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Although the Mossbauer effect is by definition a solid-state effect, in most cases the free-
atom (ion) electronic structure has been considered when discussing the properties of
Mossbauer atoms embedded in crystals. It is argued that the use of free-atom (ion) wave func-

tions in calculation of the electron contact density at the nuclei of Mossbauer atoms in solids can

lead to numerical errors, making the calibration of the isomer shift (IS) unreliable. It is shown

that the allowance for the finite size of atoms in crystals has a serious influence on the value of
the electron contact density. This makes it possible to introduce a new IS scheme which directly

correlates the isomer shifts to the size of the Mossbauer atom for various electronic configura-
tions corresponding to the nature of its chemical bond in the crystal. As an example, the iso-

mer shifts for several electron configurations of ' Sn atoms (ions)-embedded in solids are dis-

cussed, including 0™tin,ls-tin, and their pressure dependence.

I. INTRODUCTION

The aim of the present paper is to contribute to the
solution of a puzzling problem of calculating the elec-
tron contact densities at the nuclei of Mossbauer
atoms embedded in solids, using linear combinations
of free-atom (ion) wave functions. At the same time
we shall try to clear up the problem of the so-called
"solid-state factor" introduced rather arbitrarily to
make the atomic contact densities applicable to solids.

While the latter problem is directly connected to
the band structure of solids and can be explained in
relatively simple terms, ' the question of introducing
quasiatomic wave functions normalized in a finite
space of the crystal occupied by a "compressed"
atom, might seem —at least at first sight —more
controversial. The problem is that the character of
the electron-density distribution around the atom in
solids precludes an exact definition of the atomic ra-
dius. After all, the definition of a radius of atoms'in
a gaseous state is even more conflicting if not impos-
sible. Nevertheless, it turns out that it is possible to
introduce, although not in a unique way, a concept of
atomic radii which can reproduce by addition the ob-
served interatomic distances in crystals within reason-
able accuracy. 2 According to the chemical nature of
the solid, several types of atomic radii have been in-
troduced: ionic radii, covalent radii, metallic, and
van der Waals radii. However, the use of these radii,
which are essentially based on the hard-sphere
model, is predominantly restricted to crystallographic
considerations, and their unjudicial use for other pur-
poses can be misleading. A similar situation can arise
when discussing the electron contact density in crys-
tals as a function of the atomic volume. Since, more-
over, the concept of atomic volumes in compounds
and alloys is rather uncertain, ' a more realistic

description is desirable. We shall return to this prob-
lem in the following section.

The determination of the electron contact density
at the nuclei is directly connected with the calculation
of the wave functions of electrons in solids. W'hile

the description of core electrons based on the free-
atom functions represents in most cases a reasonable
approximation, the calculation of the valence and/or
conduction electron densities is far more complicated.
Among various methods used to this end, the
method of linear'combination of atomic orbitals
(LCAO) has proven to be very useful and illustra-
tive. In this connection, however, a problem arises,
namely, whether and to what extent the use of free-
atom wave functions are justified. There is no doubt
that, generally, one can always construct a complete
orthonorrnal set taking into account all overlap in-

tegrals, etc. ; this procedure may, however, be rather
cumbersome in practical cases, and still not precise
enough for calculating electron contact densities with
reasonable precision. 4 This seems to indicate that the
electron contact density is more sensitive to the ap-
proximations used than some other physical quanti-
ties. For example, it is well known that the band
structure of metals and semiconductors, their optical
properties, etc. , can be fairly accurately reproduced
using the pseudopotential method. On the other
hand, there is no doubt that the use of the pseudopo-
tential wave functions for calculating the electron
contact density is practi'cally out of question. Since it
is the valence electrons which are predominantly in-
fluenced by the chemical bond, the use of linear
combination of free-atom orbitals in this case is rath-
er approximative with hardly assessable errors direct-
ly carried over into the contact density. It is there-
fore necessary to be very cautious with this type of
wave functions. On the other hand, our knowledge
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of the influence of the solid on the atomic electron
density is very incomplete. '

Although the problem of the contact densities for
Mossbauer atoms forming a regular crystal is prob-
lematic enough, further complications arise in the
case of impurities, both substitutional ' and intersti-
tial. s Also in this case the use of free-atom (ion) wave

functions is rather unreliable, in particular, if the
relaxation of the host lattice around the impurity is

not negligible. Recently, Micklitz and co-workers9 "
claimed that rare-gas isolated Mossbauer atoms
and/or ions can provide a possibility to measure
the isomer shift in their free-atom (ion) configura-
tion. This point of view has not generally been ac-

cepted, "however, and we shall see later on that
another interpretation of these experiments can be
given which does not rely on free-atom configura-
tions.

In the present paper we shall try to formulate the
problem of calculating the electron contact densities
at the nuclei of atoms embedded in solids, using
self-consistent-field Dirac wave functions subjected to
certain boundary conditions. It will be shown that
this approach makes it possible to interpret many ex-
perimental data already in the zeroth approximation
and forms —if needed —a suitable basis for more so-
phisticated calculations.

II. ELECTRON CONTACT DENSITY

In what follows, we shall be dealing'with crystal lat-
tices only, in which the Mossbauer atom replaces one
of the atoms of the same type. This means that we
shall not discuss any impurities, either substitutional
or interstitial, since this has been done elsewhere.
To be specific, let us discuss the O,-tin crystallizing in

the diamond lattice, although a similar procedure can
be used for other elemental crystals or compounds as
well. This particular material, which is very often in-

correctly considered as a typical example of the
homopolar bond with the electronic configuration
SsSp3, will enable us to show the importance of the
band-structure aspects, which are usually either total-

ly neglected or misinterpreted, especially when an im-

proper band-structure method, e.g. , a simple formu-
lation of the Wigner-Seitz method, is used.

Within thy framework of the LCAO method, which
is known in solid-state physics under the name of
tight-binding method, the solutions of the (nonrela-
tivistic) Schrodinger equation

HV„-„=E„(k)q'„-„

can be written in the case of O, -tin in the following
form:

1%'„k(r) = XXe '[C„-„(n)a„(r—R()+C„'k (n)e'"''a„(r —R( —7)]
l n

Here 2N is the number of tin atoms; RI's are the lat-

tice points of the first fcc sublattice of the diamond
lattice, while the lattice points of the second fcc sub-

lattice are given by R, + 7, where 7 =
4

a (1,1, 1).
The a„'s denote the Ss, Sp„, Sp~, and Sp, orbitals, and
v is the band index. The tight-binding method is
valid under the assumption that the atoms are rela-
tively far away from each other so that the overlap
integrals are negligible, i.e.,

(a„(r—K()~a (r —R( —r)) =0

If this orthogonality condition is not fulfilled, the
overlap integrals have to be taken into account prop-

erly, e.g. , using the Lowdin procedure. ' Another
possibility, which would preserve the orthogonality
condition, is to introduce Wannier functions instead
of atomic orbitals. Both these procedures are, how-

ever, rather cumbersome and therefore very often
neglected.

Since in most papers dealing with the isomer shift
of O,-tin, its band structure is not properly accounted
for', it is very instructive to write down the wave
functions corresponding to the lowest bands of the
valence and conduction bands in the center of the

Brillouin zone, i.e., at k =0,"
1"('. $ [a, ( r —R() + a, ( r —R( —7) ]

J2N

1'2. X[a,( r —R() —a, (r —R( —7)], (4)
v'2N

I'25:
v'2% X [a;( r —K() —a;( r —R( —7) ]

Here al = a„,a~, a, . The nonrelativistic band-structure
calculations'" show in agreement with experiment
that n-Sn is a semimetal whose lowest conduction
band is degenerate at k =0 with the heavy-hole band
(&2s).

Assuming that the overlap integrals can be neglect-
ed, the electron contact density can be written as fol-
lows

4

p(0) =—X Xt C„-„(s)('[a, (0) (
= Z, )a, (0) (

(5)
where

1
Z* =—X X IC;, (s) I' .

N„
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Z, represents the mean number of the valence elec-
trons in the crystalline o,-Sn described by the wave
function a, (r). A similar expression holds for Z~.
In contrast to atomic configurations, Z, and Zp take
on nonintegral values; the normalization condition
is nevertheless the same:

Zg+Zp =4

If the contribution of d electrons would be intro-
duced, then

(7)

Z, +Zp+Zg=4

Although the contribution of d electrons is not quite
negligible, we shall consider, for simplicity, in what
follows, only the s and p orbitals. We shall see later
on, however, that this apparently reasonable approxi-
mation will nevertheless introduce an error which will

slightly influence the values of the isomer shift.
Under the assumption that the atomic orbital a, (r) is

not changed very much in the crystalline state, the
difference between the atomic value Z, =2 and Z,
calculated according to Eq. (6) characterizes the
change of the electronic configuration of the tin atom
in the Ss state due to the interaction of individual

atoms in the crystal. In that sense it would corre-
spond to the so-called "solid-state factor. " In gen-

eral, this factor depends on the band structure of the
solid in question and is, of course, different for dif-
ferent crystals. In our case, the form of the wave
function (4) suggests that for a-tin

o.' Sn' Zs=1 56 Zp=244 (12)

Note that these values differ slightly from the values
obtained in Ref. 1, where a different band-structure
model has been used, including the d states as well:

the six p states split into two states corresponding to
] . 3

a total angular momentum j = —, and j = —,, respec-

tively. In the next section we shall see how all these
functions can be estimated by numerical solutions of
the Dirac equation, and this makes it possible to con-
struct relativistic wave functions similar in form to
the wave functions in Eq. (2)." The electron contact
density can now be written in the following way:

p(0;Z„Z, ) = X~a (0)~',
J

where the summation is over all occupied core and
valence states; also in this case the valence-state oc-
cupation numbers Z„Zp, etc.—in contrast to the core
states —are in general fractional. In principle, the
values of Z„Zp should be calculated using the band
structure including the spin-orbit splitting. Consider-
ing, however, that our approximation does not take
into account the d states and that the spin-orbit split-

ting plays a significant role only in the neighborhood
of the top of the valence band, we shall, for simplici-

ty, use the Z, and Zp values calculated in the frame-
work of the nonrelativistic approximation based on
the parameters calculated by Chadi. ' Using a two-

point approximation, " the following values have
been obtained

I'6'. $ [a, ( r —RI) + a, ( r —R~ —T ) ] (p)
42N I

r, : '
X[a&,2(r —RI) —a&,2(r —R~ —r)]

42N

(10)

I'8.'g [a3r2(r —R~) —
a3& (r —RI —r ) ]1

I

Here, o, , J8 are the spin functions and a~y2 and a3~2 are

where the extreme values Z, = 1 or Z, = 2 are fairly
improbable. We shall return to this problem later on.

It is well known, ' however, that with o.-tin the
spin-orbit splitting plays an important role, so that
the wave functions (4) are not always quite correct
and a new set of eigenfunctions including the spin
functions properly has to be used. At the same time
a new labeling of these functions has to be intro-
duced, since the Bloch functions must now form a
basis for the irreducible representations of the double
group of the crystal. Without going into details
which can be found elsewhere, ' let us substitute the
wave functions (4) by their relativistic counterparts

Zg 1 4 Zp 2 35 Zy 0 25 (13)

Anyway, it is quite obvious that the use of the con-
figurations Ss'Sp or Ss Sp for o.-tin, as it is very
often encountered in the literature, " is far from real-
istic, in particular, if these configurations should be
used for calibration purposes. In fact, configuration
(12) expresses the well-known fact that n-Sn is a

semimetal lying between the elemental semiconduc-
tors silicon and germanium, and the metallic lead in

the group IV column of the periodic table. The
dehybridization of the homopolar bond when going
from diamond to silicon and germanium, respective-
ly, reaches with o™tinits maximum' and this is re-
flected in the Z, value which is much larger than uni-

ty. Finally, it is worth noting that Pauling' ' has es-
timated the occupation number for P-tin, whose iso-
mer shift is larger than that of o.-tin (i.e., whose con-
tact density is larger) as follows: Z, =1.7, Z~ =2.3.
Later on we shall see that these values are consistent
with values (12).

From what has been said above it seems justified
to conclude that a good knowledge of the band struc-
ture is necessary to obtain reliable occupation
numbers and, consequently, the electron contact den-
sity. Unfortunately, it is not always easy to assess
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how "good" the method is since it might reproduce
some physical quantities rather well and still give bad
results when calculating the electron contact density.
A typical example is as it was already mentioned
here, the pseudopotential method. In this connection
a word of caution is perhaps in order here about the
use of the simple relativistic signer-Seitz method
which is from time to time used for calculating the
contact densities. This method in its original version
can be useful only for univalent metals and its appli-
cation for solids with several valence electrons, as for
example, tin, antimony, etc. , can be rather prob-
lematic. Without going into details which can be
found in Rcfs. 21 and 22, it is probably ~orth~hile to
quote a recent paper by Froman, "who arrived at the
conclusion that even a more sophisticated formula-
tion of the signer-Seitz method is not suitable for
elements with more than two valence (conduction)
electrons; this means that in this case the calculation
of the occupation numbers Z; is not reliable enough.
Of course, this has a direct influence on the values of
the electron contact density and thc relevant isomer
shifts although the general qualitative character of
the isomer-shift —atomic-volume scheme can be
reproduced reasonably well. Anyway, to obtain reli-
able values of the electron contact densities in solids
more attention has to be given to the band-structure
problem in the future.

There is another aspect of this problem which is
connected with the atomic-volume approximation.
Apart from the fact that with compounds the concept
of the atomic volume is rather arbitrary, this approxi-
mation seems to be less suitable even for elementary
solids with four or more valence electrons. Perhaps
it is worthwhile to note that Pearson in his book on
crystal chemistry, of metals24 has arrived at the con-
clusion that in these materials the atomic volume ap-
pears to be a somewhat disappointing parameter and
that more useful information can generally be gained
from considering interatomic distances. This is main-

ly due to the effects of available nonbonding orbitals
or filled valence subshells. Without going into de-
tails, which can be found in Ref. 24, I should like to
draw attention to the fact that in this case the
isomer-shift —atomic-volume scheme might lead to
erroneous conclusions, which can be fatal when used
for calibration,

To demonstrate how delicate these problems are in

the present case of a- and P-tin, it is of interest to
mention herc two papers dealing with these materials
in detail. Friedman and co-workers2~ have analyzed
the Mossbauer isomer shift of a- and p-tin and inter-
nal conversion data of P-tin in terms of free-atom
valence-electron wave functions renormalized to the
respective signer-Seitz radii. They arrived at the
conclusion that P-Sn has 1.6+0.3 5s electrons while
in o.-Sn their number is 0.1 to 0.2 smaller, which is
in very good agreement with our Z, values men-

tioned above. On the other hand, Williamson and co-
workers, '6 who werc the first to study the pressure
dependence of the electron contact density in a sys-
tematic way for the elements Ag through Te, were
able to explain the pressure dependence of the iso-
mer shift for p-Sn using the Wigner-Seitz model.
They show that 'the correct value of the pressure
dependence of the isomer shift is very sensitive to
the value of the exchange multiplier in the Sister ex-
change term. Although there is no doubt that this is
really the-case, at least in part, the discrepancy
between the electron contact densities for n and p--
tin reveals nevertheless that the problem is more
complicated and very likely connected with the elec-
tronic structure af these materials. The electronic
configuration assumed in this paper, namely, 5s'5@2,
is very different from the real configuration and this
can influence both the value of the electron contact
density and its volume dependence.

%e shall later on see that thc isomer-shift—
atomic-volume scheme can be replaced by another
one based predominantly on the nearest-neighbor
distance, which seems to be more suitable for solids
with several valence electrons. At the same time
change of the electronic structure of atoms with
several valence electrons due to compression will bc
taken into account properly.

III. SELF-CONSISTENT-FIELD DIRAC-SLATER
~AVE FUNCTIONS FOR ATOMS (IONS)

The electron contact density is not the only quanti-
ty depending rather sensitively on the size of the
atoms in crystals. It is well known that the same
situation arises with some other quantitics, e.g. ,
spin-orbit splitting. It was Elliot ' and Braunstcin and
Kanc, who first pointed out that the spin-orbit split-
ting in solids is predominantly determined by thc
atomic splitting of the constituent atoms enhanced by
a factor of the order of 1.5 due to the altered normal-
ization of the wave functions in solids.

The renormalization of the atomic wave functions
within the %'igner-Seitz sphere, as used in Ref. 25,
represents a simple but useful approach which makes
it possible to take into account the size effects of
atoms in solids, at least approximately. Particularly,
it is very suitable for generating an effective onc-
electron potential for a metal from atomic wave func-
tions which can be used as a starting potential for
more sophisticated self-consistent calcolations.

Another method based on linear combination of
cellular atomic orbitals has been suggested by Antoci
and Mihich using the intersecting-sphere model.
This method proved to estimate the band structure of
both semiconductors (diamond, Si, Ge) and ionic
crystals (KCl, NaF, LiF) with rather good accuracy.
In this connection it is interesting to note that the
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dp/ P;—cs —csx —c2Q, + V(r) Q—I =E,QI
dr r

r/Q Q;+ cs —cs ~ +c'P; + V (r) P—; = E,P,
dr r

(i4)

Here j= I + —s, s = + I, ~ = —s (j + —), l and j being
1 . 1

the angular momentum and the total angular
momentum quantum numbers, respectively. V (r) is
the total potential energy, which in our approxima-
tion includes the electrostatic potential due to a finite
nucleus, the Coulomb potential due to all other elec-
trons with a tail correction, and a modified Gaspar-
Kohn-Sham exchange potential.

The nuclear radius R„„,is given by the well-known
formula R„„,=1.2 & A' fm. The wave functions are

idea of finite ions within the Thomas-Fermi-Dirac
model was first used by Jensen' who calculated the
lattice constant and some related parameters of
several ionic crystals and obtained very reasonable
results.

Taking into account the results of the methods
mentioned, there is no doubt that the concept of a
finite atomic size in a solid is real and useful
although its quantitative specification might vary with
different methods depending upon the basic assump-
tions made. .The aim of the present method is to
determine wave functions similar in form to the
functions (2), in which, however, the free-atom wave
functions a& are replaced by wave functions which in
a better way reflect the finite size of the atoms in
solids. To this end, atomic spheres are introduced
centered at each atomic site only slightly overlapping
the atomic spheres around the nearest-neighbor nu-
clei. Accordingly, a&'s are determined as eigensolu-
tions of the Schrodinger equation within each atomic
sphere obeying appropriate boundary conditions at
the sphere radius R& and being normalized within
this sphere. These wave functions will enable us to
calculate the electron contact density without
performing-at least in most cases-detailed band-
structure calculations for various electronic configura-
tions and size of the atoms (ions), which vary from
solid to solid. Since the electron contact density in-
cludes relativistic effects, it is necessary to replace the
nonrelativistic Schrodinger equation with the Dirac
formalism.

The numerical values of the wave functions have
been calculated using a modified version of the pro-
gram written by Liberman and co-workers. Assuming
ing that inside a particular atomic sphere the potential
is spherically symmetric, the major and minor com-
ponents of the radial wave functions P;/r and Q, /r,
respectively, describing the motion of the ith electron
in the field of the nucleus and other electrons, satisfy
the coupled Dirac equations

normalized within the sphere, i.e.,

P/r +; r dr=1 (IS)

The solutions of Eq. (14) depend, of course, on
the boundary conditions imposed. While in the case
of free atoms the wave functions go to zero for very
large r, the same boundary conditions at the atomic
sphere R~ would hardly correspond to physical reali-

ty. Since the electronic density mid~ay between two
neighboring atoms in a-tin is a rather smooth func-
tion, it is more natural to assume a constant electron
density at the sphere. Since the choice of the boun-
dary conditions is not unique and no direct experi-
mental evidence is available, several simple possibili-
ties have been considered. For example in Ref. 8 the
major components for Ss and Sp states fulfilled the
condition

d =0
dr r R„

(16a)

To get an idea of how sensitive the whole procedure
is, we have chosen in the present case for Sp elec-
trons another condition, namely,

P;(Rg) =0 (16b)

It is this value which is used to calculate isomer

which represents another extreme case with respect
to the electron density behavior of Sp electrons on
the atomic sphere. It turns out, however, that both
models give very similar results since, in general, the
influence of Sp electrons on the electron contact den-
sity is much smaller than that of Ss electrons. Since
the real case lies midway between these two ex-
tremes, the problem of proper boundary conditions is
studied now in more detail, particularly with regard to
some other physical parameters which depend on the
size of atoms as well, and which might give a better
evidence than the isomer shift when compared with

experiment. It should be added that the boundary
conditions for the minor parts of the wave functions
are chosen in accordance with conditions (16a) and
(16b). It is also necessary to emphasize that
although the boundary conditions used remind us of
Wigner-Seitz conditions, the whole procedure has
nothing to do with the Wigner-Seitz method as it is
seen from the form of the wave function (2) and the
relevant solution of the Schrodinger Eq. (1). Once
all the wave functions are known for a particular elec-
tronic configuration and a given R&, the electron
contact density can be estimated as a mean value of
the electron density over the nucleus sphere'

p(Z„Z, ,R„)
Rnc

R„„',X, [~P,(r)~'+~Q;(r)[']dr . (17)
/
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FIG. 1. The electron contact density p and the isomer shift, for seyera~ electronic config«ations of ~9Sn as a function of R„.

shifts, etc. , instead of the (nonrelativistic) value

given by Eq. (5).
Figure 1 shoms the dependence of p on A~ for

several electronic configurations including a-Sn and

P-Sn with Z, and Z~ values given in the previous sec
tion. Without going into details, which mill be dis-

cussed in the next section, it is evident that the intro-

duction of the R~ dependence of the contact density

p is essential 'and makes possible a more realistic

description of the situation in solids than if only the

limiting values of p(Z„Z~, &q -~) for free atoms or

ions ~ould be used.

IV. CALIBRATION OF THE ISOMER SHIFT FOR "~Sn

The relation between the isomer shift (IS) and the
electron contact densities is given for "Sn as fol-
lows5:

S...=533(~~/Z)(P'-&') =a(p'- p ) (mms-'),

(18)

where lLR/8 is the relative change of the nuclear ra-
dius, p and p are the electron contact densities of
the source and absorber, and 0. is the calibration con-
stant. The calibration of the isomer shift means to
estimate n and/or b,R/R. To this end we shall use
Eq. (18) together with isomer-shift measurements
and electron-contact-density calculations for two dif-
ferent electronic states of the tin atom (ion). Usual-

ly, one chooses tmo crystalline solids with mell known
electronic and crystal structure, preferably with a cu-
bic symmetry of the tin site to avoid any electric field
gradient complications. " According to Eq. (17), the
electron contact density depends both on the elec-

tronic structure as represented by the occupation
numbers Z„Z~, etc. , and on the radius 8'& of the
Mossbauer atom in question.

The calibration of the isomer shift for "9Sn has al-
ready been done in Ref. 8, and the following tmo
configurations have been used.

(i) "Sn atoms isolated in solid Ar, Kr, and Xe as
measured by Micklitz and Barret. 9 " The isomer-
shift value is independent of the rare-gas matrices
and amounts to 3.21

mrna

' (measured at 4.2 K rela-
tive to BaSn03 source at 300 K).

(ii) The isomer-shift value S;„=—0.37 mm s «
K2SnF6 (measured relative to the same source),
which is supposed to correspond to Sn4+ ion.

The estimation of the relevant radii R~ has also
been discussed in Ref. 8 in detail. As for the radii of
Sno atoms in solid Ar, Kr, and Xe, the corresponding
radii of the rare-gas matrix have been chosen: R~
(Ar)=3.5500, Rg(Kr) =3.70ao, and Rq(Xe)
-4.10ao. Since all these values lie in the neighbor-
hood of the minimum of the p curve for Sn
(5s~2~25pq2/2 ), respective isomer-shift values are much
the same in agreement with experiment. For simpli-

city, the minimum value of the electron contact den-
sity for the Sno configuration has been used as the
first calibration point. As for the R~ value for the
Sn + ion K2SnF6, it has been sho~n that its value lies
practically in the region of constant p, which was thus
taken as the second calibration point. Using the cor-
responding values of p [which are slightly different
from those in Ref. 8 because of the ammended value
of R„„,(Ref. 8) and different boundary conditions
(16) used}, the following calibration constant has
been obtained:

a-0.0726, 68/R =1.36 & 10~
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These values are slightly higher than the correspond-
ing values in Ref. 8, and reasonably agree with some
recent determinations. '2 '4 On the other hand, if the
contact densities for R„=7aa (which are not too dif-
ferent from the values corresponding to Rz = ~) are
used, the relevant constants are smaller:

a =0.051, hR /R =0.96 x 10 4,
in agreement with previous calculations of this
type. '" This sho~s that the error due to the use of
atomic contact densities can be rather large. It is
therefore evident that when discussing the isomer
shift of Mossbauer atoms embedded in solids, the
change of the electron contact density due to the
solid has to be taken into account properly.

V. ISOMER SHIFT OF o.- AND P-TIN

Rq =R() —R}N (19)
R}N representing the crystal radius of the ion as es-

Once the calibration constant o. is known, we can
calculate the isomer shift for any electronic config-
uration of the tin atom embedded in one or another
way in solids, provided that we are able to estimate
the relevant value of R&. Figure 1 shows the R&
dependence of the isomer shift for various electronic
configurations of the tin atom (ion) as calculated us-
ing the calibration constant estimated in the previous
section. In this section we shall limit ourselves to
two well-known tin modifications, namely, n-tin. and
P-tin. While n-tin is a semimetal whose crystal and
band structure are very similar to those of group IV
semiconductors, P-tin is a metal having a different
crystal structure. Although their electronic structures
differ from each other, the relevant occupation
numbers given in Sec. II are not so much different.
In agreement with Sec. II, in the case of o.-tin we
have chosen the configuration 5s}}/2565'}}i2225P3}i22 due
to the lack of detailed information concerning the oc-
cupation numbers of P-tin the following simple con-
figuration has been used 5s}'~2 5p}'~2.

In contrast to rare gases, the electron shells of
atoms taking part in the covalent bond of e-tin are
not closed, so that the overlap between neighboring
atoms is large. This results in a relatively large bond
charge in the mid~ay region between the nearest
neighbors, which is typical of the covalent bond'4
and which, unfortunately, deforms considerably the
spherical symmetry of the electron charge within the
atomic spheres. However, on account of the orthog-
onality condition the overlapping electrons cannot
penetrate deeply in the ion cores of the neighboring
atoms being repressed by repulsive forces. There-
fore, like with ionic crystals, R& can be identified
with the bond distance Ro minus the radius of the
ion of the neighboring atom R}N, i.e.,

timated by Pauling. ' Millea, ~' who studied diffusion
processes in homopolar semiconductors, claims that
the use of the so-called univalent radii in this con-
nection gives a better agreement with experiment.
Since it is very difficult to decide which of these ionic
radii is better in our case, both values will be dis-
cussed and compared with experiment. It is suitable
to note in this connection that the effective radius R&
cannot be larger than the half of the next-nearest-
neighbor distance between two nonbonding atoms
which in the o.-tin amounts to 4.34ao. Using the
values R o

= 5.31ao and R }N, as given in Pauling's
book, 2 we obtain the following values: R& =3.97ao
when using the crystal radius, and R& =3.50ao when
using the univalent radius of the Sn + ion. The
relevant values of the isomer shift calculated accord-
ing to Eqs. (17) and (18) are 2.27 and 2.43 mm s ',
respectively, which is higher than the experimental
value 2.10 mms '. This is probably due to the
neglect of 5d states when calculating the occupation
numbers, which increases the Z, value and therefore
the value of the isomer shift [see the discussion in
Sec. II concerning values (12)}. As both R„values
lie in the neighborhood of the minimum of the p
curve, it is impossible to decide which approximation
of the ion radii is better or more reliable.

Since the crystal structure of P-tin can be regarded
as a very much deformed o.-tin structure, the same
procedure can be used also in this case. In P-tin,
every tin atom has four nearest neighbors at a dis-
tance of 5.71ao and two slightly farther away
(5.99aa). We shaH use, for simplicity, the nearest-
neighbor distance only, i.e., Ro = 5.71ao. This gives,
when using two different values of R}N, the following
R&'s: R„=4.37ao (with crystal radius Rtw) and
R„' =3.89ao (with univalent radius R~N). Using the
calculated contact densities for a P-tin electronic con-
figuration, as reproduced in Fig. 1, one obtains the
following isomer shift values: 5;„(R„=4.37aa)
=2.76 mrna ' and 5;„(R~=3.89aa) =2.60 mms '.
Taking into account both the very rough estimate of
the occupation numbers Z, and Z~ as made by Paul-
ing, ' 2 and the uncertainty as to the values of R&'s,
the agreement with the experimental value of the iso-
mer shift 2.56 mm s ' is reasonably good, Neverthe-
less, it is evident that a proper calculation of the band
structure of P-tin and the relevant occupation
numbers will be necessary for obtaining more reliable
theoretical results for P-tin.

VI. INFLUENCE OF THE PRESSURE ON THE
ISOMER SHIFT OF P-TIN

It is generally admitted that the pressure or volume
dependence of isomer shifts represents another possi-
bility of calibration of the isomer shift; however, both
the available information and its theoretical interpre-
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tation is for the present far from satisfactory. '
Several attempts have been made to explain the
"strange" behavior of the pressure dependence of
the isomer shift of P-tin, which —in contrast to some
other metals like Fe, Eu, etc.—shows a decrease of the
electron contact density with increasing pressure. '

Before proceeding to our formulation of the pres-
sure dependence of the isomer shift, a word of cau-
tion is suitable here. Both in Ref. 26 and in our for-
mulation, an assumption has been made, namely,
that the electronic structure (configuration) of P-tin
does not change appreciably under the pressure, i.e.,
it is assumed that the variation of the occupation
numbers Z; characterizing the charge transfer with

pressure, is negligible. While this is certainly a
reasonable approximation for relatively small pres-
sures, there is no doubt that large volume changes
will cause not only changes of the wave functions but
also of the occupancy numbers. This effect is prob-
ably much more important with metals where the
valence electrons move relatively freely within the
crystal, while in rare gas and ionic crystals only small
changes of Z's can be expected due to localization of
the wave functions. Anyway, the band-structure
changes must be included if the phase transformation
occurs. However, to include both changes properly, a
series of band-structure calculations for different lat-
tice constants should be necessary, which would com-
plicate considerably the numerical calculations. On
the other hand, as far as we are not dealing with
phase transformations, one can expect that the
neglect of the change of the occupation numbers will

certainly not have serious influence on the qualita-
tively correct description of the pressure dependence
of the isomer shift including the correct order of
magnitude. In other words, the R~ dependence of
the electron contact density for n- and P-tin in Fig. I
has no direct physical meaning in the whole range of
the R& values but only in the neighborhood of the
proper equilibrium R& value, as estimated in the pre-
vious section.

Let us now turn to the problem of pressure depen-
dence of the isomer shift of P-tin. In what follows,
we shall use, for simplicity, the calibration constant
as calculated in Sec. IV, although in general it would
probably be more adequate to use P-tin as one of the
calibration points to achieve better accuracy when
studying the pressure dependence. We must, howev-
er, keep in mind that Pauling's estimate of the occu-
pation numbers Z, and Z~ is rather crude, so that
there is no point in doing that without reliable
knowledge of the relevant electronic configuration.
The experimental results show' that the isomer
shift change by —0.15 mm s ' of P-Sn compressed by
100 kbar, corresponds to a volume reduction
( Vo —V)/ Vo ——0.87.'9 Since the linear change of the
nearest-neighbor distance Ro is reduced approximate-
ly by a factor of (0.87)'~3 =0.955, one obtains for the

change of R~ the value dR~ = —0.25ao. Here we
have assumed that the radius of the ion RIN in Eq.
(19) is constant during the compression, i.e., the ion
core is considered as incompressible in this case. In
calculating the electron contact density p(R& —dRq)
using our two values of R~'s, the relevant change of
the isomer shift of P-tin takes on the value —0.11
mm s ' and +0.09 mm s ', i.e., only in the case of
the R& radius is the calculated change of the isomer
shifts in agreement with the experimental value
—0.15 mms '. Unfortunately, even in this case, no
definite conclusions concerning the radii can be made
since the uncertainty in the occupation numbers of
P-tin is very serious, and, clearly, more detailed
band-structure calculations are needed. There is,
however, no doubt that precise experimental mea-
surements of the pressure dependence of the isomer
shift can help to solve this problem.

Similarly, a pressure (volume) dependence of the
isomer shift of o.-tin could be calculated. It turns
out, however, that in this case a phase transition into
P-tin takes place40 which makes the comparison with
experiment impossible. Nevertheless, it is interesting
to note that for those tin compounds, whose R& lie
to the left of the minimum of the p curve (Fig. 1),
the external pressure brings about the increase of the
electron contact density corresponding to the increase
of the isomer shift. This seems to be the case with

SnMg2, whose isomer shift increases at first with in-
creasing pressure and, for higher pressure decreases
again due to the phase transformation. Unfortunate-
ly, the occupation numbers of SnMg2 are not known,
so that no quantitative conclusions can be made for
the time being.

This "strange" effect, namely, that the change of
the isomer shift with external pressure can be either
positive or negative depending on the electronic con-
figuration and size of the tin atom (ion) in tin com-
pounds, seems to be found not only with tin but also
with antimony, tellurium, iodine, etc. ' On the
other hand, recent calculations show ' that with iron
atoms (ions) the external pressure causes for all elec-
tronic configurations only an increase of the electron-
ic contact density which leads, in agreement with ex-
periment, to the decrease of the isomer shift, since in
this case the calibration constant o. is negative. In
concluding this section we would like to emphasize
that systematic measurements of both the isomer
shift and its pressure (volume) dependence would be
very desirable and helpful for establishing a reliable
relation between the electron contact density or the
isomer shift, and the effective size of the Mossbauer
atoms embedded in crystals.

VII. DISCUSSION

In the previous sections we have formulated a new
approach to the problem of the calculation of the iso-
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mer shift in relation to the band structure, the elec-
tron contact density and its dependence on the size of
the Mossbauer atom (ion). We have succeeded in

estimating the calibration constant for "Sn and in

calculating the isomer-shift values of 0,- and P-tin in

reasonable agreement with experiment. Moreover, it

was possible to explain the pressure dependence of
P-tin. The objective of this section is to discuss some
limitations of this method which might be important
for its application to similar cases.

%e have already mentioned that our wave func-
tions represent a simple zeroth approximation which

includes, ho~ever, the changes of the electron in-

teraction due to the limited space allowed to the atom
in the crystal lattice. %e expect this to be a good ap-
proximation with crystals (elements or compounds)
with relatively simple character of the chemical bond.
In more complicated cases, e.g. , when dealing with a

substitutional Sn impurity, the direct interaction with

the nearest neighbors must be taken into account ex-
plicitly and a more sophisticated approach is neces-
sary. ' lt has also been showns that even in the case
of interstitial impurities good results can be obtained.

%'hen calculating the isomer shift, one of the key
problems seems to be the estimation of the occupan-

cy numbers Z;. Although in principle the way of their
evaluation is rather straightforward, the numerical
values of the Z's depend very sensitively on the
band-structure calculations, i.e., on the method ap-

plied. It is therefore desirable to use a reliable

method to calculate the occupancy numbers rather
than to use, e.g. , the signer-Seitz method, whose
results, in comparison with some more recent
methods, are rather poor, or cluster calculations with

a small number of atoms which are not able to repro-
duce the band structure properly and can thus give
misleading results.

Another problem, which might affect the numeri-
cal values of the contact density, is the choice of the
potential in the Schrodinger equation including dif-

ferent forms of the exchange potential whose influ-

ence has already been discussed in Ref. 26. It turns
out that-both the relative and absolute values of the
electron contact densities for different electronic con-
figurations [and therefore the detailed form of the

p(R~) dependencej depend slightly on this choice.

Similar changes are due to various models of the nu-
cleus charge distribution or nuclear radius R„„,(e.g. ,
for different values of ro in the formula R„„,=roA' '
fm in the constant nuclear-density model used in this
paper). Fortunately, the uncertainties thus intro-
duced seem to be of minor importance, especially if
the calibration procedure is based on two charge
states, whose contact densities differ essentially from
one another. A similar effect can be expected if the
Madelung potential in the crystal considered plays a
significant role, in particular in the case of negative
ions. All these aspects will be discussed in a later pa-
per ' in more detail.

Although there is no doubt that the p(Rq) depen-
dence has, in the case of" Sn, the form given in Fig.
1 (and similar behavior has been found, e.g. , for
"'Sb, '25Te, "91, etc.), one has to keep in mind that
both the spherical symmetry and the tentative values
of the effective radii 8& represent in most cases only
a crude approximation of the reality in that regions of
the crystal, where the atoms (ions) overlap with their
nearest and next-nearest neighbors. The direct influ-
ence of the spherical approximation in the overlap re-
gions on the numerical values of the isomer shift is
hardly assessible and evidently a systematic study of
other Mossbauer atoms either in the same or similar
crystals is needed to obtain more experience and evi-
dence. Even if with other values of A~'s or different
boundary conditions slightly modified results can be
obtained, ii is quite evident that the size of the
Mossbauer atom plays, in this case, a significant role,
which has to be taken into account properly. There-
fore, it is very desirable if the experimental measure-
ments of the isomer shift of Mossbauer atoms in
various crystals should be systematically complement-
ed by pressure experiments as well. This applies par-
ticularly to the isomer-shift measurements on
Mossbauer atoms isolated in rare-gas matrices, which
seem to represent one of the most reliable results
directly comparable with theoretical calculations.
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