obtain the principal
values of the EFG:

and

[p+q +t+u + [(p —q +t —u)z+4sz]' ')/2

r —t —u

with a rotation about z axis whose angle will be

g = —,
'

tan '[(2s)/(p —q + t —u) ] (70)

s (1 —y )E~ 2kb fo—r (0, 0, 1),
Rp3

[(ij,k) expresses the direction cosines of the princi-
pal axes], because of 45' rotation of the x and y crys-
tal axes about z axis. The principal values and the
asymmetry parameter, g are defined as '

r

k ~A, exp( —R/p, ) = kp 1 — e+, e', (75)
80 R02

pc 2pc

with

and

kp = A, exp( —Rp/p, ) (76)

R =Rp(1+a) (77)

Accordingly we can express the dependence of X on
the internuclear distance, with Ao and p, . Since the
covalency will be produced from the overlap integral
between the valence-electron orbital of the anion and
the orbital of the excited state of a potassium ion,
this integral will be much larger than that of the
valence electron of K ions, we may anticipate that
saturation of X on the internuclear distance occurs in
some crystals. Consequently we have adopted one of
the following three types for each crystal containing

Here 2e and f are the displacements of the (2, 1,0)
ion in the x and y directions as sho~n on Table I and
k and k' are the proportionality constants of the x
and y directions, respectively.

For the (1,0,0) and (2,0,0) sites we have also
evaluated eq'and eq" likewise, while the ion on the
(1,1,1) site has no eq" owing to the symmetry of this
lattice site.

As shown in the next section the evaluated quanti-
ties establishing an EFG tensor, i.e. , eq, g and the
type of tensor compare quite weil with the experi-
mental ones. For the crystals containing potassium
ions, ho~ever, agreement is very poor, for instance,
in NaC1-K and NaF-K, since in these crystals the
overlap integrals for the impurity-host ion pair are
much larger than those of the other crystals as shown
in Table VI of RI. This is due to the fairly large orbi-
tals of valence electrons in the potassium ion at com-
paratively small ionic distances. Covalent bonding
between these ions will be expected in which an elec-
tron on the p orbital of the anion is momentarily
transferred to the orbital of the neighboring potassi-
um ion. Provided that the degree of covalency ) is
defined as a rate in which the covalent-bonding state
of an overlapping pair is mixed with the ionic state, X

will be proportional to the probability of this transi-
tion and written in the form
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K+ ion:
(i) Perfect saturation: Owing to the extremely

large overlap, A. has no dependence on the internu-
clear distance. Therefore the second and third terms
in Eq. (75) are omitted.

(ii) Linear dependence on e: Third term is vanish-

ing.
(iii) No saturation: Eq. (75) is valid. Regarding

the transferred electronic charge in the orbital of the
potassium ion and the missing one in that of the
anion as the negative and positive point charges on
each lattice sites, respectively, we can apply the same
process of potential-energy calculations as shown in

the last section, for the superposed point charges on
both sites of the overlapping pair ion which originate
in both overlap and covalency.

VII. RESULTS
A. Lattice relaxation

In Secs. IV and V two different ways of calculating
AET were described in detail. Thus, calculating the
changes of total potential energy in Eq. (1) after im-

purity substitution and solving 20 linear equations
with respect to the displacements of the ion obtained
from differentiation of them, the lattice-relaxation
parameters in twelve impurity-doped ionic crystals
have been evaluated by using the computer. "

The relaxation parameters calculated by four dif-
ferent methods are listed in Table IV, and those ob-
tained from taking both overlap and covalency into
consideration for crystals with potassium ions are
given in Table V. In Table IV, the third, seventh,

TABLE IV. Lattice-relaxation parameters obtained from four different methods. The third, seventh, and fourth, eighth
columns represent the calculations without the three-body potentials by us and by Douglas (Ref. 6), respectively.

Crystal LST RAA No bET
No bE~

(DG) LST RAA No b, E~

No bE&
(DG)

NaC1-Br

a x103
c x103
e x 10
g x 103

i x103

k x 103

m x1P3

p x1P3
r x 10
t x103

+21.91
+0.18
+ 1.33
+0.92
+ 1.01

+Q.27
+0.11
+0.24
+0.22

+0.15

+22.16
—1.65
+ 1.52
+0.64
+0.66

—0.06
+0.22
+0.27
+0.22
+0.09

+23.47
—0.57
+ 1.57
+0.63
+0.91

+0.08
+0.34
+0.24
+0.26
+0.09

+24.51
—0.64
+ 1.42
+0.51
+0.83

b x103
d x103
f x103
h x103
j x103

I x103
n x1P3

q x]03
s x103
u x103

+6.83 +5.00
+0.34 + 1.37
+3.50 +3.29
+0.71 +0.25
—0.07 —0.05

+Q.S2 +0.45
+0.41 +0.57
+0.17 +0.08
+0.44 +0.43
—0,03 +0.01

+ 5.76
+2.23
+2.94
+0.20
+0.41

+0.2S
+0.58
+0.06
+0.38
+0,06

+6.10
+2.06
+2.85
+0.18
+0.27

NaBr-Cl

a x 1P3

c x103
e x 1P3

g x1P3
i x103

k x103
m x 1P3

p x103
r x103
t x10

-20.14
—0.02
—1.27
—0.77
—0.87

—0.21
—0.16
—0.23
—0.21
—0.13

-19.72
+ 1.27
—1.32
—0.53
—0.60

+0.03
—0.22
—0.23
—0.19
—0.07

—22.68
+0.58
—1.49
—0.55
—0.83

—0.06
—0.35
—0.22
—0.24
—0.08

-21.58
+0.52
—1.14
—0.42
—0.68

b x103
d x 10'
f x103
h x 103

j x103

I x lp3

n x103
q x 10
s x103
u x103

—5.84
—0.78
—2.96
—0.52
—0.03

—0.39
—0.43
—0.12
—0.38
+0.01

—4.35
—1.41
—2.70
—0.19
—0.07

—0.33
—0.48
—0.07
—0.35
—0.02

—5.26
—2.39
—2.66
—0.15
—0.48

—0.21
—0.56
—0.05
—0.34
—0.07

—5.14
—1.34
—2.32
—0.16
—0.21

KBr-Cl

a x103
c x103
e x103
g x 1P3

j x103

k x10'
m x1P
p x1Q3
r x103
t x10'

—14.03
—0.03
—0.99
—0.51
—0.58

—0.13
—0.18
—0.18
—0.15
—0.07

—16.43
+ 1.84
—1.19
—0.14
—0.28

+0.25
—0.25
—0.15
—0.11
—0.00

-21.40
+0,70
—1.38
—0.22
—0.60

+0.04
—0.44
—0, 12
—0.20
—0.01

—19.89
+0.62
—1.01
—0.15
—0.48

b x103
d x103
f x103
h x 103

j x10

/ x1p3
n x103
q x1P3
s x1P3
u x10

—3.93
—1.05
—1.79
—0.22
—0.13

—0.15
—0.36
—0.06
—0.23
—0.01

—1.83
—2.34
—1.40
+0.18
—0.58

—0.07
—0.26
—0.02
—0.26
—0.11

—3.81
—3.91
—1.77
+0.13
—1.05

—0.05
—0.53
—0.00
—0.24
—0.24

—3.56
—2.87
—1.49
+0.01
—0.60
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Crystal LST RAA No bE&

TABLE IV (Continued).

No bEq
(DG) LST RAA No bE&

No bE&

(DG)

NaC1-I

a x103
c x103
e x 103

g x103
i x103

k x103
m x 103

p x103
r x1P3
t x 103

+51.39
+0.76
+3.17
+2.22
+2.44

+0.68
+0.26
+0,57
+0.52
+0.37

+52.87
—3.57
+3.69
+1,58
+1.63

—0.09
+0.53
+0.67
+0.53
+0.22

+53.92
—1.06
+3.67
+ 1.Sl
+2.16

+0.23
+0.80
+0.57
+0.61
+0.22

+63.87
—1.64
+3.95
+1,31
+2.2S

b x]03
d x103
f x1Q3
h x10'
j x103

( x103
n x103
q x lp
s x103
u x103

+ 16.66
+0.60
+8.37
+ 1.79
—0.19

+1,26
+0.94
+0.41
+1.07
—0.06

+12,37
+3.36
+7.91
+0.68
—0.11

+1.08
+1.38
+0.20
+ 1.04
+0,03

+13.74
+5.06
+6.85
+0.53
+0.94

+0.58
+1.33
+0.14
+0.88
+0.13

+ 16.31
+6.77
+7.61
+0.46
+0.87

NaI-C1

a x1P3
c x10
e x10
g x1P
i x1Q3

k x 103

m x103
p x1Q3

r x 103

t x103

—42.62
+0.10
—2.76
—1.48
—1.75

—0.37
—0.46
—0,49
—0.45
—0.24

-41.06
+2.09
—2.71
—1.04
—1.27

+0.00
—0.51
—0.45
—0.40
—0.14

-49.59
+ 1.22
—3.22
—1.11
—1.72

—0.12
—0.80
—0.46
—0.52
—0.16

—46.79
+ 1.01
—2.33
—0.87
—1.39

b x103
d x1Q3

f x10'
h x103
j x10

( x10'
n x103
q x103
s x1P3
u x 103

-11.63
—2.57
—5,72
—0,88
—0.31

—0.65
—0,95
—0.21
—0.73
—0.01

—8.99
—3.41
—5.15
—0.37
—0.40

—0.56
—0,95
—0.13
—0.66
—0.06

—10.99
—5.74
—5,40
—0.26
—1.26

—0.38
—1.21
—0.09
—0.69
—0.21

—10.69
—2.46
—4.64
—0.38
—0.45

NaI-Br

a x103
c x 103

e x103
g x ]03
i x 103

k x 103

m x 1P3

p x103
r x103
t &103

-27.11
+0.04
—1.76
—0.95
—1.12

—0.24
—0.29
—0.31
—0.28
—0.15

—26.55
+ 1.34
—1.76
—0.67
—0.82

—0.00
—0.33
—0.29
—0.26
—0.09

—30.72
+0.73
—2.01
—0.70
—1.08

—0.08
—0.50
—0.29
—0.32
—0.10

-29.12
+0,62
—1.51
—0.54
—0.88

b x1P3
d .x 103

f x1P3
h x10'
j x103

( x103
n x103
q x103
s x1P3
u x 103

—7,44
—1.63
—3.65
—0.56
—0,20

—0.41
—0.61
—0.13
—0.46
—0.01

—5.83
—2.21
—3.33
—0.24
—0.26

—0.36
—0.61
—0.08
—0.42
—0.04

—6.87
—3,55
—3.36

' —0.17
—0.78

—0,24
—0.75
—0.06
—0.43
-0.13

—6.74
—1,85
—2.93
—0.24
—0.33

NaBr-I

a x10
c x103
e x103
g x103
i x103

k x1p3
m x103
p x1P
r x103
t x103

+30.22
+0.22
+ 1,94
+ 1.20
+1.36

+0.34
+0.24
+0.35
+0,32
+0,20

+30.78
—1.78
+2.10
+0.86
+0.96

—0.02
+0.35
+0.36
+0.31
+0.12

+32,19
—0.67
+ 2, 17
+0.83
+1,23

+0.11
+0.51
+0.33
+0.36
+0.12

+34.&5
—0,79
+2.07
+0.68
+1.17

b x103
d x10'
f x1Q3
h x 10'
j x1p3

( x103
n x103
q x103
s x103
u x103

+9.14
+1.09
+4.53
+0.84
+0.04

+0.60
+0.63
+0.20
+0.58
—0.02

+7.05
+2.25
+4.25
+0.34
+0.12

+0.52
+0.76
+0.11
+0,55
+0.03

+7.82
+3.37
+3.84
+0.25
+0.68

+0.30
+0.80
+0.07
+0.49
+0.10

+8.64
+3.40
+3.90
+0.27
+0.50

NaC1-K

a x103
c x 103

e x103
g x1P3
i x103

k x 103

m x 103

p x1P3
r x1P3
t x103

+33.60
—0.14
+2.14
+ 1.64
+1.71

+0.41
+0.14
+0.38
+0.35
+0.25

+53.99
—0.79
+3.64
+1.34
+2.44

+0,21
+0.96
+0.52
+0.60
+0.16

+50.39
—1.61
+3.44
+ 1.27
+1.9S

+0.15
+0.79
+0.53
+0.58
+0.18

+55.25
—2.46
+3.36
+0.94
+ 1.80

b x103
d x103
f x103
h x103
j x1Q3

( x103
n x103
q x 1P3

s x103
u x103

+ 11.77
—0.71
+6.11
+ 1.13
—0.26

+0.96
+0.51
+0.28
+0.75
—0.05

+14.35
+5.86
+6.54
—0.06
+ 1.27

+0.27
+ 1.30
—0.01
+0.76
+0.25

+11.71
+5.55
+6.67
+0.30
+0.78

+0.66
+1.51
+0.13
+0.84
+0,12

+ 12.42
+6,85
+6.47
—0.05
+0.59
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LST RAA No hE&

TABLE IV (Continued).

No hE~
(DG) LST RAA No 4E~

No AE&

(DG)

a x103
c x103
e x 1Q

g x103
i x103

k x 103

m x 103

p x 1{j3

r x103
t x103

-33.19
—0.63
—1.97
—1.66
—1.61

—0.53
—0.03
—0.35
—0.29
—0.26

—64,63
—1.12
—3.85
—1.15
—3.11

—0.46
—1.44
—0.50
—0.62
—0.15

-61.11
+2.46
—4.15
—1.09
—2, 15

+0.02
—1.14
—0,53
—0.67
—0.12

-53,08
+1.88
—2.81
—0.77
—1.58

b x10'
d x10
f x103
h x 103

j x103

I x103
n x103
q x103
s x103
u x10

-11.43
+0.60
—5.86

1.33
+0.38

—0.97
—0.64
—0.32
—0.74
+0.06

-16.11
-11.12
—6.98
+0.72
—1.90

+0.14
—2.47
+0.38
—0.73
—0.40

-12.76
—8.65
—6.8S
+0.19
—1.76

—0.41
—1.76
—0.06
—0.91
—0.34

—11.23
—4.59
—5.22
+0.01
—0.67

NaF-Li

a x103
e x103
e x 1{j3

g x103
i x].0

k x103
m x 103

p x 103

r x 103

t x103

—56.98
—3.30
—2.00
—3.21
—2.91

—1.15
+ 1.06
+0.01
—0.22
—Q.S2

—56,02
—0.50
—3.40
—1.74
—2.86

—Q, S1
—0.70
—0.5S
—0.56
—0.27

—57;36
+ 1.93
—3.74
—2.09
—2.50

—0.30
—0.48
—0.63
—0.65
—0.32

-46.79
+1.64
—2.34
—1.39
—1.S9

b x103
d x10'
f x103
h x10'
j x103

( x 103

n x10
q x103
s x 10
u x103

-23.06
+8.13

—12.44
—5.11
+ 1.26

—3.67
+ 1.00
—1.03
—1.66
+0.11

-15,71
—4,23
—7.27
—0.40
—0.74

—0.44
—1.33
—0.00
—0.89
—0.04

-15.74
—2.15
—9.25
—1.12
+0.06

—1.33
—1.30
—0.28
—1.19
+0.04

—12.80

+0.42
—6.36
—0.31
+{j.15

a x103
g x 1Q3

e x 103

g x103
i x 10

k x 103

m x10
p x103
r x103
t x103

+3S.34
+2.53
+0.68
+2.24
+2.16

+0.81 .

—0.91
—0.17
+0.02
+0.33

+69.49
+0.49
+4.18
+2.S1
+3.93

+0,67
+0.69
+0.70
+0.69
+0,39

+64,78
—2.18
+4.22
+2.36
+2.82

+0.34
+0.54
+0.72
+0,73
+0.37

+74.40
—3.84
+4.61
+2.01
+2.68

b x103
d x103
f x 1Q3

h x 103

j x103

I x103
n x103
q x103
s x 103

u x103

+ 17.36
—9.13
+8.47
+3.73
—0.59

+2.64
—1.79
+0.76
+ 1.17
—0.05

+21.81
+2.43
+9.72
+0.74
+0.72

+0.65
+0.94
+0.06
+ 1.17
+0.03

+ 17.77
+2.43

+ 10.45
+ 1.26
—0.07

+ 1.50
+ 1.46
+0.32
+ 1.34
—0.04

+ 19.50
+5.51

+ 10.67
+0.14
+0.03

KBr-Na

a x103
e x103
e x103
g x103
i x103

k x103
m x 1Q3

p xlQ3
I x103
t x103

—20.77
+0.08
—1.49
—0.79
—0;91

—0.19
—0.27
—0.27
—0.22
—0.11

—56.43
+0.01
—3.48
—0.45
—1.90

—0.06
—1.44
—0.27
—0.52
—0.01

-47.75
+ 1.66
—3.09
—0.43
—1.38

+0.08
—1.00
—0.27
—0.46
—0.02

—39.58
+1.30
—2.02
—0.24
—0.95

b x103
d x103
f x 1{j3

h x 103

j x103

I x 10'
n x103
q x103
s x 103

u xlQ3

—6, 12
—1.44
—2.88
—0,31
—0.16

—0,26
—0.55
—0.09
—0.36
—0,01

-11.29
-12.39
—4.36
+0,75
—3.08

+0.14
—1.84
+0.24
—0.52
—0.86

—8.28
—9.14
—4.18
+0.32
—2.29

—0.18
—1.26
—0.02
—0,56
—0.56

—6.76
—5.95
—3.02
+0.09
—1.11

and fourth, eighth columns are calculations without
4E~ by us and by Douglas, respectively. The small
discrepancies of corresponding values will be due to
the fact that we have considered the more displaced
ions in the calculations than Douglas has sho~n in
this table. In the first and fifth columns which are
computations including the LST model, we note the
next facts when they are compared with the columns
"No AEq. "

(i) With respect to the movements of ions which

are expressed with each parameter, in both cases of
anion and cation impurities, a, d, e, j, m, r, and u

have a tendency to decrease their absolute values, or
to move in the opposite direction to the displace-
ments of most ions in the crystals, compared with the
corresponding parameters on the columns "No
d Ey."

(ii) In both cases on anion and cation impurities,
the parameters A, k, I, and q have a tendency to in-
crease their absolute values, or to move in the oppo-



23 LATTICE RELAXATION AND ELECTRIC FIELD GRADIENTS. . . 6747

TABLE V. Lattice-relaxation parameters calculated by using each of two models of AET, and including covalency. In the cal-

culation of these parameters such degree of covalency as shown in Table VI was used in order to get good agreements with the
experimental EFG's. The types of covalency were also selected as written in the text.

Crystal LST RAA LST RA A LST RA A LST RA A

KBr-Cl

a x 1P3

e x]p3
i x 103

m x 1P3

r x 1P3

—16.24
+0.07
—0.03
+0,04
—0.01

—17.40
+0.02
—0.03
+0.03
—0.01

b x103
f x103
j x103
n x 1P3

s x1P3

+0.03
—0.13
—3,18
—0.18
—0.04

+0.06
—0.13
—3.30
—0.15
—0.03

c x103
g x 1P3

k x10'
p x103
t x 1Q3

+0.18
+0.11
+0.00
+0.05
+0.00

+0.31
+0.13
+0.01
+0.07
+0.00

d x10'
h x 1Q3

/ x103
q x103
u x103

—6.71
+0.02
—0.01
+0.00
—1.25

—6,92
+0,02
—0.01
—0.00
—1.26

a x103
e x103

NaC1-K i x 10'
m x103
r x 1P3

+ 115.15
+7.37
+4.71
+0.90
+ 1.20

+ 116.38
+7.28
+4.43
+2.08
+1~ 18

b x 1Q3

f x 1Q3

j x lp3

n x 103

s x103

+30.29
+ 17.49

—0.36
+3.26
+2.21

+25.17
+ 12.56
+2.98
+3.41
+1,50

c x 1P3

g x 1Q3

k x10'
p x103
t x103

-0.53
+4.43
+ 1.17
+1.30
+0.'71

—1.91
+2.23
+0.38
+0.97
+0.27

d x103
h x103
/ x103
q x 1P3

u x103

+5.86
+2.92
+2.63
+0.72
—0.13

+15.63
—0.35
+0.57
—0.05
+0.54

KF-Na

a x10'
e x103
i x103

m x103
r x1Q3

-71,35
—4.20
—1,16
—1.49
—0.46

-77.72
—4.57
—2.86
—2.11
—0,70

b x103
f x 1P3

j x lp3

n x103
s x103

—6.91
—2.59
—3.45
—1 ~ 34
—0.47

-15.26
—6.51
—3,53
—3.36
—0,70

c x103
g x103
k x 103

p x1P3
t x103

—0.24
—0.45
—0.07
—0.33
—0.04

—0.92
—0.52
—0.26
—0.40
—0.01

d x10'
h x103
/ x 103

q x103
u x 1Q3

-15.26
+0.09
—0.02
+0.01
—0.78

-18.66
+ 1.37
+0.34
+0.54
—0.96

NaF-K

a x103
e x]p3

I' x 103

m x103
r x 1P3

+83,07
+5.27
+2.10
—0.19
+0.85

+93.56
+ 5.03
+3.25
+ 1.47
+0.85

b x103
f x103
j x103
n x103
s x 1P3

+16.22
+ 13.56

—2.78
+4.41
+ 1.53

+16.91
+9.66
+ 1.53
+3.83
+ 1.13

c x103
g x]p3
k x103
p x]Q3
t x103

+ 1.80
+3.i8
+ 1.05
+0.78
+0.63

—0.14 d x 103

+1.69 h x10
+Q 58 / x10
+0.74 q x 10
+0.27 u x 103

+8.86
+4.15
+3.29
+0.81
—0.20

+13,35
—0.19
+, 0,49
—0.14
+0.06

a x103
e x 1Q3

KBr-Na i x 10
m x 103

r x103

—29.83
—2.05
—0.95
—0.56
—0.29

—56.43
—3.48
—1.90
—1.44
—0.52

b x10'
f x103

j x 1Q3

n x103
s x103

—6.02
—2.69
—0.77
—0.83
—0,37

-11.29
—4.36
—3.08
—1.84
—0.52

c x103
g x 1P3

k x 103

p x 1P3

t x 1P3

+0.06
—0.68
—0.15
—0.30
—0.09

+0.01
—0.45
—0.06
—0.27
—0.01

d x103
h x 10'
/x]03
q x 1P3

u x 103

—4.52
—0.14
—0.13
—0.05
—0.13

-12.39
+0.75
+0.14
+0.24
—0.86

site direction to the displacements of most ions.
(iii) In the case of anion impurities, b, f, and s in-

crease their absolute values except s in KBr-C1.
These tendencies also are partially observed in the

RAA model in the second and sixth columns. From
these facts we recognize that participation of 4ET in
the potential energy will increase the displacements of
the ions due to impurity substitution toward (1,1,0)
and (l, l, l) directions, and decrease those of the ions
toward (1,0,0) direction. This effect of the three-
body potentials resembles the failure of the Cauchy
relations for the elastic constants in the pure ionic
crystals discussed by Lowdin, ' "although there ex-
ists the difference that the former and latter are con-
cerned with the inhomogeneous and homogeneous
strains, respectively. These results are closely related
to smaHness of g at (1,1,0) sites in some crystals as
shown later.

On the other hand, the values in Table V are gen-
erally much larger than the corresponding values in
Table IV which suggests to us the serious effects of

only several percent covalency upon the lattice relax-
ation accordingly upon the EFG. Of the lattice-
relaxation parameters, k, . . . , u in Table V, several
parameters are not so small compared with a, . . . , j
that they can be neglected.

B. Electric field gradients

By using the lattice-relaxation parameters men-
tioned above and the electronic polarizations of Eq.
(64), we have calculated the EFG, g and types of the
EFG tensor on the various sites around impurity
ions, according to the last section, and compared
them with those of the experimental data in our pa-
per RII or with the other worker's empirical
results. ' They are listed in Table VI where two
kinds of calculated values are obtained independently
by means of both models and where eq = eq'+ eq".

The Sternheimer antishielding factor, 1 —y and
the constant k 's of the displaced ions in Eq. (67)
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TABLE VI. Electric field gradients at various ion sites about impurity ions. EFG in units of 10 ~ esu/cm~.

Crystal Site Cov. ('/o)

Theoretical
Type

Experimental
[eq [(ExpL) Type

Na(1, 0,0)

NaCl-Br Cl(1, 1,0)

Na(1, 1,1)

LST
RAA
LST
RAA
LST
RAA

25.7
22.1

107.6
116.6
—7.8
—6.1

26.3
29.9
21.8
11.3
0
0

52.0'
52.0'

129.4
127.9
—7.8
—6.1

0.090
0.104

0

8 or C 0 10

Na(1, 0,0)

NaBr-Cl Br(1,1,,0)

Na(1, 1,1)

LST
RAA
LST
RAA
LST
RAA

—19.5
—16.9

—125.4
—131.3

5.1

—24.2
—26.6
—24.5
—14.8

0
0

—43,7
—43.5

—149.9
-146,1

6.4
5.1

0
0
0.086
0.098
0
0

8 or C 0.10

Na(1, 0,0)

Cl(1,1,0)

Na(1, 1,1)

LST
RAA
LST
RAA
LST
RAA

61.8
53.3

247.5
275.4
—18.8
—14.9

61.7
71.4
53.3
28.0
0
0

123.5
124.7
300.8
303.4
—18.8
—14.9

0
0
0.107
0.098
0
0

140

8 or C 0.10

NaI-Cl
Na(1, 0,0)

Na(1, 1,1)

LST
RAA
LST

-32.9 -S1.1
—29.0 —55.4

115 0
9.6 0

—84.0
—84.4

11.5
9.6

54

33

NaI-Br Na(1, 0,0)
LST
RAA

—21.0
—18.8

—53.5
—54,6

NaBr-I
Na(1, 0,0)

Br(1,1,0)

LST
RAA
LST
RAA

30;1
26.8

185.0
203.2

36.3
41.6
38,4
24.0

66.4
68.4

223.4
227.2

0
0
0.109
0.101 8 or C 0.10

LST
RAA

1,5
0.9

—97.3
—96.9

0.13 -97,2
0.21 —96.7

0.966
0.920 Aor D 09

Cl(1,0,0)
LST
RAA
LST
RAA
LST
RAA

2.5
3,0
2.5
3.0
2.5
3.0

—789.2
-491.4

60.1

61.8
121.8
106.6

368.5 —420, 7

263,0 —228,4
36,3 96.4
34.0 95,8
0 121.8
0 106.6

0
0
0.099
0.032
0
0

421

8 or C 0 10

K(1,1,0)

K(2,0,0)

LST
RAA
LST
RAA

2.6
0.9
2.6
0.9

—136.6 —25.6
—141.9 —32.0
—142,0 —112.9
—190,3 —78,4

—162.2
—173,9
—2S4.9
—268.7

D
D

0.644
0.411
0
0

A or D 0607

NaF-Li
Na(1, 1,0)

Na(2, 0,0)

LST
RAA
LST
RAA

—45.0
—52.1

—126.9
—100.0

—27.7
—21.2

19.5
—11.4

7217
—73.3

—107.4
—111.4

0,418
0, 125
0
0

Aor D 065
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Crystal Site Model Cov. (%) eq' eqel eq Type

TABLE Vl (Conti nued),

Theoretical Experimental

I eq I (Expt. ) Type

NaF-K
Na(1, 1,0)

Na(2, 0,0)

LST 4.8
RA A 4.2
LST 4,8
RAA 42

81.0
99.8

167.2
155.4

19.5
22.8
21.2
36.0

100.5
122.6
188.4
191.4

0.632
0.596
0
0

115'

209.6e

A or D 045

KBr-Na Br(2, 1,0)
LST
RAA

0.9
0

—72, 1

-137.1
0.161
0.213 75 0.47

'In both models the calculated values of eq at the Na(1, 0,0) site in this crystal were normalized to the empirical data in order to
get "k"of the Na+ ion.
bL. O. Andersson and E. Forslind, Refs. 30 and 31; W. D. Ohlsen and M. E. Melich, Ref. 32.
'A. Hartland, Ref. 33.
dK. F. Nelson and W. D. Ohlsen, Ref. 34; B. G. Dick and K. F. Nelson, Ref. 5.
'B.G. Dick and K. F. Nelson, Rkf. 5. The other empirical data of EFG without alphabet have been obtained from our experi-

ments a's shown in the paper RII.

TABLE VII. Sternheimer antishielding factor, 1 —y and

deformation constants of electron shell, k used in two

models.

k

Ion Model (10' esu/cm ) 1 —y 1 —y (Free ion)'

LST
RAA
LST
RAA
LST
RAA
LST
RAA

1.20
1 ~ 35
3.70
2.10
3.20
2.26
4.20
3,40

5.53
5.53

13.8
13.8
47.3
41.6
69.2
63.4

5.53

13.8

50.3

100

'Antishielding factors of free ions from T. P. Das and R.
Bersohn, Phys. Rev. 102, 733 (1956); E. G. Wikner and T.
P. Das, ibid. 109, 360 (1958).

which were used in both models, are shown in Table
VII. The 1 —y of the free ions were utilized for the
Na+ and K+ ions because of small ions, while for the
Cl and Br ions we have used the mean values of
two evaluations each of which was determined by us-

ing the experimental ~eq
~

's and g 's at (1,1,0)C1 or
(1,1,0) Br sites in the crystals with anion impurities.
The k's of Na+ ion in both models were obtained
from the eq" at (1,0,0)Na in the NaCl-Br crystal so
that the calculated eq on this site might be normal-
ized to the experimental one. It will be noted that
the 1 —y for large ions in the actual crystal is con-
siderably smaller than that of the free ions.

In Table VI both models generally give the almost
same evaluations and agree fairly well with the exper-
imental EFG. The calculated eq 's at (1,1,1) sites in

various crystals are much smaller than thc empirical
ones [except (1,1,1)Cl in NaC1-K where agreement
is quite good], the reason for which we cannot ex-
plain at present. For the (1,0,0), (1,1,0), and (2,0,0)

sites the eq, q and types of the EFG tensor show
comparatively good agreement with the experimental
data. As stated in the introduction the measured g 's
on the (1,1,0) sites have the same values 0.10 for
NaC1-Br, NaBr-C1, NaC1-I, NaBr-I, and NaC1-K crys-
tals. They are inconsistent with previous theory' '
which does not contain the 4ET. Good agreement of
our calculated q by using both models with the mea-
sured one seems to originate in the fact that first, in-

troducing ET into the potential energy causes such a
change of the displacements of ions as written in Sec.
VII A, and secondly, the EFG calculation with eq"
also has a tendency to decrease the q in these crys-
tals. The evaluated types of the EFG tensor in these
crystals also agree with one of the empirically ob-
tained types. The types 8 and C at (1,1,0) sites were
found in this study for the first time, the latter of
which is the type of (1,1,0)Na in NaCl-K crystal, and
it will be discussed in the next section in connection
with covalency.

The types and 7t 's at (1,1,0)Na in NaF-Li crystal
obtained by two models do not perfectly coincide
with the experimental data although the eq 's do very
well with the empirical ones. Therefore we have
tried to recalculate the EFG of this crystal, including
a rotation effect of the off-center impurity Li+ ion
about the origin. But we could not obtain better
results'. It now seems that a quantum-mechanical
treatment carried out by Quigley and Das" should be
applied to this crystal.

We have calculated the EFG's in Table VI by using
the TKS polarizabilities as stated before. We have
also computed them by means of the other three sets
of polarizabilities, namely, TKS shell, Sternheimer
and Sternheimer shell. 4 They are listed in Table VIII
as an example in many computations. It will be obvi-
ously noted that the EFG's in these three schemes
are nearly equal except Sternhcimer's, consequently
the different polarizabilities do not produce the large
difference of the FFG in our calculation.
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TABLE VIII. The eq and q calculated by using LST model in which only the polarizabilities of
the ions were changed. The eq in units of 10'2 esu/cm . The type of EFG tensors follows
asymmetry-parameter values at the (1,1,0) sites. The 4th, 5th, 6th, and 7th columns represent the
sets of TKS, TKS shell, Sternheimer and Sternheimer-shell polarizabilities, respectively (Refs. 4
and 6).

Crystal Site TKS TKS-s Steh Steh-s

NaC1-Br
(1,0,0)Na
(1,1,0)C1

(1,1,1)Na

eq

7l

eq

7l

eq

Yl

52.0
0

129.4
0.090B

—7.8
0

49.2
0

133.7
0.031B

—6.2
0

58.6
0

117.0
0.250B

—11.2
0

53.0
0

127.6
0.111B

—8.3
0

NaC1-I

(1,0,0)Na

(1,1,0)C1

(1,1,1)Na

eq

7l

eq

vl

eq

Yf

123.5
0

300.8
0.107B

—18.8
0

116.8
0

313.7
0.034B

—15.1
0

139.1
0

270.9
0.280B

—26.5
0

125.7
0

296.5
0.128B

—19.9
0

NaF-Li
(1,1,0)Na

(2,0,0)Na

eq

71

eq

71

—72.2
0.418C

-107.3
0

—68.8
0.449 C

—107.4
0

—77.9
0.525 C

-118.1
0

—73.1

0.438 C
—109.0

0

C. Influence of covalent bonding on the EFG

Although it has not been expressed as a table,
similar calculations to Sec. VII B were performed on
the crystals with potassium ions, namely, KBr-C1,
NaC1-K, KF-Na, NaF-K, and KBr-Na. However, the
computed EFG's do not agree with the experimental
values.

As discussed in Sec. VI, due to the large overlap

integrals between the nearest-neighbor ions, one of
which is the potassium ion in these crystals, there
will possibly exist a small quantity of covalent bond-

ing between both ions which gives a great effect on
the EFG. If we consider a small amount of covalen-

cy as shown in Table VI, agreements between calcu-

lations and experiments are satisfactory in both
models where the types of covalency were taken as
(iii), (ii), (i), (i), and (i) for KBr-C1, NaC1-K, KF-Na,
NaF-K, and KBr-Na crystals, with notation in Sec.
VI, respectively (these types were selected in order to
obtain good agreement). The dependences of eq, 71

and types of the EFG tensor on degree of covalency
are described in Figs. 2 —5 in which the solid lines

show the results of computer calculation and the hor-
izontal dotted lines express the empirical data, and
the arrows represent the adequate degree of covalen-
cy to fit in with all the measured values.

For the (1,1,0)Br site in KBr-Cl, (1,1,0)Na and
(1,1,1)Cl sites in NaC1-K, (1,1,0)K and (2,0,0)K
sites in KF-Na, and (1,1,0) Na and (2,0,0) Na sites in

NaF-K, both models give nearly equal EFG's and the
same types of EFG, and they agree fairly well with
the experimental values. Concerning the (1,0,0)Cl
site in NaCl-K and the (2, 1,0)Br site in KBr-Na, the
RAA model does not show agreement with the empiri-
cal data, while the LST model does, as shown in
Table VI. With respect to the (2, 1,0)Br in KBr-Na,
however, the calculated $ in Eq. (70) amounts to
—25' 19' for LST and to —28'45' for RAA; accord-
ingly the direction cosines of the principal axes x', y',
and z' relative to the x, y, and z crystal axes are
x'(0,0,1), y'(0. 904, —0.428, 0), and z'(0.428, 0.904,
0) for LST, and x'(0,0,1), y'(0. 877, —0.481, 0), and
z'(0.481, 0.877, 0) for RAA. They are nearly the
same directions but do not agree with the measured
values. '
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KBr-Cl
eq (110)Br

q (110)Br
E

0 5
o—2

-300 gg

-920-

C) 4 013 -~60 e
5 014
6 0.1 5 qBO
7 020
8 0.25
9 0.32

0.3 0.6 0.9 1-2
CQ V A L E N C Y ('lo)

FIG. 2. The dependence of the EFG in KBr-Cl crystal obtained from LST model, on degree of covalency. The solid-line
groups a and b represent eq at the (1,1,0)Br si'te and g at the same site calculated by using computer, .respectively, and the hor-
izontal dotted lines express the empirical data. The p, denotes the denominator in the exponent of Eq. (75). Degree of co-
valency sho~n by an arro~ gives the best agreement between theory and experiment,

cp 120E

~ 100

2.'
~ BO

I

~ 60

~ 40
U
UJ

aCI —K

0.32 220 „~2 0.36
3 Oj 13
4 0.466
5 0.52 300 ~
6 0.573

C)--340 ~

——3BO +
e q (100)Cl

e q (1 1 0)Na ~20
g (1'I 0)Na

e q(111)Cl

0
1.8 2A 3.0
COVALENCY ('lo)

FIG. 3. The EFG at various sites. in NaCl-K crystal calculated by using LST model, as a function of covalency. The dotted
lines, p~ and an arrow express the things similar to those stated in Fig. 2.
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FIG. 4. The EFG in KF-Na crystal obtained from LST model vs degree of covalency. An arrow and the dotted linc&

represent the things similar to those stated in Fig. 2.
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FIG. 5. The dependence of the EFG in NaF-K crystal calculated by using both models, on degree of covalency. The dotted
lines and arrows express the things similar to those stated in Fig. 2.
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D. Calculation including the nearest- and next-nearest-
neighbor overlap integrals

So far we have discussed the effect of the overlaps
and covalencies between the nearest-neighbor ions
upon the lattice-relaxation parameters and the EFG
(as for the overlap repulsion we took both nearest-
and next-nearest-neighbor overlaps). As already stat-
ed in Secs. IV and V, we have also calculated these
parameters and the EFG by taking AET with both the
nearest- and second-neighbor overlap integrals in two
models. In both models, ho~ever, the lattice-
relaxation parameters evaluated in this way have
shown the following special features: They are much
smaller in "a,"with about half value, while larger in

the remaining parameters compared with those in the
case in which nearest neighbors alone are considered,
though the computational scheme certainly con-
verges. Accordingly the eq 's which are derived from
these parameters are much smaller than the empirical
values (nearly half in some crystals), even if the ad-

justable parameters previously described are changed
in their reasonable regions. Therefore it will be con-
cluded that the second-neighbor anion pair overlap
integrals in the actual crystals are negligibly small
compared with the large second-neighbor ones of the
AO's in the free ions.

VIII. SUMMARY AND CONCLUSION

%e have calculated the electric field gradients, the
asymmetry parameters g's, and types of the EFG
tensors on the sites similar to (1,0,0), (1,1,0),
(1,1,1), (2,0,0), and (2,1,0) sites around the substi-
tutional impurity ions in 12 ionic crystals including
the three-body potentials by using Lowdin-Satoh-Taki
or Ra-Abarenkov-Antonova models, and compared

them with the values and types obtained from our
experimental studies in RII' or from the other
worker's empirical results. Generally in the crystals
without K+ ions, both models agree fairly well with
the measured values, awhile for the crystals containing
these ions agreement is achieved in both models by
taking a small amount of covalency besides the large
overlaps of the nearest-neighbor ions, one of which is
the involved K+ ion. With the LST model it is much
easier to calculate the EFG's and results are consider-
ably better in comparison with the experimental
EFG's at (1,0,0)Cl in NaCl-K and at (2, 1,0)Br in
KBr-Na crystals than the RAA model as sho~n in
Table VI.

The main features of this paper are inclusion of the
three-center integrals within the potential energies
and consideration of the electron-shill deformations
originating in the displacements of the ions, and both
are essential for calculations of the EFG since the
conventional computations of the EFG without them
cannot explain the experimental results. The new
types of EFG tensors, 8 and C and also the small q's
have been found by us theoretically and experimen-
tally for the first time. Our calculations about NaF-Li
and KBr-Na crystals are not good enough and further'
investigations wi11 be necessary,

By means of comparison between the computed
and measured values of the EFG, it is inferred that
the second-neighbor anion-pair over1ap integrals in
the actual ionic crystals are very small compared with
the large ones in the free ions.
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