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Theory of phonon-assisted Auger recombination in semiconductors
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A theory is developed of phonon-assisted Auger recombination in semiconductors on the basis of the Green's-

function formalism, As a result, the divergence diAiculty, which is inherent in the earlier theory based on the
second-order perturbation approach, can be avoided. It is shown that results of the present theory are different from
those of the earlier theory in the following respects. For p-GaAs and p-GaSb the pure collision Auger
recombination is almost negligible in comparison with the phonon-assisted Auger recombination over the whole

temperature range of interest. The result that the pure collision Auger process is negligible even at 300 K for p-
GaAs is remarkably contrasted from that of the earlier theory, The theory is applicable to p-GaSb, to which the
earlier theory is not applicable. When one takes into account the free-carrier screening of the electron-phonon

interaction for the first time, it is indicated that the effect is considerably important in p-GaSb but not in p-GaAs.

I. INTRODUCTION

The Auger recombination lifetime of the minority
carriers is one of the key material parameters
affecting the performance of many semiconductor
devices, especial. ly at high-doping levels. A

number of theoretical and experimental. investiga-
tions' have been made on the basis of the pure
collision Auger process. However, with the pure
collision Auger process it is insufficient to ex-
plain the recombination rate especially at'low
temperatures' ' and/or in highly doped materials. '
To give a better explanation the phonon-assisted
Auger recombination ' ' and the impurity-assisted
Auger recombination" have been proposed. The
former and the latter processes have been shown
to be predominant especially at low temperatures
in moderately doped materials and in highly doped
materials, respectively.

In the earlier theory of the phonon-assisted
Auger recombination, the phonon scattering was
taken into account in terms of the second-order
perturbation treatment with respect to the electron-
phonon interaction as well as the electron-elec-
tron interaction. Since the energy denominator
involved in the theory can be zero, a divergence
difficulty arose. The difficulty was avoided by

making the approximation that the energy denom-
inator is replaced by the value evaluated at the
threshold of the Auger process. The approxima-
tion is valid under the condition that for a direct-
gap semiconductor the value of the band-gap ener-
gy E~ minus the spin split-off energy n is suffi-
ciently larger than the thermal energy T. There-
fore the theory is not applicable to the high-tem-
perature case and/or to such materials with E~
close to 60 as GaSb and InAs.

The present paper describes a theory of the
minority-carrier lifetime of the phonon-assisted
Auger recombination based'on the Green's-function

formalism. There appears no divergence difficul-
ty, so that the present theory is applicable to any
semiconductors at arbitrary temperatures. The
free-carrier screening of the electron-phonon
interaction is taken into account. However, we do
not consider the effect of the electron-impurity
interaction, which is important at high doping
levels, " i.e. , for impurity concentrations exceed-
ing about 10"cm '. Investigation. of the combined
effects of the phonon scattering and the impurity
scattering on the Auger process will be presented
in the future.

II. MODEL AND BASIC FORMULATION

In this section the minority-carrier lifetime of
the phonon-assisted Auger recombination is ex-
pressed in terms of the Green's function. First
we define our model by writing down the Ha, mil-
tonian as

H =H, +H~+H, ~+H,~. (2.1)

(2.2)

H~=gv„(@bt; b„;, (2.2)

(2.4)

Here H~, H~, H~~ and H~~ are the Hamiltonians
for the band electrons, the phonons, the electron-
phonon interaction, and the electron-electron
Coulomb interaction. Vile assume H~+H~ and

Hz~+Hz~ to be the unperturbed Hamiltonian and
the perturbation, respectively. The explicit forms
of the Hamiltonians are
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TABLE I. The list of [g„(g)(2. (-) 42fe'
(2.6)

Scattering mode lg.(g)l'

Piezoelectric scattering (PE}

Acoustic deformation
potential scattering (AC)

Nonpolar optical deformation
potential scattering (NPO)

Polar optical phonon
scattering (PO)

e &pE(dec(q)
2g

=-2~~c(q)
2Cl

2ENpoop (q )
2c

2me2(dop(q)
g Qq 2

Hss = Q—u(q) (l,k+ q
~
f,k}(lsk' —q

~
l,k'}

ly l2 l3 lg
kk'q(y(y'

x + lyk+q(y l2k'~(y' l3k 0 lqkff (2.5)

Here at2„-„a;t„and $,(k) are the creation operator,
the annihilation operator, and the electron energy,
respectively, for the electron with the band index

l, the wave vector k, and the spin o' The electron
energy is measured from the Fermi level assum-
ing thermal equilibrium initially. b„;, 5„;, and

&„(q) are the creation operator, the annihilation
operator, and the phonon energy, respectively, for
the phonon with the mode index v and the wave
vector q; With V as the crystal volume, g„(q)/WV
and '0(q)/V are the electron-phonon coupling con-
stant and the Fourier component of the unscreened
Coulomb potential, respectively. g„(q) is depen-
dent on the band index l though not explicitly
shown. (I,k,. ~l&k&) is the overlap integral between
the modulating parts of the Bloch functions ~f,k,. }
and ~l&k,.), which are normalized over the crystal
volume: We take (fk,.

~
lk&) =1 for the intraband

matrix. Z(q) is given by

where e is the electronic charge. As for g„(q},
we consider the piezoelectric scattering (PE),
the a.coustic deformation potential scattering (AC),
the nonpolar optical deformation potential scatter-
ing (NPO), and the polar optical-phonon scattering
(PQ). The former two and the latter two are for
the acoustic-phonon modes and for the optical-
phonon modes, respectively. In Table I we give
the expressions' of ~g„(q} ~2 for those scatterings,
using definitions in. Table II. It is to be noted
that in Eq. (2.4) we consider the intraband phonon
scattering only and neglect the interband one.
The electron-phonon interaction leads to the elec-
tron-electron interaction via emission and reab-
sorption of phonons.

Let us consider the temperature Green's func-
tion 9(lk, iu& ) with e =(2m+1)sT for the electrons
in the band /, where m and T are an integer and
the thermal energy, respectively. The function is
given"" in the form

1
—$,(k) —Z(lk, iso )

(2.7)

Bo(lk, iso ) =. ,pimam $b J
(2.8)

2~.(q)$,(vq, i~g =- (2.9)

using the self-energy p(/k, i&o }. This self-energy
is given on the basis of the electron-electron inter-
actions both via the Coulomb potential and via the
phonon emission and reabsorption, as shown in
Fig. 1. Here we use the free-particle Green's
functions

TABLE II. Definitions.

+PE
Dimensionless isotropic piezoelectric constant

[p [2 f4h 2 12 16
35 Cl Cg

A'i4

c,

Cy), C12~ C)4

Piezoelectric stress tensor

= —(3C g )+ 2c (2+ 4c44)

=
5 (cff —ci2.+3c44)

2Cl+ -Ct
3

'

3

Elastic stiffness constant

Effective deformation potential

Optical deformation potential
-i -1—E'p

High-frequency dielectric constant
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for the electrons and for the phonons, respective-
ly, where &u =(2m+1)mT and &d„=2nwT with inte-
gers nz and n. In. Fig. 1 spins are conserved for
each scattering from /, k+ q to /, k and from /, %.' —q
to l,k'. For the Coulomb potential interaction the
overlap integrals are assigned to each vertex.

To now take into account the screening effect of
the band electrons, we replace the Coulomb poten-
tial interaction and the phonon emission and reab-
sorption interaction vertices in Fig. 1 with the
structure illustrated in Fig. 2. %e take each free-
electron-hole bubble to be made up of the Green's
functions for the same band provided that at least
one of the vertices connected to the bubbl. e is for
the phonon emission and reabsorption interaction.
On the other hand, we take various pairs of the
Green's functions for the different bands as well.
as for the same bands if the Coulomb potential
interaction vertices only are connected to the bub-
ble. For each bubble we obtain

II I

II = I+
II I

II

II

I

= VXee'

FIG. 2. Modified Coulomb potential interaction U~/V
and the modified phonon emission and reabsorption
interaction U2/V, which describe coupled motion of the
band electrons and the phonons.

Vg»(q, iv) ) =2TQBO(/k, i&e )9,(/ k+q, i)d +i+„)

x
I &/kI/ k+q&I2

Hereafter we replace sum Q- ~ - ~ by an integral
[V/(2m)']fdk . y«. (q, i&@„) is known" to be re-
duced to

(2.10)

dk 9($,(k+q)) —e(t',(k))
(2)))' i&„- ~,,(k+q)+~, (k)

x I(/k~/ k+q&I2, (2.11)

8 &d)=
1

exp(&d/T) + 1 ' (2.12)

g,(Ized'-7, iff)~r) ~~~ k'-~l &» k") Sg~4& /~~s)

t

(I)/v

) (l,X+I,i,ea, ) (JfX+gl lg E') g, (VgX, ~e~)
(a)

g, (&,x;..~ )

(sate)~'~. ( . ~.)

gs(JgX, ud~)

where e(&u) is the Fermi-Dirac distribution func-
tion

Let us define

x(q i~.)=Z x„(q i~), (2.13)

&,(q, i)d) =1 —u(q) Q l/„,(q, i~),

(q, i~„) = 1 - g(q) X(q, j~„) .

(2.14)

(2.15)

x K)0(vq, ieger(q, i)d„)

Replacing i)d„by real )d, &0(q, v) and e(q, &d) are
the dielectric constant of the host lattice and the
free-carrier screening constant plus e,(q, ~). Not-
ingthedefinitions of U, /V and U, /V in»g. 2, we
obtain the effective electron-electron interaction
defined as U(q, i&@„)/V, where U(q, ie„) = U, +U, .
Both U, and U, are solved using the diagrams in
Fig. 2. Considering for the moment a given pho-
non mode v, we obtain

U(q, iso„) = . + ' '. "
fg,(q) f'g)(vq, icuy,

'U(q) eo(q, i)d„)
6 q, Z(d„e q, i&d„

(2.16)

where ~(q, i&@„) is the dressed-phonon Green's
function

&(i, )~)=~(4, '~4(~- '-', j lr)&)l'

FIG. 1. Illustration of the electron-electron inter-
actions via the Coulomb potential (a) and via the phonon-
emission reabsorption (b). Qo(/k, icbm) and Q(&q, Au„)
are the free-particle Green's functions for the electrons
and the phonons, respectively.

As seen later, we find that S(q, iru) =G,(q, ird„)
is a good approximation. To take into account all
the phonon modes is therefore only to sum the
second term of Eq. (2.16) over v. We obtain
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U(q, ia„) = &(q)
6 q, ico„

+ -0 . " g„q Qovqie„.

1
( 1 lt 1) (Q) ZB(/k )ly

Here Z (/, k„~,) is defined by

Z "(/,%.„(u,) = 1im Z(/, k„(u, +i 5) .

(2.19)

(2.20)

(2.18)

The first term and the second term of the equa-
tion are the screened Coulomb potential interaction
and the screened phonon emission and reabsorp-
tion interaction. It is to be noted that if the inter-
band scattering is considered we should take
g„(q) =0 in Eq. (2.1S).

Now we go into the discussion of the minority-
carrier lifetime of the Auger recombination. Let
us consider an electron in a state (/, k,o,), which
loses its energy as it interacts with other electrons
and phonons. The lifetime of the (/, k,o,) state can
be calculated on the basis of the self-energy
Z(/, k„ie ) defined in Eq. (2.7). This self-energy
is made up of the structure illustrated in Fig. 3.
We write Z = 5, + Z, + ~ ~ for the first order, the
second order terms, and so on in U: Z„refers
to the diagram (a) of Z, as an example. The re-
tarded Green's function G~(/, k„&,) is obtained from
9(/,k„iv ) replacing i&„by u&, + i5 with 6-0+
as

Then k times the damping rate of the (/, k,o,) state
is given by

1"(/,k„(u}= -ImZs(/, k„~,) . (2.21}

Consider hereafter the Auger transition in a
direct- gap semi- conductor of p type, where a
given electron 1 recombines with a hole 4 exciting
an electron 2 to another hole state 3, as shown in

Fig. 4: This process is denoted as the 1432 pro-
cess. Considering the conduction band (CB), the
heavy hole band (HB), the light hole band (LB),
and the spin split-off band (SB), various transition
processes exist such as CHHS, CHHI, CHHH, and
so on. Among them the CHHS process (see Fig. 4)
may be predominant' in a p-type semiconductor
so. that only this process is considered. It is
to be noted that the bands we consider have no
definite k dependence since k is no longer a good
quantum number owing to the phonon scattering.
In this situation the Green's-function formalism
for the Auger process is appropriate. This is
done on the basis of Eq. (2.21) starting from the
fact that in U the lowest-order term of Z(/, k„iv )t5y

for the Auger process is the second-order one,
i.e. , Z, (/, k„iv ) shown in Fig. 3. Out of the

f5y

diagrams for Z, (/, k„im, ) two diagrams
Z„(/, k„ie„) and Z»(/, k, iu&, ) are found to repre-
sent the process under consideration. To include
higher-order terms we replace the free-particle
Green's functions 9,'s in Z„and Z» by the com-
plete Green's functions 9 's as shown in Fig. 5.
From this figure we obtain

z..(4&„',)=-2&'f z~f 2
'. Z fU(&, —&„'ru, —~'ru, )]*~I(&&,~~&J,&)*((i.f.~~i%. )('

g f54

x 9(/~k~, iv )9(/, k»i&a )9(/,k„i&a +in —i&@ ), (2.22)

= U + ~ ~ ~
I 2

(a) (b)

(a) (b) (c)

FIG. 3. Diagrams for the self-energy Z= Z~+ Z2+-. ,
where Z~ and Z2 are for the first-order and the second-
order terms, respectively, in U(=Ug+U2), i.e. , the
effect ive electron-electron interaction.

FIG. 4. Auger recombination via the CHHS process
among the conduction band, heavy-hole band, and the
spin split-off band.
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(4&~1&i&i& 9iX I &a&»)

(ji»'X»~ g, ki)

kg-k]
(b)

FIG. 5. Diagrams for the self-energy representing the Auger transition recombination.

' «.k I/. k.&«.k. I/. k.&&/.k I/, k.&&/.k, I/, k &I

&» 9(/»k», iu) )9(/3k~, iw ) 8(/2k2, i»d + j~ —j~ ) . (2.23)

the Auger transition in a direct-gap material. For
an indirect- gap material, however, wave- vector
changes of the order of v/g are invol. ved as im-
portant processes: For these processes we should
take &0=1. On the other hand, the approximation
fol e(l/, )d) will be good Rs fRI Rs tile encl gy
changes are well below the thermal energy. Al-
though this condition is not satisfied, we use e(l/)
in view of that the free-carrier screening is not so
important an effect for the Auger process.

It is convenient to replace the sums over m and
n in EIIS. (2.22) and (2.23) with contour integra-
tions. We perform this integration noting the as-
sumption of the ~ independent e(I/). Then we make
use of the analytical. relations among the tempera-
ture, the retarded, and the advanced Qreen's
functions. Noting EII. (2.21) and taking into ac-
count all possible ways of assigning (/, k, ), (/, %,),
and (/, k,) to three Green's functions in the dia-
grams of Fig. 5, we obtain

Hereafter we use the notation k, =k, +k, —k, . The
factor 2 in front of the summation in Eq. (2.22)
comes from summing over o' in Fig. 5(a). Since
we are considering the interband transition as
shown in Fig. 4, each U in Egs. (2.22) and (2.23)
ls ollly 'tile fll'8't 'tel'111 of EII. (2.16) 1.8., 'U/e. 011

the other hand, if we consider some other proces-
ses including the intraband transition, e.g. , the
CHHH process, the second term should also be
included though this is much smaller than the first
term.

It is assumed here that we can make approxima-
tions eo(ll, (d) = &0(0, 0) Rnd e(II, (u) = E(Q) 0), 'wlllch

RI'8 denoted silIlply Rs )ko Rlld e(q), I'espec'tlvely.
The approximation for &0 will be good as long as
we consider the transitions involving only small
wave-vector changes and small energy changes,
l.e., lk, —k,

l
«)I/)I (n is the lattice constant},

This condition is satisfied for the present case of

k, )),k„iz ) =7'f
k ),f )', F ))(k, —k„ik„—iz„)))(k,—k„iz,—itk )

«/ k ~ ) =,. J („).J („).& Ifl'+ lgl'+ If-~l')

d~, d~48 ~, j.-e &d, 1 —9 ~4 + & —9 ~) 8(~, 9 ~,

x ImG" (/, k„e,) IiIIGS(/, k„d,) ImGS(/»k„u&4) . (2.24}

Hel'8 k =kg+k» —klk h)2 —(d3+ id» —)d»)

f=&/, k, I/ k &(/ k I/ k &'U(k —k,)/6(k —k,), (2 25)

g =&/, k,
I
/, %, &&/,k,

I /, k, &Q(k, —k, )/~(%, - k,), (2.26)

and e()d) is the Fermi-Dirae distribution function
defined by Ell. (2;12).

It is to be noted that the damping 1(/,k„ id, ) of
the electron in tbe (/, k,o,) state has been deter-
mined for a system in thermal equilibrium. In



6630 MASUMI TAKKSHIMA

order to calculate the minority-carrier lifetime
we consider departure from the equilibrium. It is
assumed that this departure is infinitesimally
small and that in nonequilibrium state quasiequli-
brium exists among the electrons of the CB and

among those of the valence band (VB), but not be-
tween the CB and the VB. This is taken into ac-
count by using quasi-Fermi levels for the CB and
the VB. Equation (2.24) is used as an approxima-
tion for I'(/, k„r~,), considering that the energies
$, (k,.)'s (i =1, 2, 3, 4) involved in the equation are
measured from the quasi-Fermi level for the VB:

p(/~R~~ (0~) = —2 ImG ( /~k~~ (d~) . (2.27)

The distribution for those carriers is described
by 8(&u, —E,}, where E, is the quasi-Fermi level
for the CB measured from that for the VB and

8(&u) has been defined by Eq. (2.12). The average
lifetime v of the minority carriers is

The approximation is valid up to the zeroth order
in the departure from the equilibrium. The density
of states p(/, k„&,) for the CB electrons, which
are the minority carriers, are given" in the same
approximation by

1 1 dk~ dk,d+, I'(/, k„~,}P(/,k„u&,}8(e,—E,) 2 }', d~, P(/, k„e,)8(~, —E,) .

The minority-carrier concentration n is defined by

n = —~ dv, p(/, k„&u,)8(u&, —F,) .g~k

(2.28)

(2.29)

Using this relation and Eq. (2.27) we obtain

1 14 1 dk, dR, dk~
@+2 (2v)3 (2+)3 (2+)3 ( I&l'+ lg I

+ I&-g
I }

X Q Q QR + + (gP Q)

x ImG" (/, k„&u,}ImG" (/, %„&u,) ImGs(/, %„+g ImG~(/, k„v,),
(2.30}

where

F(~„~„~„~,) ={8(~,) [1—8(~,)][1 —8(~,)]+ [1—8(~,)]8(~,)8(&up[8(~, —F,) ~

Using Eq. (2.19) 7' is calculated from Eq. (2.30) once Z (/k, e) is determined as in the next section.

(2.31)

III. APPROXIMATE FORMULA FOR NUMERICAL CALCULATION

In this section Eq. (2.30) is cast into more tractable form. First we note that ImG (/k, ~) represents a
discrete state at &u = ],((t) broadened with the width of

limed"(/k,

+) I. As seen later, this width is much
smaller than the electron energy of interest, showing free-particle-like behavior pf the electrons. Further,
since as seen later the width is proportional to the effective mass of the band under consideration, the
electrons in the CB and the SB are much more free-particle-like than those in the HB. Thus we approxi-
mate Gs by G for the CB and the SB. Let us write G"(i) =G", (i)+G"„(i), where we use the abbreviation
i -=/, k„v,. and Gs(i) is the sum of the higher-order terms in Z"(i) other than the zeroth. We obtain

ImG "(1)ImG" (2) ImG" (3)ImG" (4) = ImGso(1) lmGso(2) [ImGs(3) ImG,"(4)+ ImGg(3) lmGs(4)

—ImG(3) ImG(4) + ImG„"(3)ImG~(4) ] . (3 1)

From the above discussions we neglect the last term in the square brackets. The neglect of this term will
lead to underestimation of 1/7. Noting ImGD(/, .k, , +,.) =-p5(u, —$,.), where we use the abbreviation $,
= $, (k,.), and the symmetric property of the integrand in Eq. (2.30) with respect to an interchange of
%, (k,) to k, (k,), Eq. (2.30) becomes

1 4m 1 dTc, dk, d%,(„).(Yl + l~l +I&-~l)&(&| &2&~1 ~2 ~4i~3)

x [2 ImG" (/, k„t,+ $, —$,) +v 6((, + $, —t', —$,)] . (3.2)
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are obtained from Z„(/%., im ) and Z»(/k, iur ), re-
spectively, shown in Fig. 3 by replacing i~ with
u}+i5. Only Zf, (/k, e) has an imaginary part and
is considered. First we have

Especially when ImGs(/, k„(,+ (,—$,}
= ImG(/, %„$,+ $, —$,)

—= -w 5( $, + (, —$, —],), we
obtain the well known expression for the lifetime
of the pure collision Auger recombination.

We are now at the position to calculate Z"(/k, v).
The real part of Zs(/k, e) represents the energy
shift and is considered to give mainly changes of
E~ and hp. In view of the fact that we use the
experimental data of E~ and Ap in practical cal-
culation, we neglect hereafter the real part of
Zs(/k, &u). On the other hand, the imaginary part of
Z"(/R, &u) gives the broadening of the discrete free-
particle state and its contribution to the lifetime
is the present theme. The lowest-. order diagrams
for Zs(/%, w) are Zp, (/%. , a) and Zp~(/k, w), which

Z„(/k, ie )

= —T
2 3 QU(k —q, i&@ —iu„)9o(/k, ie).

n

(3.3)

Replacing the sum over z by the contour integra-
tion and using Eq. (2.18) and the analytical rela-
tions for the Green's functions as Dao(/%, m)

=~,(/k, ~+ i5) and Gs(/%, &u) = 9,(/%. , ~+ i5), we ob-
tain

I

2

ImZf (/%, &u) = —g, P'- ~g(R- q) ~'(5(ru —~ (k —q) —&(q)) [P(~ (~- q))+2]

where

1
P((d) =

exp((u jr) —1

+ 5((u+ ur„(R- q) —$,(q)) [P(u}„(%—q)) —I]), (3 4)

(3.5)

is the number of phonons with energy e. In order to see the degree of relative importance of ImZ2s(/k, &u)

with respect to ImZs(/%, u}}, we estimate the intraband-scattering part of ImZf(/k, ~) taking ImZa(/%, w)
as an example. This is given by

ImZ", (/k, &u) = 2v — ' ' 5(g+ f —l, —g )
dk, dk4

x ]e(g,) [1-8(f,)][1-e(/;, )]+ [1 —e(g,)]e(g,)8(g,)j[U"(k, k„g, g,)]'. (3.6)

where /;=),(k), }};,= $,(kl) (i =2, 3, 4), k, =k, +k, —%„
and U"(q, &u) is obtained from Eq. (2.18) by re-
placing S,(q, iu}„) with the advanced Green's func-
tion D, (vq, &u): e(q, i&@„) and &,(q, iw„) are also
replaced with e(q) and c, as has been indicated.
We will show later by comparing ImZ2~, (/k, ~) with
ImZf, (/k, w) that to take ImZ"(/k, &u) =ImZs, (/k, e)
is a good approximation.

Here we assume spherical energy surfaces for
the CB, HB, and SB and define the effective mass-
es m~, m~, and m~, respectively, for those
bands: The energies measured from the respec-
tive band edges upward (CB) or downward (HB
and SB) are given by I'b'/2m, with /=C, H, and

S; m, is dependent on k. For a p-type semicon-
ductor under consideration we calculate g»(0, 0}
from Eq. (2.11}. This corresponds to the Thomas-
Fermi approach which is valid at high carrier
concentrations. Then we obtain

2vPe F „2(}/,}
c,T F„,(g,)

(3.8}

Here p is the hole concentration, Tq~ the quasi-
Fermi level for the VB measured downward from
the VB edge, and

F(b) = dx
exp(x —b) + 1 (3.9)

the Fermi integral.
On this basis we first examine various approxi-

mations which have been made. Hereafter we con-
sider p-GaAs and p-GaSb as typical materials in
that they have E~» Ap and Eg Ap respectively.
Material parameters are listed in Table III. We
first discuss Eq. (2.1/) using the inequality
-n, (vq, i&up ~ 2/+„(q) [see Eqs. (2.9), (2.6), and
(2.16}]. We obtain for the second term in the
large parentheses of Eq. (2.1 /}

~(t}}=a, (1+—,), (3.7)

-[~.~«q}]I~.(q} I'~.(vq /~. ) }/(q 0) (=-I &0)

where X is the inverse screening length given as
c,q' e(q) —1 2
4we' &(q) (u„(q) } (3.10)
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TABLE III. Material parameters.

Parameter

Ec (eV)
Ec (eV)
Ec, (eV. )
4p (eV)
4p (eV)
4p (eV)

mC/mp
m~/m p

ms/mo (~=0)
E'p

{gok)

c~ {10 dyn/cm )
c& {10 dyn/cm )
c {10 dyn/cm )

h&4 (104 esu)
PPE
- (eV)
ENPo {eV)
(dop (eV)

77 K
150 K
300 K

77 K
150 K
300 K

1.511
1.455
1.428
0.34
0.34
0.34
0.0673
0.536
0.138

13.18
0.0159
1.397
0.486
0.790
4.83
0.0526
6.6
6.5
0.0296

0.784
0.758
0.700
0.757
0.771
0.800
0.0472
0.371
0.130

15.69
0.005 52
1.037
0.355
0.582
3.17
0.0403
6.9
5.9
0.0298

ImZ"„(Ik, (u) =-
@,
"-[AH, (k, k, )+ HH, (k, k,)],

(3.12)

where

k, =l @,"(E, -ur) (3.13)

1, 1—="')'+=)'Nwl(+ 2P(~ ))),2 NPO

2

8 =8' (eT+"'„((+2)'(~ ))),8m I

(3.14)

(3.15)

Noting «(q)» 1 and using the material parameters
given in Table III, we find t, & 0.1 in the range
q& 10' cm '. Therefore t, is negligible in Eq.
(2.17), as has been stated. As for Eq. (2.18) we
consider the ratio x of the second term to the
first. We obtain

2

lrl &,".Z (3.11)

and find lrl &0.3 in the range q&10' cm '. There-
fore the second term of Eq. (2.18) is almost negli-
gible even for the intraband scattering as com-
pared to the first one.

I et us calculate Eq. (3.4) neglecting the phonon

energy (u„(k -q) as compared to the electron ener-
gy $, (q) in the 6 functions. In the calculation we
treat four phonon scatterings separately. We as-
sume the optical phonon energy (dc to be indepen-
dent of the wave vector and make a reasonable ap-
proximation [1+2p(&„c)]=2T/ur„c for the acoustic-
phonon energy (d„c. Using Eq. (3.6}we obtain for
the HB

H (k k )= 2k k —8 ln

——A.
2

(k —k, )'+ ~'

1

(k+ k, )'+ &'

1 (k+ k )'+ A'
H, (k, k, )=—ln

(
'),
0

1 1

(k k )o+ go (k+ k )o+ go

(3.16)

(3.17)

For Eq. (3.13) the restrictive condition is Fo
—(d & 0 and F~ is the quasi-Fermi level for the
VB measured downward from the VB edge, i.e. ,
F~=Tg~. Especially when k» k, + ~, we obtain ap-
proximately H, (k„k,) = 2kk, and H, (k, k, ) = 0. Thus
the screening of the electron-phonon interaction
can be neglected and the NPO scattering and the
AC scattering are especially important.

Equation (3.6) is now calculated for the intra-
band scattering among heavy holes in order to dis-
cuss the effect of the higher-order terms of
ImZ" (Ik, (o). As discussed just below Eq. (3.11),
we can approximately take U (k, —k, ) = 'U(k, —k,)/
«(k, -k, ). Considering nondegenerate statics and

taking (()= $[=—$, (k}], we obtain

ke'p

ImZog(Ikey

6)

t k2-kt

(3.18)

This is evaluated for two extreme cases k'k', /
(2rnzT}«1 or»1 and for the intermediate cases
by interpolation. On the other hand, ImZs, (Ik, &u)

is evaluated from Eqs. (3.12)-(3.17) taking &o= &

[=$,(k)] also. It is found that the ratio

l

ImZ"„(Ik, t )/1mZ"„(lk, g)
l

decreases with increasing value of k/& and is be-
low about 0.1 in the range k/A. & 0.5, which is of
practical interest. In view of this result the high-
er-order terms of ImZ" (Ik, w) other than the first
are negligible. Therefore we take

ImZ" (Ik, &u) = ImZ"„(Ik, ~) (3.19)

in a good approximation.
Using Eqs. (2.21), (3.19), (3.12)-(3.17), and

(3.2), we calculate the minority-carrier lifetime
in a p-type semiconductor. For the CHHS process
under consideration we have 1-8(g,) «1 so that
we approximately obtain
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F(t, $., &,+ 4- 4) 4)
=Il-e(&, +&.-&,)][I-e(&,)le(&, -F,). (3.20)

We note here the relations ),=k'k', /2mc+ En+ F~,

$4= -a'k4'/2m„+5~. Since the Auger transition
occurs around the respective band edges for the
C B and the HB, m~ and m~ are evaluated at k= Q.

On the other hand, m~ is evaluated for t;he thresh-
old value of k. As for the overlap integral @re use
the relation"

12 tk] -kgi
[{l,k,. ~l,k,)('= (~ ) ~ )

f„(3.21)
i lg

for the interband matrix, where m, Rnd f,I are the
I

electron mass in the free space and the oscillat, or
strength, respectively. %e make an approximation

~
$),(k,.) —(I&(kI)

~

=E~ for the combinations (i,j)
=(1,3), (1,4), (2, 3), and (2, 4). Another approxi-
m«ion ls to t~e ~k;-kIj'/(~k;-kI~'+~')=»n
Eqs. (2.25) and (2.26) for f and g and we obtain
(f('= (g('. Taki g 6 (l,k„,)=G, (l,k, ,) in Eq.
(2.29) RgR111 Rs Rll Rppl'oxlII1R'tloI1 Rnd RSS11IIllllg

nondegenerate statistics, we have n=Nc exp(E„/T),
where l)lc = 2(mcT/2IIR')~' and E„are the effective
density of states and the quasi-Fermi level mea-
sured upward from the CB edge, respectively, for
the CB. We take approximately" (f ~

'+ ~g('
+ ~f -g['=2~ f ' and change the integration varia-
bles (k„k„k&) in Eq. (3.2) to (k„k„k,) noting the
relation k, + k2 -k3 -k4 = Q. %e obtain

1 1 16m 2me~S'2-+—= —exp[(2E~+ Eo —&,)/T ]
V 0 5 m0&0Eg Nc

dk2 dkg dk4x
p )3 ( p fcIIfzs exP( Ep/T)4(kl k2 k4)

1 1
1+ exp[(E, +E, -E,+Eo —no+E~)/T] 1+ exp[(E~-E, )/T] (3.22)

under the condition

E2-E~ -E4-Ec, + b,0~ Q,

where El=k'k~1/2mc, E li k 2/222mzE~=ff2ks/2m„) E 48'k /2~„m, k, =k, +k~-k„
-ImZI(((lyke, E,+ E4 E2 E—g+ 4—p+ E(,)

(E,+ E,+ E, E,+ E~--4,)'+ [ImZ"„(l,k»E, +E, -E, Eo+ 4,-+E~)]' )

(3.23)

(3.24)

and v0 is the minority carrier lifetime of the pure collision Auger process. It is to be pointed out that the
right-hand side of Eq. (3.22) is 2/r, especially when -ImZ„- 0+ leading to C (k„k„k,) = v5(E, + E,+ E,
-E,+ Eo —4,). Then we obtain r = ro Thus th.e expression for r involves the pure collision Auger process
as a special case.

For facility of numerical calculation, we define II)= (E, -E, -E, -Eo+ 4)/T, u = il„(E,-E, -E, —E,
-Eo+L,)/T with llz=mc/mz, I)= —(ilz/T)I Zm"„(l,k„E, E+, -E, -E +on, +EI), rp=(E, /T)~', r(I —P')' '
=(E,/T)~', and r, = [(E, Eo+ &,)—/T]~' where E&» 0 if Eo ~ &0 and E, & E& —4, if Eo & 5,. Inequality (3.23)
corresponds to I -I, Definin. g $ and II bye, ~ (k, -k, )= $k, ~k, -k,

~

and k, ~ k, =q , kkr esptei ce vIywe ob-
tain

3/2 92 CO

fc„exp(2I),+ z, -z, ) dz (z+ z, )~' exp(-z )S(z )f,„-—,
0 0

where zo=(Eg —60)/T) z, = (zo+ ~zo~)/2) I)I, =E(,/T,

1 1
"I'+u' 1+ exp(I) -II)) I+exp[I) -r'(1 —P')] '

Here me have

r, = (z+z, -z,)~',

so = r' -r'
0

Q = Qz(n) f) )

f = p „~'p'+ 2)I p(p„s)~'+ s,
s= '(~;+z,)+r'() —(*)-RW( ()-('){~;+g,)

(3.2'5)

(3.26)

(3.28)

(3.29)

(3.30)

(3.31)
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(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

1 Sv 2 e'm„mz T'a'bu'
v2@s 2 2 2E2 fcaexp( & + 0 2}

70 & ~omc~oEa

V=A +~+ B E~,

(~w+ Mf) +yg g t 1 1'"I (~~-~~}"y, (~.~}"y, )
1 (vu+ Mt}2+y„1 1

2~ (~so —~)'+y~ " (Mn) ~)'+y~ (~n)+ ~t}2+y„)l

and y„=g'X'/2mzT. The expression for r, can be written by slight modification of the result in a litera-
ture" as

x dz z+z, 'z+z, -z~ 's„exp -z
0

1
x dxx'([(z+ z, -zr)(1-x')]u'+, ,",v, (J, -J,+ ln J, -ln J', )

where a=ma/mz —p„b/2, b=(1+ uz/2) ', zr=Er/T with Er determined from

(3.37)

(3.38)

z ,=(z, + ~z, ~)/2, and

f m, 2'J = 1+exp~ g —
~

—(z+z -z (+)b(z+z )u' +—(z+z -z
4m ~b

' r ' u
(3.39)

In deriving Eqs. (3.25) and (3.37) we have neglec-
ted (y/mz)(dmz/dy) («1). In both of those equa-
tions fzs is evaluated at E,=Ea -d, and at E,
=E~, respectively, if E~ &,. If E~& 4„we use
the relation fz„=z(dfza/dz), ,

It is to be noted that v/(u'+ v') in Eq. (3.26} be-
comes w6(u) as v - 0+. Actually v is finite and is
at most 0.1. Thus v/(u'+ v') shows a peak with
finite width. Prom the definition of y the width in
energy units is at most thermal energy T, com-
parable to the average energy of free holes. If we
consider the CB and the SB, the corresponding
widths, which are deduced from Eq. (3.12) to be
proportional to rn~ and m~, respectively, are at
most about 0.1T. Those widths are negligible as
compared to that for the HB so that we have used
the free-particle Green's functions for the CB and
SB in Eq. (3.1).

In order to discuss the second-order perturba-
tion treatment of the phonon-assisted Auger pro-
cess, we consider the expansion

G"(tk, to) = Go" (Ik, e)

+ Go" (tk, (u) 2"(Ek, tu)GO (Ik, u)) + ~ ~ ~

(3.40)

x A + ~ a p'. (3.41}

The second term of the equation corresponds to
Lochmann's result, ' and the same approximation
has been adopted. This formula is applicable only
for E -4,» T.

IV. RESULTS AND DISCUSSIONS

The theory developed in the previous sections
is applied to p-GaAs and p-GaSb. The band para-
meters to be used is calculated on the basis of the
k ~ p perturbation theory" using the numerical
values of the interband matrix elements given by
Lawaetz. " 'The calculated parameters are listed
in Table IV, where m z/m„ f«, and fz„are both

and retain only the first and the second terms.
We use this function in Eq. (3.2). Following simi-
lar treatments below Eg. (3.2), neglecting the
screening of the electron-phonon interaction, and
assuming non-degenerate statistics, we obtain the
minority-carrier lifetime r, under this approxi-
mation as

1 1 7&r'e%'m ' 'T' ~f f
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TABLE IV. Calculated band parameters.

Parameter
mmmm,

fCH
fCH
fCH

fSH
fSH
fsH
Er/(Ea +0)-
EJ(Eo- no)
Er/(E c hp)-

77 K
150 K
300 K

77 K
150 K
300 K

77. K
150 K
300 K

GaAs

0.102
5..67
5.89
6.00
3.14
3.12
3.11
1.098
1.098
1.098

GaSb

0.130
9.99

10.3
11.2
0.0410z
0.0812@
0.169m

1.197
0
0

o 26
o
0)
Vl

IO

lYp= IO cm ~

p= IO cm~18

p= I O'Icrn ~

I 0 ——p &IO cm3I8

cm ~

'o
I 0

Vl

Io

IO
lOO 200 300 400

TEMPERATURE (K)

FIG. 6. Auger coefficient C for p -GaAs as a function
of temperature for various hole concentrations
p (—,——). C~ is also shown (—-) using the same
ordinate as for C.

for the phonon-assisted Auger process and for the
pure collision Auger process while Er/(E~ —&,)'s
are for the latter only. In order to calculate v

from Egs. (3.25) and (3.26), computation of S(z)
using Weyl's Glei chverteilung method followed by
numerical integration over z was performed.
Though v/(u'+ v') in Eq. (3.26) is a sharply peaked
function around u= 0, at most 200 combinations of
(r, Q, $, q) with random values were found to yield
a result which converges well for S(z). The re-
sults are given in terms of the Auger coefficients
C, C„and C, defined by 1/T=Cp', I/v, =C,p'
and 1/7', =C,p'.

In Fig. 6 we show the Auger coefficients C for
p-GaAs as a function of temperature for various
values of p obtained from Eg. (3.25). It is seen
that C is only weakly dependent on p. In this figure
is shown also the Auger coefficient Cy calculated

IO
0 l OO 2 OO 300 +OO

TEMPERATURE (K)

FIG. 7. Auger coefficient C for p -GaSb as a function
of temperature for various hole concentrations p.

from Eg. (3.41). It is seen that though C is nearly
C, at low temperatures, the ratio C/C, becomes
larger and larger far beyond unity with increasing
temperature. This corresponds to the fact that the
condition of E~ —&,» T for using Eq. (3.41) is not
satisfied at high temperatures.

In Fig. 7 we show the results for P-GaSb. We al-
so find the Auger coefficients weakly dependent on
p. In contrast to the case of p-GaAs C decreases
with temperature mainly as a result of Eg +0
changing from positive to negative value as temp-
erature is increased. It is to be noted that Eq.
(3.41) is not applicable in this case over the whole
temperature range considered.

Now, comparison between C and Cp is made. In
Figs. 8 and 9 we show the ratio C/C, . We find
that in every case, including even that of the room
temperature, the pure collision Auger process,
i.e. , Co, is almost negligible as compared to the
phonon-assisted Auger process, i.e. , C -C,.
This is in contrast with the reported result' that
at 300 K the phonon-assisted Auger process and
the pure collision Auger process are comparable.
A rapid drop of C/C, with increasing p occurs
for p-GaAs at 77 K in the range of p exceeding
10" cm '. In this range degenerate statistics
are almost or perfectly applicable so that the pure
collision Auger process becomes more and more
important. "

Effect of the free-carrier screening of the elec-
tron-phonon interaction on the phonon-assisted
Auger process is considered here. Hypothetically
taking X= 0 for ImZ"„ in Eq. (3.24), we calculate
C. It is found that for p-GaAs the effect is almost
negligible in the range P & 10"cm '. The effect
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FIG. 8. Ratio C/Co for p-GaAs as a function of hole
concentration p for various temperatures.

FIG. 9. Ratio C/Co for p-GaSb as a function of hole
concentration p for various temperatures.

becomes larger with increasing p and is not negli-
gible at p= 10" cm . At this value of p the ratio
C(X=0)/C(A. 4 0) is as large as 1.5 in the tempera-
ture range considered. For p-GaSb, on the other
hand, the effect is important over the whole range
of p considered. The ratio C(&a 0)/C(&=0) is as
large as 2. Remarkably different features on both
materials are understood from the difference that
the threshold energy for the pure collision Auger
process is much larger than T for p-GaAs and al-
most or absolutely zero for p-GaSb. For p-GaAs
the phonon scattering is important mainly in re-
ducing the threshold energy to zero: Phonons
with large wave number are especially contribu-
tive to the reduction, and the screening is ineffi-
cient for those phonons. For p-Ga8b, on the other
hand, the phonon scattering is important only for
providing a larger number of available states for
the Auger transition than those for the pure colli-
sion Auger process: In this case phonons with
small wave number are especial. ly important, for
which the screening is efficient and we should note
that too efficient a phonon scattering reduces the
Auger transition probability, as is seen from the
factor v/(u'+ v') in Eq. (3.26).

At present we have no data available to compare
the present theory with experiments, We only
know" that the radiative lifetime in p-GaAs with
p& 10" cm ' at room temperature is several
nanoseconds at the laser threshold. On the other
hand, the calculated Auger lifetime is below
10 nsec in the range p& 10"cm~ and decreases
nearly in proportion to p . Thus in analyzing op-
erations of light-emitting diodes and laser diodes
it will be important to take into account the Auger
recombination.

In this paper we have not included the electron-
impurity interaction. T'his has been shown in the
literature" to be important especially in the range

p ~ 10"cm '. In the literature, however, effects
of the phonon scattering and the impurity scatter-
ing have been considered separately. Investigation
of combined effects of both scatterings is neces-
sary especially in the range p & 10"cm ' and will
be considered in the future.
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