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A perturbation treatment of the s-f interaction in ferromagnetic semiconductors is presented. The many-spin
correlation functions are expressed in terms of connected correlation functions which are constructed by the mean-
field theory. For the self-energy an integral equation is obtained which includes correlation effects. The method of
calculation is closely connected with the coherent-potential approximation. As an application the density of states is
shown in various cases by allowing the bandwidth to vary from broad- to narrow-band regime. The calculation is
limited to the paramagnetic phase. Correlation effects are seen as temperature-dependent changes in the density of

states.

I. INTRODUCTION

In magnetic semiconductors conduction electrons
are different from the electrons responsible for
magnetism. Magnetic moments arise from local-
ized electrons which partially fill the ionic d or f
shells. The moments are situated in a regular
lattice and are coupled to each other by the super-
exchange or indirect-exchange mechanisms. The
conduction electrons are ordinary band electrons.
The conduction band is separated by an energy
gap from the energy of the magnetic electrons.

The interesting physical properties of magnetic
semiconductors are a consequence of the ex-
change interaction between the conduction elec-
trons and the moments of the magnetic lattice. In
ferromagnetic semiconductors this interaction is
responsible for the large red shift of the absorp-
tion edge near and below the Curie temperature
T., the giant resistivity peak near T, and the
extraordinary large negative magnetoresistance.!™

The theory of magnetic semiconductors is in-
fluenced by three important ingredients: the mag-
nitude of the conduction-band width W, the mag-
nitude of the exchange interaction J between the
conduction electrons and the magnetic moments,
and the state of ordering of the magnetic lattice.
W may vary from zero to a few electron volts. J
is typically a fraction of electron volt. The mag-
netic excitation energies are always small com-
pared to the electronic energies. Thus W and J
define the large part of the system. However, the
state of ordering of the magnetic lattice has a
large influence on electronic energies via the ex-
change interaction.

Exact solution for an ideal paramagnetic semi-
conductor is only known in the zero-bandwidth
case. When W= 0, the Hamiltonian is diagonal in
the localized basis, and the problem reduces to the
case of an ion with an extra electron. As a result,
the band energy is split by the exchange interac-
tion into two multiplets. These present the situa-
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tion where the conduction-electron spin is oriented
in the same or opposite direction compared with
the ionic magnetic moment. The band splitting is
independent of the state of magnetic lattice, and
consequently the structure of conduction band is
independent of temperature.

The zero-bandwidth limit gives a natural start-
ing point for the theory of narrow-band magnetic
semiconductors® characterized by the condition
W<dJ. Owing to the nonvanishing W, the conduc-
tion electron is no longer localized on a particular
site, and the state of magnetic lattice influences
the electronic spectrum. The method of calcula-
tion in Ref. 5 is based on a canonical transforma-
tion. It can be generalized to any order in W/J,
but unfortunately it leads to a complicated system
which has been solved only in the limit W<J. In
the narrow-band regime, the bands originating
from the two multiplets remain separate in energy
at all temperatures.

Another possibility is to start from the broad-
band regime, W>J. In this case the exchange
interaction between conduction electrons and mag-
netic moments is treated as a perturbation. In
first order the conduction band is split in ferro-
magnetic region into two spin-polarized subbands
owing to the long-range order of the magnetic
system. The second-order corrections depend
on a two-spin correlation function, i.e., they re-
flect the role of short-range order. These cor-
rections are large near and above T, and must be
included in order to adequately explain the shift of
the absorption edge.®'° Continuing the theory to
higher orders introduces higher-order spin-cor-
relation functions which are poorly understood.
The two-spin correlation function is fairly well
known both from experiment and theory; some
theoretical studies exist for three- and four-spin
correlation functions, but the higher-order func-
tions are almost unknown. This is why the exist-
ing theories are mostly different types of second-
order versions,® !° which can be satisfactory only
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in W>J limit.

For arbitrary values of W and J there exist
two kinds of treatments. In the first one the
method of moments is utilized.'*!* Here one as-
sumes a structure for conduction band and the
fitting parameters are adjusted by calculating the
relevant number of moments. The actual applica-
tions of the method are based on the detailed so-
lution of the zero-bandwidth case. Thus their va-
lidity for more general cases may be questioned.
Furthermore, the accuracy of this method always
depends on the validity of the initial assumption
for the band structure, a matter which is very
difficult to check. The second type of treatments
uses the coherent potential approximation (CPA), 1
This method was originally developed for random
binary alloys.!”"? In the present case, the ran-
dom atomic energy “seen” by an electron at a par-
ticular lattice site is one of the two multiplet en-
ergies discussed above. Thus the CPA formalism
is directly applicable. It is known that the CPA
is fairly good for any values of bandwidth and
scattering potential. In the present case the va-
lidity is, however, limited to high temperatures,
since the magnetic moments are randomly or-
iented only in the high-temperature region. When
the temperature decreases the magnetic moments
become correlated. The importance of the corre-
lation effects on band structure is already seen in
the weak-coupling theories.®"*°

The aim of this paper is to develop a CPA-type
theory which includes correlations between the
magnetic moments. The theory is presented in
Sec. II using ordinary diagrammatic methods.
The correlation functions between the magnetic
moments are expressed in terms of so-called con-
nected corelation functions which are derivatives
of local magnetization with respect to the excit-
ing magnetic field. In Sec. III the method is ap-
plied to various magnetic semiconductors by al-
lowing the bandwidth to vary from broad to nar-
row-band regimes.
J

G, = c:f’{au \

v'f

II. PERTURBATION THEORY

According to the s-f model the Hamiltonian
which describes conduction electrons interacting
with the moments of the magnetic lattice is given
by

H= ZE,a,’Cav-—
’ W

The first term is the single-band Hamiltonian for
conduction electrons, the second one the exchange
interaction between conduction electrons and the
localized magnetic moments, and the last one the
pure magnetic Hamiltonian. The index v denotes
both the wave vector K and the spin index o of a
band electron. In the exchange part N is the num-
ber of unit cells and J is of the form

Jw,v,i)= Jei®P Ri2 (¢S] o). 2)

Ej(vv i)-S,aba,. + Hy

lllli

Here J is the exchange integral, ﬁ the lattice site
vector associated with the locahzed sp1n§ and

§ the conduction-electron spin. H,, is the ordinary
Heisenberg Hamiltonian

Hy= —;I(ﬁi-ﬁ,)’éi-ﬁﬁg% }_‘j§i-§,. , ®

where I is the exchange parameter and B, the flux
density of a magnetic field at the point R".

It is straightforward to write down an expansion
for the Zubarev Green’s function®>?? G, = {a,;al.)
in powers of J. The expansion is slightly simpli-
fied when one first subtracts from the exchange
interaction the part arising from the thermal aver-
age of lattice spins. This means that one starts
with the spin-polarized band picture. An addition-
al simplification comes from the fact that the mag-
netic excitation energies are small compared to
the electron energies. Consequently, the mag-
netic lattice can be regarded as a static system
in the electronic time scale. Thus H, and the
commutators of lattice spins can be neglected in
the equation of motion for G. This results in an
expansion

1 -
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Here G'© is the electron propagator associated
with the spin-polarized bands. The single bracket
(oo )*denotes the thermal average and the reduced
spin &, is defined by

£=5,-3,). ()

(4)

In order to develop a perturbation theory in all
orders in J, it is necessary to find a representa-
tion for the higher-order spin correlation func-
tions occurring in Eq. (4). In general, the fluc-
tuations can be expressed in terms of derivatives
with respect to acting force. This introduces the
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connected correlation functions.?»?* For a mag-
natic system they are defined® as derivatives of
local magnetization (S{*) with respect to exciting
magnetic field Bf:

BT \r  9%(S%)
Comb(st, SE, ., 570+ (-22L ) 5B7,,... 0B

(6)
where the thermal average of S{ is given by
J

<..1 €8s §> c™ @, . § Zp:l [ce(E,...,
+p§:2/ [C(Pl) (g . ’§P1) C(r AR

where perm. represents terms resulting from
permutations of the spins. In other words, the
right-hand side is generated by all different par-
titions of » spins. There are n!/[p! (- p)!] terms
of the type CP’CP !l /[p 1p,l(n—-p,-p,)!] terms
of the type C#VC%2C?17?72) etc. The prime on
the summation denotes that the C'Y’ terms are to
be excluded, since they are already present in
the product of ,’s in the left-hand side of Eq. (8).
It is convenient to use the Fourier-transformed
C functions

c"(8(qy,...,8(q,)

= E ei‘il'Rlx...

Ryt B

xCc™(§,...,8). (9

n

X eiq"' R"

Since the correlation functions depend only on mu-
tual distances between the spins, the Fourier
transforms conserve the wave vectors, i.e.,
c™(3(ay),. . .,8(,)

,8(q,)). (10)

651+' . *amoc(")(g(al),

Using Egs. (8) and (9) the expansion for G is
conveniently described by diagrams. The cor-
responding expansion for the self-energy is shown
in Fig. 1 up to sixth order in J. The double hor-
izontal line denotes the Green’s function G and the
dashed line the s-f interaction. With the interac-
tion line there is associated a factor — J(ko,k’¢")
= —dJ2 (o|s |o’, with the cross a factor C?'(..

(& -k’)...) and a proper scalar product of J and
ceq..., §(E— k’),...) is implied. The diagrams
are ordered into columns according to the number
of C factors. The diagrams in the first column
represent scattering from independent spin clus-
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. §P1"2)C (n=p =Py (§P1+P2*1’ ey

(S¥)= Tr(e#u'*s7SE)/Tr(e #u/*5T) )
When the derivatives in Eq. (6) are calculated, it
is consistent to regard the magnetic system as a
classical one, since the commutators of lattice
spins have already been neglected in the expansion
of G. With the help of Egs. (6) and (7) the nth-or-
der spin correlation function can be expressed in

terms of C functions as follows:

§,)C"'"”(§pﬂ, .-.,8)+perm.]

§)+perm.]+--+, (8)

-
ters. The crossed diagrams, for instance dia-

grams of the type C”’C""#’ represent such a
scattering from two lower-order clusters which
does not reduce into a repeated scattering from
these clusters.

The next task is to construct the C functions
explicitly. The simplest way is to calculate the
derivatives in Eq. (6) by the mean-field theory.
This method was used by de Gennes and Villain®*
to derive the wave-vector-dependent susceptibil-
ity, i.e., C®. Here we simply generalize the
method to higher orders. The calculation is per-
formed in the Appendix by considering only cor-

relations between the z components. From Eqgs.
(A4), (A9), and (A11)
C(S%(d,)= - NSBs (¥)8; o,
C?(5%(q,), S*(q,) = st sf(ql) q 4z, 09 (11)
c(s%(q,), ... ,S*(g,)
- NS B @) xr (@)
X050 44,0 n>2.

The correlation effects are included in f(q) which
is given by

(@)= 1/(1--——— I( )—3) (12)

In Eq. (11) C¥ is just the magnetization in the
mean-field theory. It is known to be rather good
at all temperatures. C‘® is the wave-vector-de-
pendent longitudinal susceptibility. In paramag-
netic phase it takes the well-known Ornstein-Zer-
nike form in the long-wavelength limit. This is
known to be realistic above T,. At T, C? is
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FIG. 1. Expansion of self-energy up to sixth order in J.

divergent as it should be. However, the critical
exponent differs slightly from the correct value.
Furthermore it is known that far below T, C®
decreases too rapidly. The higher-order func-
tions are just generalizations of these two. Their
validity depends on the accuracy of the mean-field
theory for the local magnetization. Essentially in
this theory the spins are assumed to be dynamic-
ally independent, which can be expected to be re-
alistic at least in the paramagnetic phase.

In the high-temperature limit f(q)~1, i.e., the
effect of correlation vanishes, and Eq. (11) re-
duces to the exact result for an ideal paramagnet.
Thus we see that the high-temperature limit of
the C functions is. correct.

By considering the same spin moments, Eq. (11)
leads to the sum rules

1 -

J—V'Zi:f(Q)=1

L 2 f@)x
d, ...,

n=2. (13)

“Xf(G) (qy+ e +q,)=1

It is obvious that these sum rules are exactly sa-
tisfied only in the high-temperature limit. How-
ever, deriving I( a) from nearest-neighbor ex-
change parameters, it turns out that the first sum

rule is satisfied within an accuracy of 10% in the
whole paramagnetic temperature region. Re-
placing 7 (q) by its long-wavelength form, the er-
ror of the first sum rule is always less than 259%,.
A similar conclusion applies to the higher-order
sum rules. Thus it is seen that the sur rules are
never badly violated.

Consider now the summation of diagrams in Fig.
1. Let us first treat the Ising part of the s-f in-
teraction, since it involves only correlations be-
tween the z components. A complication arises
from the fact that C® in Eq. (11) is structurally
different from the higher-order C functions. It
is instructive to first replace C'® by a more sym-
metric form

C® ~NS? —ﬂf(ql)f(qz)%”ago’

and correct the result afterwards. The diagrams
in the first column are easily summed. They lead
to an integral equation for the self-energy. Ad-
ditionally we select from crossed diagrams those
parts which are structurally equivalent to the dia-
grams in the first column. Consider as an ex-
ample a particular diagram of the type C®’C##),
Owing to the C functions there are two wave-vec-
tor-conserving & functions. The diagram is of
the form
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e g o0 .
+3P'0 Qpur* e +3p,0

1 Z o I
= — eee pi(Q+ 4§ )R
N = e '» 631+"-+6,,,0'
Qyreeerdy (14)

In the R summation the term R= 0 is just the part
which is of the same type as the nth-order dia-
gram in the first column. Thus we pick out the
R=0term from Eq. (14). Using repeatedly Eq.
(14) we are able to select the desired parts from
more complicated crossed diagrams. This method
of treating the crossed diagrams is characteristic
to the CPA.?° In wave-vector space the & functions
are replaced by a less restrictive condition as
seen from Eq. (14). This is allowed provided that
the quantities to be summed are slowly varying in
wave vector. Taking the Fourier transform into

R space, the essential condition for the validity

of the method is that G[R) be rapidly decreasing
beyond R#0. This condition implies that there
are no undamped poles of the Green’s function
close to band edges. This is the basic limitation
of the CPA. As a consequence the CPA always
yields a relatively smooth spectrum.

To calculate the contribution from a given row,
we have to sum the combination of coefficients of
the C functions. Unfortunately there exists no gen-
eral expression for the number of crossed dia-
grams of given type. This difficulty can be over-
come by using the method of Leath.?® In this
method the contribution of all reducible diagrams
is added to the sum of a given row, and is sub-
tracted afterwards. However, the reducible dia-
grams are in each step treated as crossed dia-
grams. Denote by T the sum of all nth-order
diagrams including also the reducible diagrams.
In the present approximation the adependence of
T™ is given by the nth-order diagram in the first
column of Fig. 1, and we have to determine the
coefficient associated with 7. This coefficient
can be calculated for the Ising part, but it is even
simpler to find it for the full s-f interaction in the
paramagnetic phase: When <§,.) = 0, the Green’s
function is independent of spin. The perturbation
is proportional to 25 -S,. The internal summation
over the electron-spin indices can be performed
by using the identity of Dirac:

2(5-5,)26-8,)=58,-8,+2i5- (§,x8)). (15)

The last term in Eq. (15) can be dropped. It
arises from the commutator of electron-spin op-
erators and is in fact cancelled by the same term
in the expansion of G. Because the spin system

is completely isotropic in the paramagnetic phase,
the correlation functions between any spin com-
ponents must have the same c] dependence as the

correlation functions between the z components.
In other words, Eq. (11) applies to all C functions,
except that the derivatives of Brillouin function
are to be replaced by some other coefficients.
Furthermore, all these coefficients are constant
in the paramagnetic phase. Thus, we can take the
high-temperature limit, where only the same spin
moment occurs in the expansion of T, With
the help of Egs. (8) and (15) it is seen that the co-
efficient associated with 7™ is [S(S+ 1)]"/2 if n
is even and O otherwise.

By summing up all rows an integral equation for
T is obtained:

Ti'r—ZK(k’—q)G° K(@G-k)

*NE ZK(” 4)G3K(q-q')Gy Ty ;-
(16)

T is given by the diagonal element T3;. In Eq.
(16) '

K(q)=JSF(qQ), amn

where [S(S+ 1)]'/2 is replaced by S. This is con-
sistent, because through the calculation the mag-
netic system is treated essentially as a classical
spin system. This is equivalent to the case S>1.

The reducible diagrams to be subtracted from
T are shown in Fig. 2. The crosses are connected
with dotted lines to indicate that these diagrams
are to be treated in the same way as the crossed
diagrams were done in the calculation of 7. Re-
garding the self-energy Z as a function of its in-
ternal propagator each column can be summed
separately as shown by Leath.?® With the help of
Fig. 2 one obtains

T(G)= G’)/( ——-GE(G )) 18)
G'=G/(1-1Nz(cf)c).

Equation (18) is to be understood as a matrix
equation, i.e., G is a diagonal matrix with com-
ponents Gz, and T and Z are square matrices
with components Ty 3 Zy, 3 etc. Now change
G - X such that G'*G Equatlon (18) gives then
© = %(G) in terms of T(X). From Eq. (16) we
finally obtain an equation for the self-energy,

1 1
T+ 4 26T = - KGK, (19)

or in component form
1 o> - - -
-+J—V-Z:Z;,'aG;E-- ZK(k'—Q)G;K(q-k).
q q (20)

Next we have to consider corrections to the self-

zl-
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FIG. 2. Calculation of self-energy: Diagrams included in 7' are shown in the first column and the reducible diagrams

to be subtracted from T in higher columns.

energy arising from the true C®. It is essential
for the present method of calculation that the a
dependence of diagrams must show simple struc-
ture in order for us to be able to convert the sum
of diagrams into an integral equation. The cros-
sed diagrams involving true C‘® break this simple
structure considered. Thus we are forced to ad-
ditional approximations. A very useful approxi-
mation is achieved by calculating the £ matrix
from Eq. (19) and by deriving then the self-energy
from the equation

2 E;':I .

b

E 21)

z|=

The expansion of self-energy starts now from the
correct second-order term. Furthermore, this
approximates better the crossed diagrams con-
taining C®. Equation (21) implies that in the
higher-order C functions one of the f (q)’s is re-
placed by 1, i.e., by its average over q. This re-
sults in an important advantage that all the sum
rules are automatically satisfied once £(§) is
scaled to satisfy (1/N)Z;;f(§)= 1. The sum rules
reflect the fact that the magnitude of each lattice
spin is fixed. In order to avoid unphysical solu-
tions, it is important that the sum rules are ex-
actly satisfied. As a consequence of the proper

account of sum rules the present method yields
the correct result in the zero-bandwidth case,
within the approximation S>1.

At high temperatures the right-hand side of Eq.
(20) is independent of wave vector. Consequently
i ¢ is also independent of k and k’, and the self-
enérgy is given by

= =J%5%G(0)/[1 + =G(0)], (22)
where
1
G(0)=-ﬁ ZE:G; (23)

This is just the ordinary CPA result of Rangette
et al.** for large S. Equations (19)—(21) are the
main result of this paper. They determine a CPA-
type self-energy which includes the effect of cor-
relation between the scatterers. There are some
formal similarities between the present treatment
and the existing CPA theories for liquid and am-
orphous materials.?®"?® These theories involve

the atomic correlation functions. In Refs. 26-28
these functions are constructed by Kirkwood’s
superposition principle as symmetric products

of two-atom correlation functions. The spin-cor-
relation functions in Eq. (11) are different from
Kirkwood’s correlation functions, and consequently
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the final equation for self-energy differs also from
those given in Refs. 26-28.

IIL. RESULTS AND DISCUSSION

Using Eqgs. (20)-(21) and taking into account the
sum rule for f(q) one obtains for the self-energy
Zg an equation

1 > -
Tpts DoTpaCiTy= oIS LEG-DC;.  (24)
NTOT N 7

The right-hand side of Eq. (24) is just the second-
order self-consistent self-energy considered pre-
viously in Ref. 9. In semiconductors the states
close to the bottom of the band are the most im-
portant ones. For these states it is then suffici-
ent to study the solution in the long-wavelength
region, where the self-energy is, in the first ap-
proximation, independent of wave vector. Then
Eq. (24) reduces into an algebraic equation

T+ 22G(0)= JSJITJ Z K(q)Gg, (25)

which is easier to solve. Let us specifically con-
sider the solution of Eq. (25) for europium chalco-
genides such as EuS and EuO, which are the best
studied among the ferromagnetic semiconductors.
In the paramagnetic phase the long-wavelength
expression for f (q) reads
- 12T 1

f(q)":x'?c—'(z_'_ang ’ (26)
where ) is the scaling parameter to be chosen
such that (1/N2J.f (@)= 1, «?= 12(T/T,-1), and
a is the lattice constant. In other words f(q) is
of the Ornstein-Zernike form. In R space it des-
cribes exponentially decreasing correlation be-
tween the spins, the quantity a/k being the cor-
relation length. The original conduction band is
simply taken to be a truncated free-electron band
characterized by the effective mass m*. This is
consistent in the long-wavelength limit. As the
result of these approximations the accuracy of the
solution is best in the low-energy region, but in
particular the high-energy edge of the band is only
qualitatively described.

Figure 3 shows the calculated density of states.
The exchange energy JS is chosen to be 0.33 eV,
which is a typical value for europium chalcogen-
ides. The effective mass is varied to cover the
broad (m*=m,), intermediate (m*= 3m,), and
narrow (m*= 10m,) band regimes. The effect of
correlation is seen as the temperature dependence
of density of states. In the broad-band case, in
Fig. 3(a), the band edges undergo temperature-de-
pendent shifts. The upper edge shows a red shift,
i.e., it shifts to lower energies with decreasing
temperature, while the lower edge shows a blue
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FIG. 3. Density of states per spin in the paramagnetic
phase for (@) m*=my, (b) m*=3m,, and (c) m*=10m,.
The solid line corresponds to the temperature T =207,
the dashed line to T =5T, the dot-dashed line to T =3T ¢,
and the dotted line to T=1.17,.

shift at higher temperatures followed by a red
shift below 3T .. As a result the total bandwidth
decreases first with decreasing temperature and
then below 37T, increases again. In the intermed-
iate case, in Fig. 3(b), the band is split into two
subbands at high temveratures. The striking
effect of correlations is that the band gap closes
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again when temperature decreases. In the nar-
row-band case, in Fig. 3(c), the two subbands
remain always separate in energy. The bandwidth
of the lower subband increases with decreasing
temperature, whereas the upper band shows the
opposite behavior. For the upper subband the
imaginary part of the self-energy is small com-
pared to the real part. This introduces numerical
instabilities in the solution particularly near T.
This is why in Fig. 3(c) only the position of the
upper subband is indicated at T=1.1T.

If the bandwidth still decreases the density of
states becomes less temperature dependent. In
the extremal zero-bandwidth case Eq. (25) pre-
dicts two peaks for the density of states centered
in energy at +JS, which is the exact result.

Figure 4 shows the low-energy band edge as a
function of temperature. The blue shift in the re-
gion T >5T is of the order of 10" eV/K in all
cases. The red shift in the region T < T <37 de-
creases with decreasing bandwidth.

The results of the broad-band case are close to
those predicted by the second-order self-consis-
tent theory.® In particular, the temperature de-
pendence of the low-energy band edge compares
well with the observed shift of the absorption edge
in europium chalcogenides. However, the inter-
pretation of the optical absorption spectrum by
means of the calculated density of states meets
with difficulties. It is generally accepted that in
europium chalcogenides the first optical transition
is from the localized 4f level to the 5d-type con-
duction band. The absorption coefficient depends
on the momentum matrix element and on the joint
density of states. It is customary to regard the
momentum matrix element as energy independent.
Since the initial state is well localized,  the ab-
sorption coefficient should be directly proportional
to the conduction-band density of states. Accord-
ing to the energy-band calculations®*° the d bands
are broad having the width about 5 eV. Thus the
absorption coefficient should have a structure

1
) )
2 2
T T

Absorption edge (eV)
o
¥

1 1

1 5 10 15 20
T/T¢

o
~

FIG. 4. Absorption edge as a function of temperature.

shown in Fig. 3(a). However, in all europium
chalcogenides the absorption coefficient shows
first a peak of width 1 eV. There are attempts to
explain this peak in terms of excitonic transition.®
In heavily doped materials the exciton should dis-
appear owing to the increased screening, but in
experiments no effect of doping is seen. Thus the
peak seems to indicate a relatively narrow con-
duction band of width 1 eV.3*2 However, accord-
ing to the present theory a band of this width
should be split into two separate subbands as
shown in Fig. 3. No splitting is seen in the ab-
sorption coefficient and the situation remains con-
troversial.

Obviously a more careful interpretation of the
absorption coefficient is needed. The momentum
matrix element is energy independent only in the
framework of the lowest-order effective-mass
theory. It implies that both the initial and the
final states belong to broad bands. In the present
case the initial state is well localized for which the
lowest-order effective-mass theory does not apply.
A well-known example of the case where the mo-
mentum matrix element is energy dependent is the
transition from a localized impurity state to band.
This can be handled by the ordinary effective-
mass theory, which predicts that the momentum
matrix element decreases at higher energies and
the resulting absorption coefficient shows a peak-
ed structure.®® Thus in europium chalcogenides
the conduction band may be broad in accordance
with the band calculations, and the peak in ab-
sorption coefficient may be caused by the energy
dependence of the momentum matrix element.
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APPENDIX: CALCULATION OF THE C FUNCTIONS
The magnetic Hamiltonian reads

Hy=- 2 IR, -R)S,-8,+gu, 2. 5,-B,. (A1)
irj i
By definition, the thermal average of a component

of the spin operator is
(52 =Tr(e #u™87s%) /Tr (e " u'*8") (A2)

The connected correlation functions® are obtained
as derivatives of (S;") with respect to the field B}’:

9"(S%)
8B, +++8B5 "
(A3)

ksTY'
Cr+1)(ge oB s; = <_ B )
( 1,2 ’ +1) gh 5
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According to the mean-field theory
(8) =-SBs(x,)),,

_&+8S =
X _—k_j;z_: lgeﬁ‘ (Ri) l’ (A4)

- - 2 - - -
By (R;) T, ZI(Rs -R,(8) +B,.
Here Bg denotes the Brllloum funct1on u, the unit
vector in the direction of Beg (R ), and B a spa-
tially vary1rLg magnetic field. At the end of the
calculation B; is replaced by the true field acting
on the sample, i.e., in the present case by a con-
stant field in 2z direction. By differentiating Eq.
(A4) one obtains
SY _ 9B duy
aBﬂ S dx, aBﬂ = SBs BB"'

a

(A5)

For the sake of the simplicity we limit considera-
tion here to the longitudinal fluctuations and ne-
glect the last term which describes the transver-
sal fluctuations. Thus

Sy _ s2Bs Bx;

z - r)
9B] dx, BB (A6)
22(SH _ (a B 0xy 9%, 3By 8%, )
9BZ3B% ox? 8B%3B% ' 9x, 9BIBS /)’

etc. From Eq. (A4)

_8_&=<s_ua§( BECHI )
8B% ~ kyT 9Bf T W )

(A7)

8%, _&ppS ( 2 82<S,,‘)>
—_—i =R -
8B3B;  kgT \ gup El(ﬁ' is")annaB;' ’
n
etc. Using the Fourier tranforms

.,5%d,))

= QR PN
_Z‘el 1X

By,-T - R,

XC"(SE,...,S9) , (A8)

C(n) (st (al)’

Xelq"'R"

one obtains from Egs. (A6) and (A7)
Cc®(s%(q,), $(a,))

= NS* 2287 ()05, . 3,0 € 5°@), S, S*(E)

-
qp + 3,0

Ok S CACRICALAIE )

where

@)= 1/(1——1( ) s

In higher orders the expressions for the C func-
tions become more complicated. However, no-
ticing that in the paramagnetic region, dx ,/BB{

~1 but 8%, /8B%9B5 ~T /T, one can neglect terms
of the type (8x,/9B%) (9% ,/8B23B%) at least far from
T.. Then one obtains generally

s ). (A10)

C(n)(St(al)’ ., S'(a,,))
_N(—S)n ax" 28 ()X <f(3,)
XOgu. .. +3,09 n>2. (A11)

This gives a simple structure for the correlation
functions, useful in a perturbation expansion.
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