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A detailed account of the results obtained for the energetics of a proton in aluminum is re-

ported. The central model used in the calculations is the so-called "spherical solid model" in

which the part of the ionic potential which is spherically symmetric around the impurity is treat-

ed to all orders. Various additional effects, such as the contributions of the nonspherical poten-

tial and lattice relaxation are investigated. The variation of the heat of solution of H in Al with

position is calculated, and the zero-point vibration energy estimated.

I. INTRODUCTION

In this paper, we report the complete results ob-
tained for the energetics of a hydrogen impurity in

metallic aluminum. First, the heat of solution for a

proton located in various sites along the (x,x,x)a and

(—,y,y) a directions is given, neglecting the lattice re-

laxation. The new equilibrium positions of the Al

ions due to relaxation are then estimated within
second-order-perturbation theory applied to the sys-
tem of host and impurity; the corresponding relaxa-
tion energy is computed and shown to lower the heat
of solution by approximately 10%,

In Sec. II we present the main assumptions which
are the basis of the spherical solid model (SSM) used
here and indicate how it can be applied to the calcula-
tion of the heat of solution with spherically sym-
metric densities. The formulation of corrections for
(i) nonspherical effects around the impurity and (ii)
relaxation of the lattice is then derived. The numeri-
cal results are presented and discussed in Sec. III,
~here the effect of zero-point vibrations is con-
sidered and where connection with experiments is

made.

II. THEORETICAL FORMULATION

The heat of solution of a hydrogen in a metallic
host can be written

d H =Hi }R; }—Hp (R;p }+ AH*'+ AHp

where Hi }R;} is the total energy of the solid contain-
ing the impurity with the metallic ions in their re-
laxed positions R; (with respect to the proton),
Hp (RID } is the energy of the metallic host without
the impurity with the ions in the positions R;0 of the

hH = Hi }R;0 }—Ho [Ra } + AHO+ AH" +hH", (2)

hH" =Hi (R; } —Hi }R;p}

4H" being the relaxation energy which will be as-
sumed to be a small part of b H.

(3)

A. Heat of solution within the spherical

solid model

The SSM allows for an exact treatment of the
spherical part of the ionic potential in the problem of
an impurity in a solid, while keep ig the mathemati-
cal formulation adapted to the (one-center) jellium
model. ' ' The impurity position C in the lattice is
the obvious center of coordinates for the SSM where
that part of the ionic potential which is spherical,
around C is included in the effective total potential.
Apart from the proton-lattice interaction and a quan-
tity Zt E'zg which comes from the extra electron ad-
ded by the impurity (Zl = 1 is the charge of H and

~z& is the Fermi energy of the perfect metal',
hereafter, Ref. 6 will be referred to as I) Hi (R 0 }
—Ho}R+ } is entirely determined by the displaced
electron charge highly localized around the proton.
Consequently, a very large cancellation of the non-
sphericaleffects occurs in the difference of Eq. (3),
justifying the use of the SSM. We therefore approxi-
mate 4H by

hH = b H'I'+ AH"'+ b H" + AH'r

AH =(H& }RID } Hp}R;p })ssM+AHp

(4)

where all the localized quantities entering the "spher-

perfect lattice, AH" is the energy associated with
zero-point vibrations, and COHO=15. 86 eV is the nega-
tive of the energy of the neutral impurity in its
molecular state. Equation (l) can be transformed to
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ical" approximation 4H'" to the heat of solution are
calculated within the SSM. The spherical contribu-
tion to the heat of solution can be computed (see I)
from the results of two SSM self-consistent calcula-
tions and in both of them, the spherical average of
the ionic potential included in the effective potential
is, in atomic units:

(&);a.—,sinEr

K Kr
(6}

g K2 KR

& exp[ —(E/qo)2]

K is a reciprocal-lattice vector, 7. fixes the position of
C with respect to the lattice, Ap is the unit-cell
volume, and Z is the valence charge of Al (Z =3).
The individual ionic pseudopotential of the smooth
Heine-Abarenkov form [Eq. (7)] is used and the
parameters R, and D are chosen to fit the binding en-

ergy of Al. The ratio of the damping parameter qp to
the Fermi momentum kr is qo/kr =5.5. In the first
SSM calculation, the proton is. placed at the center C
and the spherical density profile n&(r) is obtained. In
the second calculation, where the proton is drawn

out, the density ns(r) (also spherically symmetric
around C) is generated. These densities satisfy the
normalization condition

B. Nonspherical correction to the heat of solution

The nonspherical contributions b Hns have been
first treated in I. Since we use the same formulation
in the calculations of lattice relaxation (see Sec. II C
and Appendix) we repeat below some of the key
steps in our derivation. Now the AHns originates in
the nonspherical part of the ionic potential

Vi)" (r) = X Vs/ (r) I'/ (i)
I,m

I gsIO

which is dropped in the SSM. Our basic assumption
is that b,H"' is very small, so that it can be treated as
a second-order perturbation. In such an approach, it
is clear that AHns would vanish if the polarizabilities
of the two systems (the solid with the impurity and
the perfect solid) were the same. These, however,
differ since the density profiles nt(r) and no(r) are
very different around the center C. The main point
in the calculation of 4H"' is thus a correct treatment
of the relation between the polarizability and the
electron density around C. Such a problem can be
solved in the framework of the density functional
formalism, with the kinetic and exchange energy
functional

G [n ( r ) ] =—(3sr')' '
Jt d r n' '( r )

(~.(-) (2

J dr[ni(r) —ns(r)]=Zi (8) 1//3

J1d r n'/'( r )
4 m

(10)

By varying the position of the proton in the lattice,
and keeping it as the center of spherical symmetry, a
potential-energy surface for the proton in the metal
can be determined.

The derivation of AHns following these lines is given
in I. We recall that the nonspherically induced elec-
tron density n"'(r) due to Vo'(r) is a solution of

~nsj r '4
Vgs(r ) + Jtd3r' ~" I y (3sr2)2/3n(r)-&/3 n(r)-2/3 i ~ s~ + (. nns(r)

C. Correction for lattice relaxation

The equilibrium positions of the ions in the lattice
are modified in the presence of the impurity. The
displace ments

81 = RI —R;p (12}

where n(r) is either nt(r) or ns(r), depending on
whether we are considering the metal-impurity sys-
tem or just the metal host, respectively. Equation
(11) can be transformed to a fourth-order differential
equation and is solved after expanding n"'( r ) in
spherical harmonics (/ WO) (see I). (HI (Ri ) Ht (KID ) }ssM

-(H, (K, }-H,(K,,})„„
+H, {K,)

—H, (K„) (13)

by formally adding and subtracting the quantity
Ha (K, } Hs {Kio ) and again c—alculating the differ-
ence relative to the perfect and nonperfect solids in

p2 „s( )+ 7n (r}'+n(r) „$ (11)36n(r) 36n (r)
I

are such that they minimize the energy 4H" given
by Eq. (3). We assume that a high degree of spheri-
cal symmetry is kept in the relaxation, so that we
write b,H" in the following form:
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the SSM.' As the 5 s are most likely small quanti-
ties, 4H" can be expanded to second order. The
5 s, for consistency with the SSM, are assumed to be
radial

we find the following expressions of u; and v;.'

5; = A.;R;0 (14)
(17)

with the same X;, for all the ions in a given shell
around the impurity.

The variation of the spherical component of the
ionic potential induced by relaxation is

u;(r) = f;(r) + 1+ ' ' g;(r)
2rR;

'
q() rr

with

f (r) =(r —R),erf(x2) +(r +R),erf(y2)

r

g V() (r) =(4rr) ' dr $w(r —K, ) —w(r —1Y,p)

(15)

w ( r ) being the individual pseudopotential equivalent
to Eq. (7) in direct space. Expanding Eq. (15) up to
X2 gives

5 V(o) (r) = X[)(;u;(r) + ,
'

)(,'u—,(r)]

Restricting for simplicity to the case D =0 [Eq. (7)],

R; —r+ r
'

l

+R, erf(x, )
R; —r

( )

R; —r
+ r

' —R, erf(y))

g;(r) =exp( —x2') —exp( —x)')+exp( —y2 )—exp( —y)')

xt = qo(lr —R(l R, )I2; y) = qo(lr —R(l + R, )I2

x=ypq( r + R; —R, ) /2; y 2
= q p ( r + R; +R, )j2

Evaluating the SSM contribution AHssM in Eq. (13)
to order A.', we find

EHli =XJt i( ~ ) —n, ( ~ ))(),u( )+ —,');( )) dr

+
2 Xg)(;&J [p);(r) —po((r)]uj(r) dr +X (—X;+)(2)

i J i i
(1g)

The first term is the first-order perturbation of AH,
linear in 8 Vpo, n)(r) and np(r) are the density Pro-

files of the unrelaxed systems, metal host with and

without the proton, respectively. The second sum is

the second-order perturbation: p);(r) and pp;(r) are
the electron densities induced by u;(r) in the two

systems. They are solutions of Eq. (11) for a spheri-

cal external perturbation 8 Vp (r ) (see Appendix).
Finally, the last sum in Eq. (18) gives the change in

electrostatic interaction between the proton and the
lattice.

The second contribution EH()' =Hp(K;] —Ho(lt o)
is estimated in standard second-order pseudopotential
theory of simple metals. AHD' comes from the varia-

tion of the structure factor

S(q) =—Xe"
N

(19)

in the band-structure and electrostatic contributions
to the binding energy of the metal without the impurity

AHoc = lim NAp g'd [S"(—q)S(q)]F(q), (20)
'g ~ OO

F( )=- '( )""' '" '""' """ (21)
p(q ) 0' q'

np(q ) is the irreducible polarizability of the nonin-

teracting electron gas and p(q) the dielectric constant
of the interacting electron gas. The variation of the
structure-dependent term is

N'5[ S(q) S(q)] = gg[iq g&
—

2 (q 8&) ]exp(iq K&p)
i J

The terms linear in 5 J = 5; —5J vanish after summation, so that

(22)

N'5[S'(q)S(q)] = —
—,
' gxq'gjcos'8X4rrij')(qRJp) Y) (8) Y( (5J RJp)'

i J lm

with 8 as the angle between q and g&. Due to the behavior when q 0, namely, F(q) = O(qp) and

6[S"(q)S(q)]=O(q2), the term q =0 which is absent in Eq. (20) does not contribute to AHp', so that the

discrete sum can be replaced by an integration on q:

(23)
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02
AHP = lim —

2 XQS& J q dq[& jp(qR&p) — P—2(8~& RJ)j2(qRIJO)]F(q)
7T j J

Using the symmetry in Rjo and RJO and the cubic properties of the lattice, a sum like

S = x QSJP2(is ~ Rap)F(qRIJO)
j J

is equivalent, for any function F, to

(K; KJp)(KJ R~gp)
S = X $&i' —3

2
+(Rip Kjo) F(qRIJo)

i J R jJ2O

(24)

Caiculating the integrals which depend on the parameter rt in.Eq. (24) and properly taking the limit g ~ leads

finally to

EHO
2

Z X [)l R'p lL''XJ(R p KJO) )1(RjJO)
iJ

with

(K;p ' Rap) (RJp ' R Jp)
+ —,'Z'x'X)bJ —3, +(R,p RJO) J(R,JO)

iJ R;J20

l(R&p) = ——Jl dqj p(qR~&p) cos qR, exp[ —2(qlqp) j8 np(q)
0 a(q)

J(R Jp) = —— t dq j2(qR Jp) cos qR, exp[ —2(q/qp) 1 +RIJO
o(q)

l 3 Jo p(q )

(25)

The pseudopotential defined by Eq. (7) with D =0
has been used. The functions 1(RIJO) and J(R&p)
decrease to zero for large RjJO The total relaxation
energy bH" = bHsIM + JbHo' can be written ass

jb,H" = X h.,S, + —' X$ X, h. b T,b (26)

where index a (or b) corresponds now to a particular

star of vectors R;0 stable under the cubic group. The
minimization of bH" with respect to the A. 's gives
the linear system

QTobkb+S. =O, a =1,2, . . .
b

(27)

the dimension of which is the number of stars taken
into account. With the A. 's solutions of Eq. (27)

bH"=XX,S, (28)

Equations (18) and (25) can be easily modified for
the case of a proton in a vacancy; we shall not give
the corresponding expressions here.

III. RESULTS AND DISCUSSION

The heat of solution bH" has been calculated
within the SSM model in locations along the (x,x,x) a

and (—,y,y)a. The results are shown in Table I.
The definition of the various contributions

AH~, . . . , IHq to dH" are given in I, and for com-

I

pleteness are redefined on Table I. 4H'" was not cal-
culated for a proton very close to an Al ion because
the use of a rigid pseudopotential may be suspect in
that case. 4H" as a function of the position of H in
the lattice is shown in Fig. 1. Note that points

(T, 2, —,)a and ( 2, 0, 0)a are equivalent as are points1 1 1 1

(-, , —,, —, )a and (—,—,, —, )a. The results of Table I1 3 3 1 1 1

have been obtained with the pseudopotential parame-
ters R, =1.09 a.u. and D =0. With different parame-
ters (which also fit the binding energy of pure Al)

R, =1.23 a.u. and D =0.398, we have found
b,H'" =0.657 eV for the substitutional impurity, and
4H" =0.563 eV for the proton in the octahedral site
(-,—,—)a. Our results for the heat of solution are1 1 1

therefore not extremely sensitive to the pseudopoten-
tial parameters.

The most favorable calculated position for H in Al
is in the octahedral site. Experimental evidence is for
location in the tetrahedral position ( —, , —,, 4 ) a for1 1 1

temperatures above 35 K. But at lower temperatures,
(—5 K) a tendency towards octahedral-site occupancy
has been found, in agreement with results for other
fcc metals. ' The calculated energy surface shows a
barrier in both the directions investigated, the lowest
one being in the (x,x,x) direction; it corresponds to
an activation energy of 0.53 eV.

From the curves of Fig. 1, we can very roughly es-
timate a frequency for the vibrations of H in the oc-
tahedral site. %'e find co=0.0035 a.u. , so that an or-
der of magnitude of the zero-point contribution to
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TABLE I. The different contributions to the heat of solution of H in Al as obtained in the spherical solid model. The various
hH represent the difference in the energy of the perfect lattice and the one containing the H impurity. These contributions are

AH1 is the change in the eigenvalues of the Kohn-Sham equations, hH2 is the chemcial potential, bH3 is the binding of the Z,
bound states (if any), AH4 is the change in the electrostatic energy of the electronic charge density, b, H5 is the change in the

exchange and correlation energy, and AH6 is the change in the Madelung energy. The mathematical forms for all these terms

are written down in I.

Position
of H

AH1
(eV)

AH2

(eV)
AH3
(eV)

AH4

(eV)
b, Hg
(eV)

aH6
(eV)

AH'r

(eV)

(0,0,0)
1 1 1

(———)a4'4'4
5 S 5

(———)a
16 ' 16 ' 16

3 3 3
(———)a8'8'8
7 7 7

(———)a
16 ' 16 ' 16

1 1 1

(———}a2'2'2
1 3 3

(———)a2'8'8
1 1 1

(———)a
.2'4'4

-3.991

-11.927

-11.661

—10.716

—9.909

—9.507

-10.186

-11.422

7.526

7.526

7.526

7.526

7.526

7.526

7.526

7.526

0.000

—0.134

—0.092

—0.004

0.000

0.000

0.000

—0.058

27.780

-5.265

-5.713

—6.024

-5.193

—4.812

—6.330

—7.212

2.495

3.361

3.377

3.361

3.217

3.156

3.317

3.484

-48.999

-8.570

—8.218

—8,912

—10.698

-11.646

-9.171

—6.225

0.671

0.851

1.079

1.091

0.803

0.577

1.016

1.953

the heat of solution is 4H'"=-2&co-0. 147 eV. In I

we. gave the-results for the nonsphericgl corrections
AH". '. , They were found. to.be very small for the.

three positions (0, 0, 0), ( ~, 4, 4 ), and ( ~, —,
~

) for1 1 1 1. 1 1

J

which the calculation was carried out. In the oc-
tahedral site for instance, we obtained 60"'=0.016
eV. We concluded that the nonspherical corrections
are not a major effect and the calculation was not re-
peated for the new positions presented here.

sp

(eV)

We next turn to the results for the lattice relaxa-
tion contribution. In Table II, we show the relaxa-
tion displacements [X; is defined in Eq. (14)1 for the
proton in the octahedral site and in a vacancy. The
vectors on each shell are measured, in both cases,
with respect to the proton. The A. of the first shell is

about 2 to 3% in magnitude. For the interstitial, the
Al ions are pushed back and for the vacancy, they are
pulled closer to the proton position. The relaxation
effects seem to extend farther in the case of the va-

cancy, for which the relaxation energy is much larger
( —0.155 eV) than for the interstitial ( —0.060 eV)."

In Table III, we give additional results for H in
the octahedral site showing the sensitivity of our
results to variation in our model. The first row
shows that the contribution from the modified spher-
ical-densities due to displacement of the ions is not
very large (0.002 eV). AH" is not very sensitive to
the details of the pseudopotential, as shown by the
second row, where the results correspond to 5%
change on the core radius R, . Finally, the most in-
teresting comparison is that with the calculation
where the densities no and n1 of the SSM are re-
placed by n (uniform) and n~ by the linear approxi-
mation

000 111
444

111
222

position
of H 2

~ ~0(q) 4~Z& sinqrn1=n+~'
e(q) noq' qr

FIG. 1. Variation of the heat of solution hH'r ("spheri-
cal" part) of H in Al, with the position of. H (arbitrary
units) in the fcc latttice.

respectively. In that case, the displacement of the
first shell is strongly overestimated and so is the re-
laxation energy. These relaxation effects, clearly can-
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TABLE II. Lattice relaxation effects for H in Al. The two series of results refer to H in the oc-
tahedral position and in a vacancy, respectively. In each case, the convergence may be appreciated
by comparison of two calculations, one with three and one with five shells.

Shell 100 210 221 300 aH- (eV)

A( x 1Q

A.( x 102

2.24

2,24

-0.24

-0.25

0.25

0.26 0.01 0.06

M.059

-0.060

Shell 110 200 211 220 310 h, H'e (ev)

Al x 1Q

A., x 102

-2.30

—2.55

—0.30

—0.35

-0.18

-0.20 -0.41 -0.05

-0.138

-0.155

not be approached in a realistic way within the lattice
statics method, but must take into account the
correct zero-order density profile of the system con-
taining the impurity. Adding the various contribu-
tions [Eq. (4)] to hH we find hH =0.68 eV as com-
pared to the experimental values 0.47 (Ref. 12) or
0.52 eV. ' A rather large uncertainty comes from our
crude estimate of 40" and from our second-order
treatment of the chemical potential (see Ref. 23 of 1).
The zero-point contribution cannot be estimated
from our potential curve when the proton is in a va-

cancy, and we, therefore, cannot give the total EH in

that case. It seems that a good part of the excess of
d 0" is canceled by a larger 40", so that the differ-
ence between the heats of solution at ( 0,0,0) and

( 2,—, —,) is probably rather small.1 1 1
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The term in Eq. (18) which is most difficult to
treat in a consistent fashion is

dHs X&k& J [p|,(r) pi(r)

luau(r)

-d r . (Al)

TABLE III. Test of various effects in the lattice relaxation of H in Al (octahedral site). First
row: no second-order effects [p1, = poi 0 in Eq. (18)). Second row: variation of the pseudopo-
tential R, =1.14, D 0 instead of R, 1.09, D 0. Third row'. density profile n1(q) —no(q) ob-
tained by linear screening of the proton, n1(q) —no(q) l~o(q)/~(q)j4~Z1/q Aq.

Shell 100 210 221 300 aH&' (eV)

Ai x 102

At x102

g, x102

2.16

2.11

3.52

—0.26

—0.20

0.03

0.24

0.23

0.34

-0.01

-0.00

0.03

0.01

0.01

0.08

—0.057

-0.062

—0.168
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v(v)=v(r)+Id™ r,

ir —r'i
(A2)

In Eq. (A2), V(r) includes the potential of the Al

host with or without the impurity potential and the
electron density n (r ) corresponds to these two

V( r ). We now allow for small displacements g; of
the ions and write a similar expansion for the spheri-

We therefore thought it useful to present just the key
relations in its treatment. The densities )&p). , (r) and

itjpo'(r) correspond to the response of the electron
gas (in the SSM), with and without the proton,
respectively, when the aluminum ions are displaced

by 8, from the perfect lattice positions. A systematic
treatment of Eq. (Al) requires, therefore, the polari-

zabilities of the electron gas with and without the im-

purity. We choose to define these by constructing
the screened potential

g Vo(r) = $X,v,'(r) (A3)

[Note again that g Vo(r) contains both the displace-
ment of the ions as well as the corresponding elec-
tron response. ] We choose to define our polarization
functions as

(,) f, dr ='L(r'r )()p((F') .

where

(A4)

(A5)

with u;(r) as given in Eq. (17). Equation (Al) can
now be written as

cal part of V, ( r ) (to first order in ))., ) as in Eq. (16),
i.e.,

ae~y =4~)„),Jtdr r2JI dr'r'2[[L)(r, r') —Lo(r r')]gp(o(r')Bp](r) ) (A6)

Finally, using Eqs. (A2) —(A4) in Eq. (11) yields the set of Eqs. (29)—(31) in I (with l =0). Setting n (r) = n) (r)
or no(r) [in Eq. (29) of I], we solve numerically for the polarizability L)(r, r') or Lo(r, r'), respectively, and use
these in Eq. (A6) by performing the numerical integration over r and r'.

'C. O. Almbladh and U. von Barth, Phys. Rev. B 13, 3307
(1976).

2C, O. Almbladh, U. von Barth, Z. D. Popovic, and M. J.
Stott, Phys. Rev. B 14, 2250 (1976).

F. Perrot, Phys. Rev. B 16, 4335 (1977).
4P. Jena and K. S. Sing~i, Phys. Rev. B 17, 3S18 (1978).
M. Manninen and R. M. Nieminen, J. Phys. F 9, 1333

(1979).
L. M. Kahn, F. Perrot, and M. Rasolt, Phys. Rev. B 21,

5594 (1980).
7F. Perrot and M,. Rasolt, Solid State Commun. 36, 579

(1980).
For the treatment of metal surface relaxation see, e.g. ,
S. U. S. Ma, F. W. de Wette, and G. P. Alldredge, Surf.
Sci. 78, 598 (1978); F. W. de Wette and G. E. Schacher,
Phys. Rev. 137, A78, A92 (1965); Uzi Landman, Ross N.

Hill, and Mark Mostoller, Phys. Rev. B 21, 448 (1980).
9For a truly weak impurity and lattice host potentials, Eq.

(26) obviously reduces to the lattice static method [see H,
Kanzaki, J. Phys. Chem. Solids 2, 24 (1957)] assuming
only radial relaxations.
J. P. Bugeat and E. Ligeon, Phys. Lett. 71A, 93 (1975).
Our treatment for relaxation assumes a static impurity,
which is much more appropriate for a heavy impurity.
For a proton the treatment should include some kind of
average for the potential over the position of the H [see,
e.g. , J. F. Dobson and N, W, Ashcroft, Phys. Rev. B 16,
5326 (1977)j.

'2W. von Eichenauer and P. Pebler, Z. Metallkd. 48, 373
(1957).

' S. Matsuo and T. Hirata, Trans. Nat. Res. Inst. Met. 11,
22 (1969}.


