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The electron states at vacancies in Si(111) unreconstructed surfaces are calculated by means of a tight-binding
scheme. Vacancies at the surface layer and at the second and third layers are considered. The results for a vacancy at
the surface layer show one state of 4, symmetry below the surface dangling-bond band, and a doubly degenerate
state of £ symmetry above it. Then, it is argued that as the Fermi level is fixed by the surface, the doubly degenerate
state is empty and, as a consequence, the Jahn-Teller effect cannot take place. By means of a simplified version of the
model, the possibilities for a local distortion of the Jahn-Teller type are examined. It is shown that the charge
redistribution in the electronic spectrum caused by the eventual distortion leads to a gain in electronic energy
proportional to the square of the displacements of the ions. The elastic energy is also estimated and shown to
dominate the electronic energy. Thus it is concluded that vacancies in Si(111) surfaces are very likely stable to local

distortions of the Jahn-Teller type.

I. INTRODUCTION

The crucial role played by vacancies in deter-
mining the bulk properties of semiconductors has
long been recognized.!*®> More recently, vacancies
have been invoked in order to explain various phe-
nomena specific to surfaces or interfaces. For
instance, a model based upon the existence of va-
cancies has been suggested to describe the recon-
struction of Si(111) surfaces.® Also, such a topi-
cal problem as Schottky-Barrier formation has
been studied by assuming that defects created in
the semiconductor when the metal-semiconductor
junction is formed* were responsible for the pin-
ning of the Fermi level and other properties of the
junction.

An unavoidable step on the way to understanding
the properties of vacancies in semiconductors is
the description of their electronic structure. The
electron states at bulk vacancies of semiconduc-
tors have been long studied by means of a wide
variety of methods.>"'®* Recently, very accurate
self-consistent calculations of the ideal bulk va-
cancy in Si (Refs. 13 and 14) and of the Jahn-Teller
distorted vacancy,'® have been reported. Although
these calculations have provided a detailed know -
ledge of the electronic structure of bulk vacancies
in Si, the essential characteristics have been ob-
tained by means of simpler tight-binding
schemes.!®'? The main difficulty of the bulk Si
vacancy is the strong Jahn-Teller distortion that
takes place. The self-consistent calculation re-
cently reported solves only, in fact, a particular
model for the displacements of the ions.'® Vacan-
cies in other semiconductors have been also stud-
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ied by means of parametrized models.® 216,17

Calculations of the electronic structure of sur-
face vacancies in semiconductors are just begin-
ning to be performed. In fact, only the GaAs(110)
and (100) surfaces'®'” and the Si(111) surface!®?!?
have been studied, and both by means of non-self-
consistent tight-binding models. Although self-
consistent calculations are desirable, it seems
worthy to start with simpler studies which can
eventually throw light on the role of vacancies in
many interesting surface phenomena which still
lack a satisfactory explanation.

The purpose of this paper is to discuss in detail
a recently reported calculation'® of the electronic
structure of vacancies at and near Si(111) sur-
faces. The model used here has been previously
applied to the study of nonideal semiconductor®
and metal® surfaces, in particular to Si(111)
stepped surfaces. It is based upon the cluster-
Bethe lattice method,*® whereby the defect is in-
cluded exactly by means of an ad hoc cluster and
then the Bethe lattice (bulk or surface) is attached
to its ends. In order to check the reliability of
the model we first compute the electronic struc-
ture of the bulk vacancy and compare with self-
consistent calculations. Then we turn to analyze
the surface vacancy. The most interesting as-

pect of our results is that vacancies at this sur-

face are not expected to undergo a Jahn-Teller-
type distortion, as suggested previously by Andre-
oni and Tosatti.'® The implications of these re-
sults on the reconstruction of this surface will be
outlined.

The rest of the paper is organized as follows.
In Sec. II we present the model and the results for
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the bulk and the surface vacancies. In Sec. Il a
simplified version of that model is used to exam-
ine in detail the possibility of a Jahn-Teller-type
distortion around the vacancy in the surface layer.
Finally some concluding remarks are included in
Sec. IV.

II. ELECTRON STATES AT VACANCIES IN Si(111)
UNRECONSTRUCTED SURFACES

In order to describe the method used in this sec-
tion and, at the same time, to check its validity,
we begin with the bulk vacancy in Si. We first
consider the simplest model one can imagine,
namely, we take the four atoms around the vacancy
with three of their bonds connected with the bulk
Bethe lattice and a dangling bond. As the Bethe
lattice is solved for a nearest-neighbor Hamilton-
ian (as in Ref. 20), the four atoms around the va-
cancy will be decoupled. The basis used here is
the four hybridized sp® orbitals. Then the local
Green’s function of one of the atoms neighboring
the bulk vacancy (BV) is written in a straightfor-
ward fashion as

Ex,x(E) = [lE —EOBV —9_222 -U,T, "2414]-1 , (1)
where we call 1, 2, 3,4 the four bond directions of
the diamond structure and T,,T,, T;, T, the cor-
responding transfer matrices in the Bethe lat-
tice.?® The matrices U, (¢=1,2,3,4) are formed
by the matrix elements of the Hamiltonian between
the sp® orbitals in one atom and those in its near-
est-neighbor atom along the i bond. The first-
nearest-neighbor parameters used here are those
of Ref. 19. The matrix UV contains the intra-
atomic interaction between sp® orbitals in an atom
neighboring the vacancy. The diagonal €lements
of this matrix are nothing but the energy of the
free sp® orbitals. We shall change these energies
with respect to their bulk values (chosen as the
zero of energies) to obtain local charge neutrality.
Notice that in Eq. (1) we have taken bond 1 as the
one pointing to the vacancy.

This simple model leads, of course, to a four-
fold degenerate state. To remove this degeneracy
we introduce the second-nearest-neighbor inter-
action between the four atoms around the vacancy.
Then, we solve this problem according to the
cluster—-Bethe-lattice method. In this case the
cluster is formed by the four atoms interacting
through the second-nearest-neighbor interaction,
and to the ends of the cluster we attach the Bethe
lattice solved within a first-nearest-neighbor ap-
proximation. The set of equations which describes
this system, from which the local Green’s function
of one of the four atoms is obtained, is the follow-
ing:
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Here and after the atoms are numbered by their
corresponding bonds pointing to the vacancy, i.e.,
in atom 1 bond 1 is a vacancy dangling bond. g ii
involves the matrix elements of the Green’s func-
tion between the sp® orbitals of atom i and those
of atom j. The matrices V, ; (= v, ;) include the
second-nearest-neighbor interactions between
atoms i and j. This set of equations can be easily
solved for G, ;. As regards the second-nearest-
neighbor pﬁ'ameters, we keep only the ppo, inter-
action and adjust its value to get the splitting be-
tween the A, and T, states obtained in self-con-
sistent calculations.'®* In the calculations we
shift the energies of the sp® orbitals of the atoms
neighboring the vacancy by -0.5 eV; this gives ap-
proximate local charge neutrality.

Our results for ppo,=1.0 eV (used also in the
surface vacancies calculation) are shown in Table
Iand Fig. 1. First, it is worth remarking that in
the atom neighboring the vacancy only the local
density of states at the dangling bond differs
greatly from the bulk density of states (see Fig. 7
of Ref. 20). The main changes take place in the
region of energies around the gap, where the
bound states of 4, and T, symmetries lie. We no-
tice that in other calculations the A, state appears
as a resonance in the valence band. In our calcu-
lation it lies in the gap (just above the top of the
valence band) due to the narrowing of the bands
introduced by the Bethe lattice approximation.
There is another resonance of A, symmetry, deep
in the valence band (at approximately ~8.0 eV),
found by other authors,'** which does not appear
in our results (Fig. 1). As it has been stressed
by several authors that this resonance is highly
delocalized, we have calculated the phase shifts
by using the technique proposed by Bernholc and
Pantelides.}? Noticing that this resonance should
not be strongly affected by the second-nearest-
neighbor interaction, we have neglected this inter-
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FIG. 1. (a) Local density of states at the sp® orbital
pointing to the bulk vacancy in Si. (b) Local density of
states at the atom neighboring the bulk vacancy. Bound
states are represented by vertical lines of heights
proportional to the weights of the states. Symmetries
and weights of the bound states are given in Table I.
All densities are normalized to one state per spin.

action in the calculation. A further simplification
is obtained by taking the energies of the sp® or-
bitals at the atoms around the vacancy equal to
their bulk values. Then the phase shift is obtained
directly from the bulk local Green’s function.
Again there is not any excess of states in this re-
gion of energies. In fact, it can be shown? that
this resonance comes from the rings’ character-
istics of the diamond lattice. The rings introduce
also the two peaks (s- and sp-like) in the density
of states of silicon,?? which are not described by
the Bethe lattice approximation.

Finally, we comment on the localization of the

TABLE I. Energies and weights (states per spin) of
the bound states in the fundamental gap introduced by
the bulk vacancy in Si. Energies (eV) refer to the en-
ergy of the free sp® hybrid. The weights of the states
are given for the different bonds on the atoms neighbor-
ing the vacancy. The total weights correspond to the
sum over the atoms next to the vacancy. The atoms
are numbered by their corresponding bonds pointing
to the vacancy, and the bonds by means of two numbers
i-j, the first indicating the atom () and the second the
orbital (j).

Symmetry Energy (eV) Weights
1-1 1-2 Total
Ay -0.79 0.074 0.001 0.308
T, 0.4 0.367 0.001 1.480

nio

FIG. 2. Stacking of the layers in Si(111) surfaces.
The [110] direction is indicated. The atoms at the top
layer are represented by circles.

A, and T, states. We notice that less than 50% of
the bound states are localized at the atoms neigh-
boring the vacancy (Table I). We have also calcu-
lated the weights of both states at the second shell
of atoms, obtaining 0.108 and 0.708 for the A; and
T, states, respectively. Summing up the contribu-
tions of the first and second shells of atoms
around the vacancy, we obtain 0.416 (42%) and

(a) (111) Surface

FIG. 3. Sketch of the geometry around vacancies in
the first layer (a) and second layer (b) of Si(111) sur-
faces. The sp? orbitals around the vacancies are num-
bered. In the captions of the following figures the atoms
will be numbered by their bonds pointing to the vacancy
(dangling bonds), and the bonds by means of two num-
bers i - j, the first indicating atom and the second orb-
bital. The view is along direction [110]. See also Fig.
2.
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2.188 (73%) for the A, and T, states, respectively.
This result is in line with those obtained in self-
consistent calculations.!®'* We turn now to dis-
cuss our results for vacancies at and near Si(111)
surfaces.

A. Vacancy at the surface layer

In Fig. 2 we show the stacking of layers in the
(111) surface of the diamond structure viewed
along the [111] direction. The arrangement of
atoms around a vacancy in the surface layer,
viewed along the [110] direction, is shown in Fig.
3(a). To calculate the local Green’s function of
the atom next to the vacancy we use the approxi-
mation described above. In this case the cluster
is formed by three atoms having two bonds con-
nected with the surface Bethe lattice and one bond
with the bulk Bethe lattice [see Fig. 3(a)]. The
Green’s function is then obtained from the follow-
ing set of equations:

(1E - Ug" = U, T, = Up7§* = Uarf*)Go o

=1+V; 5Gs,5+ V5,4Gy 25
(1E - U - U,T, - Uprg* - Uy1g")Gs o

= Vs, 82,2+ V5,4Gs,2, (3)
(LE-U$! = U, T, - Uprg* - Us1$™)Gy

=V, G2+ Vi 3G,

out

where 7/ are the surface transfer matrices de-

TABLE II. Energies (V) and weights of the bound
states introduced in the fundamental gap by a vacancy in
the surface layer of Si(111) surfaces. Energies refer to
the energy of the free sp® hybrid in the bulk (which coin-
cides with the Fermi level). See also Table 1.

Weights
Symmetry Energy (V) 2-1 2-2 2-3 Total

Ay ~0.73 0.003 0.181 0,004 0.576
E 0.50 0.0 0.243 0,007 0,771

fined in Ref. 19, and the remaining symbols have
been already defined. This set of equations can
be easily solved for G, , from which the local den-
sity of states is obtained. In the calculations we
have also shifted the energies of the sp® orbitals
at the atoms neighboring the vacancy (contained

in U$) by -0.5 eV; this also gives approximate
local charge neutrality. We also remark that, as
in Ref. 20, the energies of the sp® orbitals at the
surface atoms are shifted by 0.5 eV.

Our results are reported in Table II and Fig. 4.
As in the bulk vacancy, the most relevant changes
occur in the energy region of the forbidden gap.
We found two bound states, one of A, symmetry
below the surface-state band and another doubly
degenerate state of E symmetry above it, whose
energies (which refer to the Fermi level which
coincides with the energy of the sp® orbital in the
bulk) and weights on different bonds are given in
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FIG. 4. Local densities of states at various sp® orbitals around a vacancy in the first layer of Si(L11) surfaces [see
Fig. 3(a)]: (a) bond 2-2, (b) bond 2-3, (c) bond 2-1, (d) atom 2. Symmetries and weights of the bound states are given

in Table II. See also caption of Fig. 1.
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Table II. The surface-state band lies in our cal-
culation between ~0.2 and 0.25 eV. We notice
(Table II) that as in the bulk vacancy the bound
states are quite extended, in fact, only 57%of the
A, state and 40% of the E state are located at the
atoms next to the vacancy. Regarding the s re-
gion of the valence band we should remark that
our results cannot be trusted. In fact, in‘this re-
gion of energies a resonance of A, symmetry
could be present due to the vacancy,'® and on the
other hand a back-bond surface state® will be very
close to it. While our model accounts fairly well
for the latter, it may surely fail in describing the
former, as we have shown above that it does not
give the A, state introduced by the bulk vacancy.
To check this point we have again calculated the
phase shift by performing approximations similar
to those used for the bulk vacancy. We have found
that at the energy of the back-bond surface state
(-8.5 eV) a strong antiresonance is present, while
no resonance appears close to it. The weak peaks
at —8.5 eV shown in Figs. 4(b) and 4(d) are re-
mainders of the strong back-bond surface reso-
nance.” A complete description of the surface
vacancy, while preserving the decrease of the
surface state here discussed, might lead to a res-
onance of A, symmetry in the same energy re-
gion.'®

We finally comment on the occupancy of the
bound states. It is clear that as the Fermi level

is fixed by the surface, the doubly degenerate lev-
el of E symmetry which lies above E will be
empty. Therefore a Jahn-Teller effect is not ex-
pected. The Jahn-Teller effect occurs due to the
gain of electronic energy associated with the split-
ting of a partially filled n-fold degenerate bound
state, which is linearly proportional to the dis-
placements of the atoms and therefore dominates
the elastic energy, needed to produce the distor-
tion, which is always proportional to the square
of the displacements. Nevertheless, a local dis-
tortion of the Jahn-Teller type (distortions which
reduce the point symmetry of the system) could
also lead in the present case, to a gain in the
electronic energy which have to be compared with
the elastic energy in order to analyze the stability
of the surface vacancy to Jahn-Teller-type dis-
tortions. These questions will be examined in
Sec. IIL

B. Vacancy at the second layer

The arrangement of the atoms around a vacancy
in the second layer of Si(111) surfaces is shown
in Fig. 3(b). Four atoms, three in the surface
layer and one in the third layer are, in this case,
next to the vacancy. Within the approximation dis-
cussed above, the local Green’s function of atom
2 [Fig. 3(b)] is obtained from the following set of
equations:
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FIG. 5. Local densities of states at various sp3 orbitals around a vacancy in the second layer of Si(111) surfaces
[see Fig. 3()]: (a) bond 2-1, (b) bond 2-2, (c) bond 2-3, (d) bond 1-1. Symmetries and weights of the bound states are

given in Table III. See also caption of Fig. 1.
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(1E - U5? - Uyrs® - Uati®)Go,
=14 V,,4Gs,2+ V2,4Ga,2% V2,61 25
(1E - Ug* - Upri" = Usti®)Gs
=Vs,8Gz, 2+ V3,4Ga,2+ V5,1Gy 25

(LE - U - Uarft - 0,79, @

2—
(1E - Ug* - U, T, - U,T, - U T,)G, o
=V,,:Gz, 2+ ¥,,5Gs,2+ V3,464, 25

where l‘i“ are surface matrices defined in Ref. 20.
An equivalent set of equations can be written for
G, ;. Inthe calculations for this vacancy we have
again shifted the energies of the free sp® orbitals
of the four atoms around the vacancy by 0.5 eV.
This might not be the right procedure, as three of
the atoms have two dangling bonds while the fourth
has only one. Nevertheless, we have not per-
formed the cumbersome calculations needed to
achieve local charge neutrality. See further com-
ments below.

Our results for this vacancy are shown in Figs.
5 and 6 and Table III. To get a clearer under-
standing of the electronic structure of this vacan-
cy we first discuss what is obtained without con-
sidering the second-nearest-neighbor interaction.
In this case all the atoms next to the vacancy are
decoupled and the results are easily understood.
On the atom at the surface layer there are two
dangling bonds, one pointing to the vacancy and a
surface dangling bond. The interaction between
these two bonds is very strong (-2.0 eV) and two
states appear, one in the conduction band (1.5 eV)
and the other in the top of the valence band (-0.9
eV). As there are three equivalent atoms next to
the vacancy both states are triply degenerated.
The fourth atom introduces a singlet in the gap.
When the second-nearest-neighbor interaction is
switched on, an intricate interaction between the
above-mentioned states and the surface states
band takes place and leads to the bound states re-
ported in Table I plus two resonances at —1.3
and 1.5 eV of 4, and E symmetry, respectively.
As the bound state introduced by the atom in the
third layer lies at 0.05 eV, it interacts more
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FIG. 6. Local densities of states at the two types of
atoms neighboring a vacancy in the second layer of
Si(111) surfaces [see Fig.3(b)]: (a)atom2, (b) atom1.
Symmetries of the bound states are given in Table III.
See also caption of Fig. 1.

strongly with the triply degenerate state at —0.9
eV leading to two singlets (at.—1.3 and —0.4 eV)
and a doublet (at -0.6 eV). The triplet at 1.5 eV
is split into a singlet and a doublet. It can be
shown that symmetry requires the E states to
have zero weights on atom 1 (see Table III). As
regards the s region on the spectrum we notice a
strong peak at -8.4 eV [Fig. 5(c)]. The back-bond
surface state characteristic of this surface, which
lies at -8.5 eV, has been slightly shifted by the
vacancy. This result could again be modified if
the rings characteristic of the diamond lattice
were introduced through either cluster or exact
calculations.

We again notice that there is no degenerate state
partially filled. This would in principle preclude
a Jahn-Teller effect. It should be noted that if we
had taken a more negative value for the atomic en-
ergies of the sp® orbitals of the atoms, in the sur-
face layer, around the vacancy, the E state would
have appeared at lower energies; nevertheless, it
lies at such high energies that very strong shifts
(unphysical) would be required in order to place

TABLE III. Energies (eV) and weights of the bound states introduced in the fundamental
gap by a vacancy in the second layer of Si(111) surfaces. See also Table II,

Energy Weights
Symmetry ev) 2-1 2-2 2-3 1-1 1-2 Total
Ay -0.53 0.012 0.0 0.0 0,324 0.001 0.361
Ay 1.15 0,084 0.059 0.0 0.206 0.005 0.65
E -0.69 0.157 0.097 0.014 0.0 0.0 0.846
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(111) Surface

FIG. 7. Same as Fig. 3 for a vacancy in the third
layer of Si(111) surfaces.

this state close to the Fermi level. Therefore we
expect the present calculation to be at least a
semiquantitative description of the vacancy in the
second layer of Si(111) surfaces.

C. Vacancy at the third layer

The arrangement of atoms around a vacancy in

the third layer of Si(111) surfaces is shown in Fig.

7. Again four atoms are neighboring the vacancy,
one in the surface layer and three in the fourth
layer. The approximation used in this section
leads to the following system of equations for the
local Green’s function of atom 1:

(LE - U - Uy - Uyrd - U,riG,
“L4 ¥, o+ Ve sGot Vo Gt
(LE-UP ~U,T, ~U;T, - UG,
= VauGui+ VoG VoG
(LE-UP - U,T, ~U,T, - UT)G, ©
V3G VoG Voo
(LE-UP ~U,T, ~U,T, - UG,

=_Y_4,19_1,1 + Y_4,29_2,1 +Vy 4Gy 1

An equivalent set of equations can be written for

G, .. Again we shift the atomic energies of the
;p3 orbitals of the atoms around the vacancy (in-
cluded .in U$®) by -0.5 eV.

Our results are shown in Table IV and Figs. 8
and 9. It is most remarkable that the electronic
structure of this vacancy is yet quite different
from that of the bulk vacancy. The main reason
for that is the strong interaction between the bond
of atom 1 pointing to the vacancy (bond 1) and the
surface dangling bonds of its three nearest neigh-
bors in the surface layer. In fact, this interaction
originates the two peaks at -1.3 and 1.5 eV in the
local density of states of atom 1 (see Figs. 8 and
9). A further effect of this interaction is to di-
minish the importance of the second-nearest-
neighbor interaction between atom 1 and the other
three atoms around the vacancy. As a consequence
the two bound states in the gap are completely lo-
calized on the three atoms 2, 3, and 4 of Fig. 7
(see Table IV). These states of A; and E symme-
try lie at —0.56 and 0.37 eV, respectively, their
localization being rather similar to those found
for other vacancies here studied. Finally we
should remark that the weak peak at —8.5 eV [Fig.
8(b) and Fig. 9(a)] is the back-bond surface state
already mentioned; again our results for this en-
ergy region cannot be fully trusted.

As regards occupancy, it has to be noted that
despite the very low density of states in the dan-
gling -bond band localized at the atoms around the
vacancy, the Fermi level is again fixed by the
surface at E=0 and therefore, as the E bound
state is empty, no Jahn-Teller effect is expected.
Here we should remark that although we have not
carried out the calculations necessary to achieve
local charge neutrality it is approximately given
(with the Fermi level at E=0) by the chosen shift
of the energies of the orbitals at the atoms around
the vacancy (=0.5 eV). Although we again expect
the present calculation to give a semiquantitative
description of this vacancy, we think that our anal-
ysis cannot answer an important question which
emerges from our results. The question concerns
the point where a change from bulklike behavior
(in which the Jahn-Teller effect takes place) to a
surfacelike behavior occurs. This question should
surely require a self-consistent treatment of the
problem.

TABLE IV. Energies (eV) and weights of the bound states introduced in the fundamental
gap by a vacancy in the third layer of Si(111) surfaces. See also Table II.

Weights
Symmetry Energy (eV) 1-1 2-1 2-2 2-3 Total
Ay —0.56 0.007 0.002 0.128 0.0 0.397
E 0.37 0.0 0.003 0.0 0.297 0.0 0.9
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FIG. 8. Local densities of states at various sp® orbitals around a vacancy in the third layer of Si(111) surfaces (see
Fig. 7): (a) bond 1-1, (b) bond 1-2, (c) bond 2-1, (d) bond 2-2. Symmetries and weights of the bound states are given

in Table IV. See also caption of Fig. 1.

III. IS A VACANCY IN Si(111) SURFACES STABLE
TO JAHN-TELLER-TYPE DISTORTION?

In the preceding section we have shown that, as
in the electronic structure of a vacancy in the sur-
face layer of Si(111) surfaces there is not any de-
generate state partially filled, a Jahn-Teller ef-
fect, as it stands,' cannot occur. Nevertheless,

a Jahn-Teller-type distortion would also rear-
range the charge in the dangling-bond band. This
rearrangement could lead to a gain of electronic
energy, which has to be compared with the elastic
energy in order to examine the stability of the sur-
face vacancy to Jahn-Teller-type distortions.
Thus, in this section we shall try to answer the
question addressed in the heading. To this end

we shall use a very simple description of the elec-
tronic structure of a vacancy in the surface layer.

A. Simple model of the electronic structure of a vacancy
in the top layer of Si(111) surfaces

The simplest model one can use to describe the
surface vacancy is the molecular one introduced
by Watkins.® In this model the localized states at
the vacancy are constructed, in analogy with the
bulk vacancy, by means of a linear combination
of the three sp® hybrids neighboring the vacancy.
Once introduced, the interaction (second-nearest-
neighbor interaction) between these three hybrids,
a state of A, symmetry, and one of E symmetry
(doubly degenerate) are obtained, whose energies

and wave functions are given by

E, = Ey+2W, ¢A1=—f%<11>+ |29+ |30, "

EE=EA"W, ¢E=—¢%(I2>— I3>)
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FIG. 9. Local densities of states at the two types of
atoms neighboring a vacancy in the third layer of Si(111)
surfaces (see Fig. 7): (a) atom 1, (b) atom 2. Sym-
metries of the bound states are given in Table IV. See
also caption of Fig. 1.
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where W (<0) is the interaction between the hy-
brids represented by |1), |2), and |3).

This simple model fails mainly for one reason
(see Sec. II), namely, the interaction between the
hybrids around the vacancy and the surface hybrids
forming the surface dangling-bond band is very
strong and has to be included. We shall call this
interaction U (<0). On the other hand we shall not
include the interaction of the vacancy hybrids with
the bonding and antibonding states of the valence
and conduction bands. Hence the interactions U
and W have to be considered as “effective” inter-
actions between all the hybrids.

The two-dimensional lattice of hybrids in the
Si(111) surface has sixfold coordination and leads
through a small interaction to a band 0.5 eV wide.
We parametrize this band by means of a single
first-nearest-neighbor interaction Vv (>0). In or-
der to best simplify the model, we shall approxi-
mate the two-dimensional lattice by a Bethe lat-
tice. By using the basis formed by the surface
hybrids, the Green’s function takes the following
form:

I
E-6VT’
(m

where |i+#) indicates the nth neighbor of |i). The
energy refers to the average value of the band.
The transfer matrix 7 is given by

(|GAE) |i)= @|GAE) |i+n)=

1
E-6vVT’

T=[E -i(20V2-E?*'?)]/(10V) for |E|<v20|V|,
T=[E - sgn(E)(E? - 20V 2)*/2]/(10V) (8)
for [E| =V20|V|,

and the band energy edges lie at +v20|V|, where
the value of V is adjusted to give the width of the
surface-~state band obtained in full calculations
(around 0.5 eV). The density of states is given by

1 3(20V 2 - E?)'/®

N(E)=2 ——gpr—ge

N E) is symmetric around E=0 and therefore,
as we have one electron per hybrid, E,=0 (Fermi
level).

To solve the problem of a vacancy in this lattice
of hybrids, the best way to proceed is through the
Dyson equation, i.e.,

G=Go+ G, VG (10)
b

where V defines the perturbation introduced in
creating the vacancy. The potential V is more
easily written by using the functions with the sym-
metry of the point group C,, (the one appropriate
to the surface vacancy). Thus ¥V consists in cutting
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the bonds of the central atom with its six nearest
neighbors and connecting the vacancy states 4
and ¥z [Eq. (6)] with the Bethe lattice.

Then a phase shift can be defined as

7(E)=arg det(I - G,7), (11)

from which the change in the density of states is
calculated by means of the equation

AN(E)= = 2 n(E). (12)

The following results are obtained:

~ E—-Ez-Q2U¥WV)T
ng(E)=2arg 7o, , (13a)
E E-E, -@U*/V)T
M, () =arg g +arg E-E,

(13b)

Four spurious states are included in Egs. (13).

A bound state appears at £=0, which is nothing
but the surface dangling bond (SDB) decoupled
from the SDB band, and the states at E; (double)
and at £ 4 disappear as the levels of the vacancy
states change their energies when the interaction
with the surface band is switched on. In summary
we have lost two states which have to be counted
to satisfy Levinson’s theorem. Then, the physi-
cally meaningful part of AN(E) is of the form

14 20

ANAL- i [arg (E-E - )
—arg(E - 6VT)] ,

(14)

2
ANG(E)= -% EdE [Zarg(E Eg —2—VU— T>]
and the integral of both increments from -~ to
+% gives two states which compensate for the loss
of the states previously mentioned.

In the whole process we gain two electrons—we
gained three electrons in the vacancy dangling
bonds (VDB) and lost one electron in the SDB—
therefore self-consistency is obtained by requir-
ing that

Ep

[ anpae=1. (15)
This condition can be fulfilled by varying the en-
ergy E, which determines the energy of the VDB
before switching the interaction with the SDB band
[see Eq. (6)].

Our results for V=0.075 eV, which gives the

correct value for the width of the SDB band, U
= =0.275 eV, the only first-neighbor interaction
(Phillips-Pandey value'®), and W= —0.315 eV
which gives the splitting between the E and A,
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FIG. 10. Local density of states of A; symmetry at the
sp3 orbitals pointing to a vacancy in the first layer of
Si(111) surfaces as calculated by means of the model of
Sec. III. The energies (E) and weights (W) of the bound
states are shown. The density is normalized to one.

The Fermi level (Ep) is indicated by a vertical arrow.

states obtained in Sec. II, are shown in Figs. 10
and 11. We remark that self-consistency leads
to E,= —0.023 eV. We notice that the results are
rather similar to those obtained in the full calcu-
lation, but for the E state just below the SDB
band. This state is, in fact, very close to the
band edge (0.05 eV below it) and in the full calcu-
lation remains within the band. We think that the
results here obtained are good enough to analyze
the question of the stability of the ideal surface
vacancy.

B. Lattice distortions near the surface vacancy:
Electronic and elastic energies

The three atoms neighboring the vacancy in the
top layer of Si(111) surfaces have the following
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FIG. 11. Same as Fig. 10 for E symmetry.

coordinates:
1 1
Atom a: a(O, \/—6-—’ _ﬁ),
1 1 1 )
Atom b: - - - 16
om “( os we Tws) 49
Atom c: < 1 1 1 >
CN\ev2’ Tave Tavs )’

where a is the lattice constant. Now, if we allow
the atoms to move, the easiest way to handle the
problem is to use a set of normal coordinates®
instead of the nine Cartesian coordinates (x,,y,,
z,), i=1,2,3, namely,

o [

Q1=_§ (xg+ %+ x,)

1
Q2=‘/_§- (ya+yb+yc) ’

1 1 1
Q=75 (g = 2%y = 2% + 2 (9, - 30)
1
Q5=—\/’?(2b"zc)’ an

1
Q=7 (zzu_zb""zc) ’

3

1
Q7= %(xc _xb)+\/—? (ya_ éyb - %yc) ’

1
Qs=_3‘ (g = 2%, = 3x)+ 5 (. =)

<‘

1
Qo= 3(x, —xc)+ﬁ (Vo=29p=325.) -

The normal coordinates @,, @,, and @, define
three rigid translations of the three atoms. Sim-
ilarly the coordinates @,, @5, and @, define three
independent rigid rotations. These six coordinates
are not relevant for the purposes of the present
work as they represent six degrees of freedom of
the solid considered as rigid.

The coordinate @, defines a breathing symmet-
rical distortion of A, symmetry around the vacan-
cy and the associated Cartesian displacements of
the atoms are the following:

Atom a: (0,Q,/V3,0),
Atom b: (-Q./2,-Q,/2V3,0), (18)
Atom c¢: (Q,/2,-Q,/2V3,0).

The pair of coordinates @g, @, define a distortion

of E symmetry around the vacancy, the corre-
sponding Cartesian displacements being
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Atom a: (Qs/V3,Q,/V3,0),
Atom b: (—Qy/2V3 +Qy/2, —Qy/2 -Q,/2V3,0),

Atom ¢: (=Qy/2V3 —Q,/2,Q:/2-Q,/2V3,0).
(19)

The point symmetry around the surface vacancy
is that of the point group C,;,. If a static distortion
of E symmetry takes place, the point symmetry
around the vacancy would be reduced. This dis-
tortion would be of the Jahn-Teller type.!

In order to study the stability of the surface va-
cancy to Jahn-Teller-type distortions we proceed
as follows. We allow the atoms neighboring the
vacancy to move according to the normal coordi-
nates @, and @4, meanwhile the rest of the atoms
of the crystal are kept at their original sites. The
energy of the system formed by the ions plus the
electrons varies for two reasons:

(i) The nine bonds that the three atoms around
the vacancy form with their neighbors change their
length and, at the same time, the angles between
those bonds are also modified. These lead to an
increase in the elastic energy described in terms
of bonds.

(ii) The interactions of the vacancy sp® hybrids
with themselves and with the surface hybrids
change their values. This leads to modifications
of the electronic bound-state energies as well as
a rearrangement of the charge in the SDB band.
As a consequence the electronic energy is modified
(in the term commonly called band structure). It
should be noticed that although the ultimate rea-
son for the change of the energy of the system is
the same (modification of the electronic states)
due to the model used here (see Sec. IIIA) the en-
ergy is split in two terms which correspond to
changes in the valence-~band states and in the sur-
face and vacancy states, respectively. The first
contribution will be handled by means of a model
of forces adjusted to the bulk of the solid. This
assumes that the bonds near the surface are iden-
tical to those of the volume, which is not exactly
true. A somewhat similar procedure has been
succesfully used by Chadi®® in his studies of re-
constructed surfaces. We shall show that as the
Jahn-Teller effect does not occur (see Sec. II) the
total change in the energy of the system is propor-
tional to (Q2+ @2), with a positive coefficient.
Thus, a Jahn-Teller-type distortion is not ener-
getically favorable. Nonetheless it has to be re-
marked that the negative contribution of (ii) great-
ly cancels that of (i). This will be of paramount
relevance in the study of the vibrational modes of
E symmetry.

In order to evaluate the first contribution we use

the model proposed by Keating.* This model in-
cludes central and noncentral forces restricted to
nearest neighbors. We have also used the model
introduced by Born,?® obtaining very similar re-
sults. For the values of the force constants we
have chosen those reported by Weaire and Alben
in their study of the vibrational properties of
amorphous silicon.?

The analysis of the second contribution (ii) is
more involved. Within the adiabatic approxima -
tion it is assumed that the electrons follow the
ions in their displacements. As the ions change
their original sites, the electronic levels are
modified. We have considered two causes for the
coupling between the electronic states and the
distortion.

(1)-The distance and therefore the interaction
between the hybrids are modified. Following
Chadi,?*® we assume that the new interaction is in-
versely proportional to the square of the new dis-
tance. For instance the interaction between the
hybrids pointing to the vacancy is changed as fol-
lows: W(d)=(d2/d®)W(d,).

(2) As the first nearest neighbors move, the an-
gles between the bonds that join these atoms with
their neighbors (which remain in their original
sites) cease to be equal to the tetrahedral angle
(109°28’). We assume that these bonds become
dehybridized®® and will no longer be of the sp®
type. As a consequence the whole electronic
spectrum is modified. Nonetheless the coupling
constants associated with these two causes are
greatly different, namely,

2W

~ e = (), 165
vz ’

(20)

1 ( 16/2 L(E, - E,)
Gy~ -

Ve s ~ )- -1.39,

where values are expressed in units of eV A'and
where ¢ is the lattice constant and E; and E, are
the energies of the s and p orbitals, respectively.
Therefore the coupling due to the dehybridization
is the most relevant, and its value is similar to
the interaction which leads to the Jahn-Teller dis-
tortion in the bulk vacancy (see Ref. 1). Thus,

we shall work out in detail this mechanism, using
G, as a parameter which we assume to include also
effects of the type described by G,. On the other
hand the dehybridization of the sp® orbitals is a
cleaner and more elegant mechanism than the
change of the interactions with distance. The lat-
ter needs to be corrected by considering the
change of the Coulomb interactions between ions,
which is of opposite sign and rather difficult to es-
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timate, while the former (dehybridization) only
depends upon angles and therefore changes of the
electrostatic energy can be neglected

Let us start by considering the atom around the
]

vacancy which moves as (x,Y,,0). Inthis case,
the unit vectors which point to its three nearest
neighbors are given by (to first order in the dis-
placements)

2o (ﬂ 4 X, 8Y. VZ 8X, 28 ¥, 1 8 X, 8 Y)

2"\/3 373 a 9a’3 '9qa 9\/_a’39fa gf'a

;,=(_~/_7_4 X, 8Y. V2 8X, 28 Y. 1 8 X 8 Y. 21
3 V3 33 a 9a’3 9a 9/3a’3 9y7 a 9\/3'a)’ (21)
7= (__4_.)& AL _1)

4 \/3—0’ ﬁa’ ’

the three sp‘i hybrids along these three direc-
tions being given by

1
Ih;):w ( |S>+ AZ ip>?’2) 4

1

Ao (|s)+2q[p),) 5 (22)

|r)=
1

)= s

( |S>+ )\4 |p>'?:1) ’

where |p>,. represents the p orbital which points
in the direction -r The three orthogonality re-
lations between these three orbitals determine the
coefficients x,. Then, the orbital |&]) pointing to
the vacancy is the sp* hybrid normalized and
orthogonal to the hybrids of Eq. (22). The ener-
gies associated with the hybrids of Eq. (2) are
given by

(e |H |k =157 (E +22E,), (23)

which becomes the usual value §(E,+ 3E,) when
the hybrid is the sp® (A2 =3). The atomic level of
the fourth hybrid (k{) can be obtained by assuming
the invariancy of the trace under unitary transfor-
mations. Recalling that we have taken 3 (E +3E,)

=0, we obtain
J

P= e Qu 040, |+ [, 0s, |+ 195,05,

(24)

to first order in the displacements, where it has
been defined D=3 (E, —E,)= -2 eV,

Finally, the dehybridization of the hybrids
pointing to the vacancy leads to the following
atomic levels:

16«/_ 2D

E,,=_-—--——( 5 X, —ZY,,) (25)

lﬁﬁD (isT_X _—;—Y¢)

where E_, E,,, and E, give the energies of the hy-
brids, at the atoms a, b, and ¢, respectively,
pointing to the vacancy. Then, if a displacement
of the atoms, according to the normal coordi-
nates @;, @y, and @, occurs, the perturbation of
the hybrids pointing to the vacancy (|1), |2), and
|3)) is described by

V=E,|1X1|+E,|2)2|+ E, |3)3]. (26)

This perturbation can be rewritten in terms of the
normal coordinates and symmetrized orbitals,
namely,

e (Qa 194, |+ @a 95, X0, |+ @0 [02)%0s, | + Qo 5,04, )

— 5 (Qu 45, Y05, |- Qu 05 )XW, | + @a 4, )05, |+ Q105 )05, ), (2)

where C= —(16\/—/‘/_(D/a) 4.82 eV A™. The wave functions |sz )and |yg ) are the two orbitals of E
symmetry and |[¢, ) 4 the one of A, symmetry.
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It can be noted in Eq. (27) that the third term is of the form characteristic of the coupling between a vi-
brational mode and an electron state both of E symmetry (see, for instance, Ref. 1). This term and the
second of Eq. (27) give a contribution of second order in the displacements. Instead, the first term which
is of A, symmetry gives a contribution of first order, and therefore it necessarily takes place. Nonethe-
less we shall not consider this contribution to ¥ as it only leads to a rigid shift (to lower energies) of the
three atomic levels of the hybrids pointing to the vacancy and consequently it does not preserve charge
neutrality. This does not necessarily mean that the @, distortion does not occur; it only means that this
distortion cannot be treated by using the zero-order approximation which assumes that only the atoms
neighboring the vacancy can move. Then by taking @,=0 in 17, we obtain the following value for the de-

~
.

terminant of I — G,V

det(I - G,P) =1 —-1%2 (Wz |Go |98+ 205 [Go [#5)Wa |Go |94 Q5+ QD)

(28)

valid up to second order in the displacements. (Y5 |G,|¥5) is one of the diagonal elements (both are equal)

of G, corresponding to ¢z, or Yy .

The effect of the perturbation in the energy region outside the SDB band is to shift the bound states and
split the doubly degenerate states of E symmetry. In the band the Green’s function G, is analytic and the

following approximation can be made:

1(E) = arg det(I - G,V) ~ —% (s | Go [15)°+ 2Ws | Go |98)Wan, |Go[92,)(Q5+ Q7).

(29)

This phase shift does not give charge neutrality and, in order to solve this problem, we add a constant
diagonal term (u) to the perturbation V. The phase shift is then given by

n(E) = -f—z (G | Go [46)"+ 20p | Go [95)(a, |Go | N(Q5+ Q) = b Im(2Wy |Gy |95+ (a |Go¥a ) 5

valid in the continuum. The charge neutrality
condition, i.e.,

N(Ep)=n(0)=0 (31)

determines u, and finally the change in the elec-
tronic energy is given by

Ep
AEBS=f dE EAN(E), (32)

which is clearly of second order in the displace-
ments. Note that (i) the occupied bound state of
E symmetry is split in two states, and although
the splitting is of first order the energy only
changes in second order as both states are occu-
pied, and (ii) in the continuum AN(E) is propor-
tional to (Q2+ Q2).

Finally, by using the parameters of the model
described in Sec. IIIA, the following result ex-
pressed in eV is obtained:

AEgs = -3.364(Q%+ Q7)) , (33)

with the lattice constant in @, and @, [see Eq.
(17)] given in A. Therefore as far as the surface
sp® hybrids are concerned, the distortion of E
symmetry is favorable.

We turn now to estimate the variation of the
elastic energy due to the movement of the atoms
neighboring the vacancy. We have used the model
proposed by Keating? with the following force

(30)

lconstants, in eV A%
a=2.968, B=0.2a=0.594.

We obtain the following changes in the elastic en-
ergy, in eV, associated with modes of E or A,

symmetry:
AES | =(2a+1p)Q2=2.178¢2,

elastic
AEflastic= (% a+ 122' BIQE+ Q5) =4.206(Q%+ Q) ,

where again the lattice constant in the normal co-
ordinates—Eq. (17)—is given in A. The results
are more easily understood if we rewrite the re-
sponse of the whole system (ions and electrons)
to the discussed distortions, by introducing an ef-
fective frequency defined from the total change
of the energy, namely,
AEAl = %MwilQ,z, ’
AEg=3Mwp(Qi+Q3) .
By using the mass of the silicon atoms and the
results for the increments of the total energy
given above (we remark again that there is not a
quadratic term in the modes of 4; symmetry due

to the surface hybrids) the result is the following,
expressed in radians per second:

w, =0.386x 10,
1
wg=0,24 X 10,

(34)

(35)
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We notice that if we had only considered the elas-
tic energy, the frequency of the E mode would
have been 0.536x 10 (rad/s)”'. Therefore the effect
of the change in the electronic energy associated
with surface and vacancy states is to reduce the
frequency of the E mode. In fact, the resulting
frequency is lower than the transverse branch of
the acoustic mode in the vibrational spectrum of
Si. This frequency would be even lower if all the
ions were allowed to move (see Larkins and
Stoneham®). If we had obtained a negative en-
ergy increment associated with the E symmetry,
the surface vacancy would have been unstable to
Jahn-Teller-type distortions. Nevertheless, for
the two models here considered,?+?® the elastic
energy dominates.

IV. CONCLUDING REMARKS

In the present paper we have discussed the elec-
tronic structure of vacancies at and near Si(111)
surfaces. The tool used has been a well tested
model previously applied to the study of nonideal
metal and semiconductor surfaces. Vacancies at
the three successive surface layers have been ex-
amined. The main result is that, as in none of
these vacancies is there a partially filled degen-
erate state, a Jahn-Teller effect is not expected.
We have found that, in contrast with the results
obtained by Daw and Smith'® for GaAs(110) sur-
faces, the electronic structure at a vacancy in
the third layer is not yet similar to that of the
bulk vacancy, the reason for this being the differ-
ent geometries of both surfaces. We have not
been able to answer a question which arises from
our results, namely, when a vacancy diffuses
from the bulk to the surface or vice versa, at

which point does a change from a bulklike behavior
(in which the Jahn-Teller effect takes place) to a
surfacelike behavior take place? This question
surely requires a self-consistent treatment of the
problem.

Then we have argued that although the Jahn-
Teller effect, as it stands,® cannot occur, a local
distortion of the Jahn-Teller type (a distortion
which lowers the point symmetry of the system)
would also rearrange the charge in the surface
and vacancy states leading to a gain in electronic
energy which can favor the distortion. We have
then examined this question in detail for a vacancy
in the surface layer concluding that this vacancy
is very likely to be stable to Jahn-Teller-type
distortions.

The results here reported can be relevant to the
analysis of the reconstruction of Si(111) surfaces.
In fact, it could be argued that, although a Jahn-
Teller effect at the surface vacancy would, of
course, only lead to a local distortion, if the num-
ber of vacancies is high, Jahn-Teller instabilities
would aid to trigger some kind of long-range re-
constructuion of the surface. This argument is
ruled out by the results of the present work.

Then, it would be interesting to analyze whether
or not a vacancy at a 2x1 Si(111) surface would
undergo a Jahn-Teller effect. It is clear that if
we assume a widely accepted model of 2X 1 re-
construction such as that suggested by Haneman,®?
the local symmetry of the problem leads to three
singlets. Preliminary results® indicate that for
a vacancy in the top layer no bound states lie in
the gap open by the reconstruction, and that the

E state at 0.5 eV splits in two singlets 0.05 eV ap-
part. As the Fermi level lies in the gap, once
again a Jahn-Teller instability is not expected.
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vacancies.

%F, P, Larkins and A. M. Stoneham, J. Phys. C 4, 143
1971).

%D, J. Chadi, Phys. Rev. Lett. 41, 1062 (1978).

2p, N. Keating, Phys. Rev. 145, 637 (1966).

%M. Born and K. Huang, Dynamical Theory of Crystal
Lattices (Oxford University Press, London, 1954).

%D, Weaire and R. Alben, Phys. Rev. Lett. 29, 1505
(1972).

%W, A. Harrison, Surf. Sci. 55, 1 (1976).

31,. D. Landau and E. M. Lifshitz, Quantum Mechanics:
Non-Relativistic Theory, 3rd ed. (Pergamon, New

York, 1977).
%D, Haneman, Phys. Rev. 121, 1093 (1961); 170, 705
(1963).

3E. Louis and J. A. Vergés (unpublished).



