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Surface energies and work functions are calculated for the (110), (100), and (111) faces of
the bcc metals Li, Ba, Na, K, Rb, and Cs and the fcc metals Al, Pb, Ca, Sr, and for the (0001)
faces of the hcp metals Zn and Mg. In the Kohn-Sham energy functional employed, the crystal

lattice of ions is represented by the Ashcroft pseudopotential, and nonlocal exchange-correlation

energy corrections included via the eave-vector analysis method. The surface energies are

determined by application of the Rayleigh-Ritz variational principle. The work functions are ob-

tained for these energy-minimized densities by the variationally accurate, "displaced-profile

change-in-self-consistent-field" (DPhSCF) expression, which is tested for real metals here for

the first time. The variational electronic densities employed are those generated by the linear-

potential model, which permits the calculations to be primarily. analytical. It is observed that the

surface energies for each metal with the exception of Rb and Cs increase with decreasing pack-

ing density of the exposed crystal face, and that the Smoluchowski rule of decreasing work func-

tions with decreasing packing density is obeyed by each metal except Al and Pb. An analysis of
these numerical results indicates them to be superior to those of perturbation theory, and to be

equivalent or generally superior to the results of other variational calculations fear metals with

r, &3. The Mahan-Schaich derivation for the work function of jellium metal is extended to in-

clude local ionic pseudopotentials, and the result shown to be equivalent to the DPbSCF ex-

pression. A general expression for polycrystalline work functions is also derived, and an empiri-

cal formula given for the work function of alkali metals. It is further argued that it is meaning-

ful, at least for the alkali metals, to compare the polycrystalline work function to the minimum

work function, and this equivalence is demonstrated by comparison with experiment.

I. INTRODUCTION AND FORMALISM

In this paper we present the results of variational
calculations of the surface energy and work function
for the (111), (100), and (110) faces of the simple
metals Al, Pb, Li, Ca, Sr, Ba, Na, K, Rb, and Cs,
and the (0001) faces of Zn and Mg. One of the prin-

cipal advantages of our formalism is that it avoids
heavy self-consistent' or almost fully self-consistent'
three- or. one-dimensional computations in order to
determine these crystallographic face-dependent prop-
erties. In fact, for the choice of single-particle wave
functions employed in this work, "the calculations
are primarily analytical. Another advantage of this
formalism over the self-consistent method is that it

may be employed with any explicit density functional.
for the energy5 including nonlocal treatments of ex-
change and correlation, whereas the latter usually re-
quires a local approximation. The approach here is to

employ principles that lead to expressions for the
physical quantities that are insensitive to deviations
of the density from self-consistency. Thus, in addi-

tion, the formalism allows a meaningful assessment
of the accuracy of the results.

In our calculations for the surface energy E, we

employ the Rayleigh-Ritz variational principle for
the energy in conjunction with a Kohn-Sham' —type
energy functional of the density. The trial electron
density profile is uniform in the bulk metal, and its
one-dimensional decay at the surface is controlled by

a single variational parameter. The variational princi-
ple guarantees that the calculated total energy will be
an upper bound on the true total energy (for a given

energy functional). Since the total energy is the sum
of bulk and surface contributions, the calculated sur-
face energy will be an upper bound, with an error
that is second order in the error of the trial density,
for any system such as jellium ' in which the bulk
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density is truly uniform. When this kind of varia-
tional trial density is applied to real metals, ' " there
is no guarantee that the calculated surface energy will

be an upper bound, although a reasonable result is
still expected on physical grounds for simple metals,
where nearly all the bulk binding energy can be ac-
counted for by assuming a uniform bulk density of
valence electrons. ' " This kind of variational trial
density does yield a surface dipole moment th'at is far
superior to that of the jellium model, as shown by an
analysis' of the work function using the profile-
sensitive Koopmans's theorem expression. Thus, if
the surface energy is significantly lower in one varia-
tional calculation than in another (or in first-order
perturbation theory), using the same total energy
functional and bulk density in both cases, the former
calculation is superior in the sense that it gives a
more realistic density.

The surface energy functional of the density E,[p]
we consider is

E,[p] = E„[p]+ E„[p]+ E„Lo"[p] + S.Ewv [p]

+ E&,[p] + E,([p] + ER[p]

where the component E& is the kinetic energy func-
tional of a system of noninteracting particles, E„is

the Hartree electrostatic energy term, E„",0" the
local-density-approximation (LDA) contribution to
the surface exchange-correlation energy, and hE„," is

the nonlocal correction to this term as obtained by

the wave-vector analysis method. ""This latter
method has been shown" " to be correct both for
rapidly varying densities for which a random-phase-
approximation calculation exists, ' ' and for slowly

varying densities where it agrees with the density gra-
dient expansion formalism. ' The alternative substi-
tution of a "local gradient" or "average gradient"
correction' " instead is straightforward. The first
four terms of Eq. (1) are the "jellium model" contri-
butions ' to the surface energy. The lattice of ions is

included via local pseudopotentials, the difference
Su( r ) between the pseudopotentials of the semi-
infinite crystal and the electrostatic potential of the
jellium background giving rise to the pseudopotential

E„,and classical cleavage E,] energy contributions. '

The term ER is due specifically to the short-range
repulsive part of the ionic pseudopotential and must
be included only for those crystal faces for which the
core radius is greater than half the interplanar spac-
ing. Due to the assumed translational invariance in

the plane parallel to the metal surface, each of these
components of the surface energy is a functional of
the inhomogeneous density p(x) which varies in the
direction perpendicular to the surface. The defini-
tions of these various functionals are given in Refs.
10 and 11.

We determine the work function 4 via the
"displaced-profile change-in-self-consistent-field"

(DP&&cp) expression. ""This expression is a spe-
cial case of the change-in-self-consistent-field expres-
sion'

dE,

dXxo
(2)

where X is the surface charge density due to the re-
moval of one or more electrons from the metal and
the subsequent relaxation of the electron density.
Thus the work function is the difference between the
surface energies for the infinitesimally charged and
neutral surfaces, divided by the infinitesimal surface
charge density. For non-self-consistent calculations,
it can be shown' that, in this expression for the
work function, the variational parameters that
minimize the surface energy for the neutral metal
suffice for the charged surface as well. Thus if the
class of variational density profiles admits a rigid dis-

placement with respect to the positive background,
the density of the charged metal surface may be tak-

en to be that of the neutral surface displaced rigidly

relative to the ions by X/p, where p = kz~/3m2 is the
average bulk density of the metal. [In terms of the
Wigner-Seitz radius r„ the Fermi momentum"
kr = I/ar, where n ' = (9m/4) ' '.] The result of
such a substitution in Eq. (2) is the DPASCF expres-
sion for the work function

@DPISCF (3)

where 4„, 4],+„„and 4„are the electrostatic, kinetic
plus exchange- correlation, and pseudopotential contri-
butions. In the above equation

4„=V„(~)—V„(a) (4)

C'k+xc = & T

4„=J dx 8v(x)—
leoo y p(x)

oo 6X P

where V„(x) is the electrostatic potential due to the
electrons and to a neutralizing uniform positive jelli-
um background p+(r ) = pH( x+a), —ar =3k''/10
+ a„,(p) is the total kinetic plus exchange-
correlation energy per electron for the homogene-
ous electron gas of density p, and Su(x) is the planar
average of the discrete lattice potential Sv( r ). Note
that the electrostatic term depends only on the elec-
tronic density outside the jellium edge x = a, ~hereas
4[,+„, is a purely bulk contribution. The variational
densities to be employed in the determination of

"are those which minimize the energy func-
tional of Eq. (1'). It is important to note that the
4~ " expression is neither a bound nor is it sta-
tionary. (However, variational principles25 27 where-

by the density itself and hence the work function are
determined correct to second order in the errors of
the trial wave function do exist, and have recently
been applied"'9 to the metal surface problem. ) The
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DPbSCF expression would be exact if the minimizing
density profile for the neutral surface were the exact
density. Furthermore, the error (@up~sc" —4'""')
should be small since the error in the energy is
second order in the error of the trial density. For jel-
lium metal, the DPASCF expression for the work
function reduces to that previously derived within the
local density approximation by Mahan and Schaich, '
although its accuracy for variationally energy-
minimized densities was not at first known. A gen-
eralization of the Mahan-Schaich derivation to in-
clude local ionic pseudopotentials leading to the same
expression for the work function as that of 4
of Eq. (3) is given in Appendix A.

The expression' "most commonly used for the
determination of the work function is the
Koopmans's theorem expression 4" . For the local
ion pseudopotential approximation of the lattice

where (AP)„= V„(+~)—V„(—~) is the electronic
relaxation dipole barrier, p, r = 8(par)/Bp is the total
chemical potential of a uniform electron gas, and

(Sv),„ is the average value of Sv( r ) over the
volume of the semi-infinite crystal. The explicit
mathematical definitions of these terms are also
given in Refs. 10 and 11. An expression for 4"I in-

cluding band-structure effects has been derived else-
where. " In this, as in previous' "variational calcu-
lations of the work function, these effects are
neglected since the bulk can be treated as a region of
essentially uniform electronic density, the band-
structure contribution to the binding energy being
only a small fraction of the total value. ' " For fully
self-consistent calculations the Koopmans's theorem
and DPhSCF expressions are equivalent. However,
if variational energy-minimized densities are em-
ployed in the Koopmans's theorem expression, the
results for the work function are correct only to the
same order as that of the density employed and not
correct to second order in the errors of the density as
is the energy. Perdew and Sahni" have compared
DPb, SCF work functions for the jellium surface, us-

ing the accurate linear-potential trial densities, with

the fully self-consistent work functions of Lang and
Kohn, ' and have shown that the errors in 4
are typically only a few hundredths of an electron volt.
The results for the surface energies are also essential-
ly exact. The errors in 4", however, are an or-
der of magnitude greater. This same order of magni-
tude difference in the two sets of results has also
been demonstrated for far simpler analytical forms of
the trial density.

For the crystal lattice of ions we employ the Ash-
croft 4 local ion pseudopotential. This pseudopoten-
tial leads to accurate theoretical binding energies
when compared to experiment' " for a.ll metals (ex-

cept Li, Ba, and Zn), the difference for the majority
being less than 0.3 eV. For K, Ca, and Sr the differ-
ences are 0.4, 0.5, and 0.6 eV, respectively. We thus
expect our results to be least accurate for Li, Ba, and
Zn.

The one-parameter variational electronic single-
particle wave functions employed in our calculations
are those generated by the linear-potential model.
The appropriateness of this wave function for surface
physics calculations has been amply demonstrated in
the literature. " The model leads to serni-
analytical expressions'" for the density and the ma-
jority of the surface properties of interest. Further-
more, these expressions can be written in terms of
universal functions of the field strength parameter y&,
and thus the surface properties of a specific metal are
easily determined once this parameter is fixed in

some physically meaningful manner.
The procedure for the determination of the surface

properties is then as follows. For a specific metal and
crystal face, we determine the surface energy by
minimizing the functional E, of Eq. (l) employing
the variational densities of the linear-potential model.
With these energy-minimized densities we then deter-
mine the work function via the DPb, SCF expression
of Eq. (3). For purposes of completeness we also ob-
tain the Koopmans's theorem results for the work
function. We emphasize that these calculations are
primarily analytical, e,g. , configuration-space integrals
have to be performed numerically only for the pseu-
dopotential contributions 4„and E», and for the
LDA value of the surface correlation energy since we

employ the Wigner expression' for the average
correlation energy per particle. The present formal-
ism thus contrasts sharply with other existing calcula-
tional methods. For example, the variational surface
energy calculations of Monnier and Perdew' require
the iterative solution of a self-consistent problem for
each value of the parameter as it is varied. The
face-dependent work-function calculations of Mon-
nier et aI. " (performed for a few metals) within the
change-in-self-consistent-field formalism require a

fully self-consistent computation for both the neutral
as well as an infinitesimally charged surface. The
perturbational work-function calculations of Lang and
Kohn" also require fully self-consistent computations
for the neutral and infinitesimally charged surfaces.
All these calculations are, however, self-consistent
only within the LDA for exchange correlation,
whereas the present procedure permits the direct and
easy incorporation of nonlocal exchange-correlation
effects as obtained from different formalisms.

In Sec. II we present and analyze our results for
low-index crystal-face —dependent surface energies
and work functions for 12 simple metals as deter-
mined by the above formalism. We conclude the pa-

per by discussing possible extensions and improve-
ments to this work.
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II. RESULTS AND ANALYSIS

A. Surface energies

In Table I we present our results for the surface
energy F., as determined both within the LDA and
with the addition of the nonlocal exchange-
correlation energy correction. In order to demon-
strate the accuracy of our results we first compare
our LDA values with those of existing one-
dimensional variational and perturbational calcula-
tions. %e thus include in Table I the variational
self-consistent results of Monnier and Perdew'o (MP)
and the perturbational calculations of Lang and
Kohn' (LK). (The htter calculations employ the
density profiles of the jeHium surface. ) As indicated
elsewhere, 'o " the sign and size of (Su),„correlates
strongly with the deviations of the density profile
from that of the jellium surface. A comparison of
the three sets of LDA results can thus be based on
an analysis of (Su)„and the fraction it is of the Fer-
mi energy for each crystal face, as well as on an
evaluation of the different one-electron wave func-
tions employed in each calculation. In Figs. 1 and 2
we plot the values of (Su),„ for the different crystal
faces of the metals considered and not'e that (Su},„
decreases as the packing density increases.

In a comparison of our LDA results with those of
perturbation theory the following remarks may be
made. With the exception of Ai (100), and Zn and

Mg (0001), our values for the surface energy for all

the crystal faces are superior in the sense defined in

the introduction. For crystal faces for which (Su),„
is large (whether positive or negative) and a substan-
tial fraction of the Fermi energy, our results are sub-
stantially superior since it is the pseudopotential con-
tribution that is treated perturbationally. For those
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FIG. 1. Low-index crystal-face —dependent values of
igv)„, the average value of the discrete lattice perturbation
over the volume of the semi-infinite crystal, for the bcc me-
tals Li, Ba, Na, K, Rb, and Cs which are represented by
their respective values of the signer-Seitz radius r, .
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FIG. 2. Low-index crystal-face —dependent values of
(Sv)„ for the fcc metals Al, Pb, Ca, and Sr, and hcp metals
Zn and Mg.

crystal faces for which (Su),„ is small or negligible,
our results, though superior, are closer to the pertur-
bational values.

In a comparison with the variational calculations of
MP, we note that for the least densely packed crystal
face of all the metals considered, for which the
(Sv),„are positive and large, our results are superi-
or, the improvement increasing with decreasing bulk
density. %e expect this also to be the case for Ca,
Sr, and Ba for which the MP calculations were not
performed. For the other crystal faces of the bcc
metals the iwo sets of results are equivalent. On the
other hand, the MP surface energies are superior for
all the crystal faces where (Su),„ is large and nega-
tive [AI (111)and Pb (100) and (111)],although this
superiority is appreciable only for the extreme case of
Pb (111),where (Sv),„ is —42'/o of the Fermi energy.
In the Pb (100) face, for which (Su),„ is substantially
negative (see Fig. 2), our result is within I /o of MP.
Thus when our energy-minimized linear-potential
model density profiles are compared with the MP
profiles, the former seem to be more appropriate
when (Su),„ is large and positive; while the latter are
preferable when (Su),„ is large and negative. A pos-
sible explanation of this is that, when (Su),„ is large
and positive, the one-electron potential which gen-
erates the MP profile has a sharp unnatural dip near
the jellium edge (see Fig. 2 of Ref. 10), while the
linear-potential model permits a greater electronic
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TABLE I. Surface energy F, results f'or the low-index crystal f'aces of 12 simple metals as determined within the local density

approximation (LI3A), and by inclusion of nonlocal exchange-correlation energy contributions via the wave-vector analysis
method. The column v& represents the energy minimized values of' the slope parameter (Ref. 3}.

Metal vp = kFA'p

Variational calculations

Present work Monnier-Perdew'

Perturbation theory

Lang" Kohn

Surf'ace energies L,. (ergs/cm )

Local density approximation
Present work

with wave-vector
correction

bcc metals

Li

Ba

Na

(~10)
(100)
(1»)
(»0)
(100)
(111)
(1 10)
(100)
(»1)
(110)
(100)
(»1)
(110)
(100)
(»1)
(110)
(100)
(111)

1.43
2.12
2.53
2.12
3.34
3.66
1.48
2.25
2.S8
1.06
1.76
2. 1 1

1,48
2.27
2.S4
1.53
2.32
2,56

371
504
666
373
412
455
227
248
282
136
150
164

107
96
73
85
70
42

3S8
501
670

227
245
321
137
147
187

108
91

»8
85
68
89

375
503
685

229
262
351
139
159
207

122
»5
149
103
92

»6

409
S44
707
401
441
484
248
271
305
147
161
176

»6
106
83
93
78
50

f'cc metals

Ca

(111)
(100)
(»0)
(»1)
(100)
(110)
(111)
(100)
(» 0)
(1»)
(100)
(110)

2.58
3,73
4.59
1.60
2.09
3.80
1.99
2.99
3.56
1.90
2.93
3.47

692
1530
2836

779
2186
4866

433
573
695
370
475
558

643
1460
2870
550

215S
4860

730
1485
3230
»40
2280
4940

852
1701
2964
886

2298
4990

472
615
737
401
S07
591

hcp metals

(0001)
(0001)

2.69
2.64

"'See Ref. 10. In Table VII ot' Ret. 10, the surf'ace energies f'or the (»0) t'aces of' Li, Na, K, and Rb were miscopied; the correct
results are given above.
"See Ret's, 1 and 10.
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spillover into the classically forbidden region. When

(Sv),„ is large and negative the MP effective poten-
tial looks more realistic.

With the exception of Pb (111),our LDA surface
energies are either nearly equivalent or superior to
the variational-self-consistent results of MP, this
result being achieved without any need to perform
self-consistent calculations. We expect the same ac-
curacy when nonlocal exchange-correlation contribu-
tions are added to the total surface energy functional.
We also expect our nonlocal exchange-correlation en-

ergy results to be superior to those of perturbation
theory since our LDA results are superior.

As indicated in the Introduction we include the
nonlocal exchange-correlation contributions via the
wave-vector interpolation method. "' It has been
shown" that this correction, although strongly depen-
dent on the bulk density, is essentially independent
of the density profile at the surface for a specific
metal. The correction may thus be treated as a con-
stant and its value determined for the density which

minimizes the LDA value of the surface energy.
This has been done for all the various metals and

crystal faces, and the results" with the addition of
this correction are given in Table I and plotted in

Figs. 3 and 4. For the bcc metals Li, Ba, Na, and K,
and all the fcc metals, the surface energy increases as
the packing density decreases. It is only for the two

alkali metals Rb and Cs that the reverse is found.
Furthermore, for all the bcc metals and the fcc
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FIG, 4. Low-index crystal-face —dependent surface ener-

gies E, for the fcc metals Al, Pb, Ca, and Sr.

metals Ca and Sr, the greater the bulk density the
greater the surface energy for each crystal face. We
also note that as the packing density decreases, the
value of the variational parameter yF increases, thus
indicating that the density profile is more loosely
bound to the surface and has smaller Friedel oscilla-
tions for the more loosely packed crystal faces.
Indeed we find in Table I that the density profile for
real surfaces is essentially decoupled from the aver-
age bulk density and depends far more sensitively on
the valence and packing fraction; for example, in the
alkali metals, which cover a large range of bulk densi-
ties, the parameter yF is always approximately equal
to 1.5 for the (100) face and approximately 2.5 for
the (111) face. 1n conclusion, our values for the sur-
face energies indicate that our results are comparable
or superior to those of other one-dimensional calcula-
tions. Comparisons with experimental surface ener-
gies where available have been made elsewhere.

100-
Rb
It-. cs B. %'ork functions

03

WIGNER —SEITZ RADIUS r

FIG. 3. Low-index crystal-face —dependent surface ener-

gies E, for the bcc metals Li, Ba, Na, K, Rb, and Cs.

In Table II and Figs. 5 and 6 we present our results
for the work functions as determined by the DPLLSCF
expression. For purposes of completeness and com-
parison, we also include the results as determined by
Koopmans's theorem, the perturbation theory results
of Lang and Kohn, ' the change-in-self-consistent-
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Work functions 4 (eV)

Present work Monnier
eg al. '

Perturbation
theoryb

Experiment
@min

Face
dependent'(yDPASCFFace Polycrystalline'

bcc metals

(110)
(1oo)
(111)
(110)
{Iob)
{111)
(11o)
(1oo)
(111)
(11o)
(1oo)
(111)
{»0)
(1oo)
(1»)
(»0)
(1oo)
(111)

3.87
3.47
3.20
3.58
3.42
2.85
3.33
3.07
2.79
3.01
2,71
2.45
2.72
2.54
2.28
2.56
2.40
2.14

3,58
3.30
3.16
3.56
3.06
2.86
3.08
2.88
2.75
2.72
2.51
2.39
2.49
2.36
2.26
2.35
2.23
2.14

3.55
3,30
3.25 (3.1)'

3.11

2.7'

2.90d3.13
2.84
2.76

3.10
2.75
2.65
2.75
2.40
2.35
2.20
2.10
2.0S
2.2S
1.90
1.80

2.75 2.70

2.30 2,39

2.16" 2.22

Cs
2.14 2.09

fcc metals

(111)
(1oo)
(11o)
(111)
(1oo)
(110)
(111)
(1oo)
(110)
(111)
(1oo)
(11o)

Al 3.47
4.16
3.95
5.23
3.SS
4.08
3.68
3.96
3.43
3.57
3.82
3.31

3.92
4.30
3.89
3.6S
3.81
3.84
3,70
3.57
3.20
3.61
3.42
3.05

4.27
4.25
4.02

4.05
4.20
3.65
3.85
3.95
3.80

4.24
4.41
4.06

4.28

Pb
4.10
3.90

4.25

Ca
2.87

Sr
2.59

hcp metals

4.33
3.66

3.65
3.88

4.07
4.01,

4.30
4.18

4.15
4.05

4.9

'See Ref. 12.
'.See Ref. 31.
'See Ref. 40.
dS. Anderson, J. 8. Pendry, and P. M. Echenique, Surf. Sci. 6S, 539 (1977).

TABLE II. Work function 4D ~ "results for the low-index crystal faces of 12 simple metals as determined by the
displaced-profile change-in-self-consistent-field {DPASCF) expression of Eq. {3). Values for the work function 4"T as obtained
via the Koopmans's theorem, expression Eq. (7), and the minimum work function 4 '" as defined in Eq. (9) for the alkali

metals, are also quoted. The superscript on a few of the polycrystalline experimental values indicates that these results,
though valid, are of unknown reliability because they are not confirmed by any measurements made in recent years with ultra-

high vacuum techniques.
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field theory results of Monnier et al. ,
"and polycry-

stalline and face-dependent experimental results
where available. The experimental values quoted
have been taken from the most recent compilation
and evaluation of such results as performed by
Michaelson.

FCC METALS

X0
4J
I 4
z

Al

~ (iii)
e (100)
o (110)

0 X

Pb

Ca"~Sr
X

S~

2.5 3.0
WIGNER -SEITZ RADIUS r

FIG. 6. Low-index crystal-face —dependent work functions
4 for the fcc metals Al, Pb, Ca, and Sr.
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FIG. 5. Low-index crystal-face —dependent work functions
4 for the bcc metals Li, Ba, Na, K, Rb, and Cs.

We begin with an analysis of the accuracy of our
DPbSCF work functions. For the jellium surface the
error~2 is small ( & 0;05 eV) for metals with r, ~3,
b'ut rises rapidly to 0.23 eV at r, =2. The explanation
for this behavior can be found in Table I- of Perdew
and Sahni. 2 The relative error of the p'rofile-

dependent piece (ip„) of the DPESCF work function
is about the same (5%) at r, =2 as it is at r, =3, and
is considerably larger (15%) at r, =6. However, the
relative contribution of this term to the total work
function is 100% at r, =2, 40% at r, =3, and only
15% at r, =6. Thus, although the linear-potential
density profiles are actually more realistic for higher
densities, where the profile varies more slowly on the
scale of the Fermi wavelength, this effect is more
than offset by the increase in the relative contribu-
tion of the profile-dependent piece of the work func-
tion with increasing density. The same considera-
tions should apply for real metals, where the profile-
dependent piece (ip„+ip„) of the DPt) SCF work
function is roughly the same as it is for jellium.

Thus for the metals with r, & 3 we believe our
results to be less accurate than those of Monnier
et al. ' For Mg for which r, =2.65 it is unclear as to
which result is preferable. However, for the metals
with r, & 3 we believe our DPASCF work functions
are accurate. The error for r, ) 3 is possibly less than
the 0.05-eV error for jellium, since for most of these
metals (Su),„ is positive. Thus for these metals the
density profile is more spread out, and the profiles of
the linear model are more appropriate, than for jelli-
um.

These conclusions are borne out by the numbers in
Table II. For the medium-density metal Na
(r, =3.99) our face-dependent DPESCF work func-
tions agree closely (within 0.05 eV) with the change-
in-self-consistent-field results of Monnier et al. "and
with the measured polycrystallIoe value. On the basis
of this analysis, we are led to conclude that our
work-function results for the alkali metals are prob-
ably highly accurate. The perturbation-theory results
most closely approximate ours only for the most
densely packed (110) faces. This is understandable
since for these faces (Bu),„has the least value. For
the other faces, the crystal-lattice perturbation effect
is not insignificant and the differences in the two sets
of results can be as large as 0.34 eV. The Koop-
mans's theorem values, which are only correct to the
same order as the density employed, are consistently
greater than the DPb, SCF values.

As may be observed from Fig. 5 for the alkali
metals, the work functions decrease with decreasing
packing density in agreement with the Smoluchow-
ski ' rule. In fact, the calculated face-dependent
work functions for all the alkali-metal surfaces can be
described by the simple empirical rule

ipiellium
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q&min ipiellium 2
( & ) (9)

where wR is the short-range repulsive part of the ion-
ic pseudopotential. The values of 4 '" thus deter-
mined are also quoted in Table II. Whether the
above comparison is appropriate depends partly on
how the work-function measurement is performed.
Consider, for 'example, the measurement43 of the
photoelectric emission threshold, which is the
method by which these experimental results were ob-
tained with the exception of Li where the field emis-
sion method was employed. For Li we have also '

quoted the polycrystalline field emission value for
the work function given in Ref. 31. The polycrystal-
line surface is assumed to be composed of "patches, "
each patch being a certain cleavage plane of the crys-
tal. Since different cleavages produce-different work
functions, and since the work function is the negative
of the chemical potential measured with respect to
the vacuum level, when the surface is created elec-
trons must flow to equalize the 'chemical potential
everywhere. The average surface charge density of
the metal will remain zero, but some patches will re-

where %""" is the work function of jellium at the
appropriate r, value. This expression is in agreement
with the Smoluchowski rule, since the less densely
packed a crystal face the larger the value of (Sv),„.
A nonrigorous though physically plausible argument
for Eq. (8) may be obtained by considering the type
of variational density employed by Monnier and Per-
dew. '0 In their work the main effect of Sv( r ) on the
density profile is given by the approximation Su( r )

(Sv),„O(X+a —x) with X =0. The work func-
tion within this approximation is given rigorously by

Eq. (7). If we write the relaxation surface dipole
barrier as (AP)„=(h$),,ii;„+a(Sv),„, where
(d ~t )„,i„„ is the electrostatic dipole barrier of jellium,
then for X —~, o. 1, and for X +~, o, 0.
The former case corresponds to the situation where
the uniform electron gas perfectly screens the step
potential perturbation deep inside the metal, whereas
the latter corresponds to the perturbation far outside
the crystal where there are no electrons to provide
the screening. It seems reasonable, however, that
the perturbation near the surface is mostly, though
not entirely, screened. Thus we expect 0.5 ( a (1.
Equation (8) is recovered if we choose a = 9.

No comparison of our results with experimental
crystal-face —dependent work functions can be made
since the latter do not exist. However, it is meaning-
ful, at least for the alkali metals, to compare the
minimum work function qi '" (which is the least of
all face-dependent work functions for a given metal)
with polycrystalline experimental values. By cleaving
the crystal along a sufficiently high-index face for
which the interplanar spacing d 0, we can esti-
mate 2 4 '" from Eq. (8) as

ceive a small positive or negative surface charge,
which will produce a small but long-range electric
field.

First suppose that the photoelectrons are collected
at a point which is far from the surface on the scale
of the Fermi wavelength, but still close enough that
the electrostatic potential from the surface charges is

essentially still what it was on the surface at the point
of emission. Clearly electrons will first be collected
from the faces of the lowest work function, and the
polycrystalline work function will be the same as the
minimum work function.

Next suppose that instead the photoelectrons are
collected at a point so far from the metal that the po-
tential from the surface charge has reached its limit-

ing value, a constant. The energy required to remove
an electron from inside the metal to this point is the

same for emission through all patches. This polycrys-
talline work function is an average of the work func-
tions of all exposed patches

@"'"= Xfi+;lg.f; (10)

~here 4; is the work function of the cleavage
corresponding to the ith patch. The weights f, are
well defined but not simple (see Appendix B).
Under appropriate geometries, such as a plane sur-
face with a periodic pattern of patches, Herring and
Nichols44 have shown that one can use the patch
areas A; as weights.

There are only a few low-index crystal faces, while
there are infinitely many high-index crystal faces, and
the high-index crystal faces all have essentially the
minimum work function. In the alkali metals even
the (111) face has a work function within 0.05 eV of
the minimum work function (see Table II). Thus we

might expect that the average implied for the
polycrystalline work function should be only slightly
higher than the minimum work function, unless the
surface energy of the higher-index faces renders
them too unlikely to appear. In the low-density alkali
metals the (110), (100), and (111) faces all have
essentially the same surface energy and so we expect
all faces to be exposed in a polycrystalline sample.
Thus it seems appropriate to compare the minimum
work functions to the polycrystalline work function,
at least for the alkali metals. Sich a comparison (see
Table II) indicates the two sets of results to be essen-
tially equivalent.

We now analyze the accuracy of our work-function
results for the other metals. For the low-density fcc
metals Ca and Sr, for which (Sv)„can be positive
and large, and for which our variational densities are
ideally suited, we expect our results to be highly ac-
curate. Note (see Fig. 6) that for these metals the
Smoluckowski rule is satisfied. For the high-density
metals Al, Pb, and Zn our DPhSCF results are reli-
able on the scale of the work function itself (eV's),
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but probably not on the scale of its face dependence
(tenths of an eV), for reasons discussed previously
for the jellium surface. For all three faces of Al, our
work functions are within 0.3 eV of experiment. In
contrast, the three-dimensional variational calculation
of Chelikowsky et al. ' for Al (111) led to a work-
function value of 5.17 eV, a result which is substan-
tially different from experiment and from the predic-
tions of the various theories quoted here. For the
face-dependence of the aluminum work function, the
results of Monnier et al. compare most favorably with

experiment.
The three-dimensional LDA Ashcroft local-

pseudopotential calculations of Appelbaum and
Hamann2 lead to a value of 2.71 eV for the work
function of Na (100) which is even less in agreement
with our work (and that of Monnier et al. ") than the
perturbative results of Lang and Kohn. The 13-
atomic-layer-slab-geometry —LD A —nonlocal-
pseudopotential calculation of Alldredge and Klein-
man' gives a value of 3.70 eV for the Li(100) work
function. The 0.3-eV difference between this result
and that of our work and of perturbation theory (see
Table II) is as stated by these authors probably due
to the fact that the repulsive and nonlocal part of this
pseudopotential is not optimum with respect to the Li
band structure as determined by either Callaway4' or
Harn. 46 If the parameter in the repulsive part of the
pseudopotential is adjusted so as to match the band

gap of Callaway, then these authors obtain a value
within 0.1 eV of our results.

In conclusion, we believe our calculations of the
face dependence of the work function should be reli-
able for all the metals with r, & 3.

It is, of course, possible to improve on these
results, e.g. , by employing in the above formalism
more accurate variational densities such as those gen-
erated within the finite-linear-potential model. The
more difficult, but more significant improvement
would be to allow for three-dimensional electron den-
sity variations. Only small corrections to the results
would be obtained by incorporating lattice relaxation
effects. It is more important to incorporate im-

provements in the ionic pseudopotential. The Ash-
croft pseudopotential core radii are obtained by fits
either to the Fermi surface or transport properties
which are not ground-state properties. However, as
these pseudopotentials are being employed within the
density functional formalism, it appears more ap-
propriate to fit the pseudopotential core radii to
measured ground-state properties such as the bulk

binding energy or phonon frequencies. 'The use of
such modified Ashcroft pseudopotentials is also
under investigation. Finally, a moderate but signifi-
cant improvement in the calculated surface energies
and work functions can be expected when more accu-
rate electron gas correlation energies are used as in-

put to the LDA exchange-correlation energies. In
work'" examining different correlation energy ex-
pressions for surface physics calculations, it has been
observed that work functions are not so sensitive to
the choice of correlation, varying only 0.1 —0.2 eV
from one choice to another, whereas the surface en-

ergy results can vary more significantly.
We have recently become aware of work by

Bohnen and Ying, ' and by Rose and Dobson, ' who
have calculated surface energies and work functions
allowing for three-dimensional density variations.
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APPENDIX A: MAHAN-SCHAICH DERIVATION
EXTENDED TO REAL METALS

In this appendix we extend a derivation of the
work function, originally given by Mahan and
Schaich'0 for jellium, to include the crystal lattice via
local ionic pseudopotentials. The derivation is simple
since it employs the local density approximation for
the exchange-correlation and kinetic energies, but the
results are formally the same as those obtained from
the full derivation' of the DPASCF expression for
the work function, which does not require any local
approximation.
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The ground-state energy of a system of Ã electrons interacting with static ions via a local pseudopotential w( r )
may be written as a functional of the electron density p( r ) within the local density approximation as'

E~[p] = Jtdr p(r)ar(p(r))+Jtdr [—, V„(r)+gv(r)]pr(r)
t

+ Jl dr X~a((r —i ~)p~(r)+-2 Jt J/dr dr'
] r —r

Z2—Jtdr X p+(r)+ —,
'

r —l --i
( l —l], ]

(Al)

pr(r ) = p( r ) —p+(r )

, p, (r )
Sv(r) = Xco(~ r —I ~)+ Jl dr

4= [ V„(m) —V„(a)]—ar

+ I dx — 8~ &
'l dp(x)

dx
, P

which is identical to Eq. (3) for C o'asc".

(A7)

Ail the various symbols and terms of Eq. (Al) are
defined in the text. Now in order to-determine the

work function 4 which is defined ' as

4= [ V„(~)+E~ t] —Eg (A2)

we need to obtain the difference between the ener-

gies of the %and N =1 electron systems. Prom Eq.
(Al) we obtain

E~ —E~, =J) dr p (r) + V„(r)+gv(r)
0 par

8p

(A3)

where p ( r ) is the infinitesimal change in the densi-

ty between the neutral and charged systems when an

electron is removed to infinity. [The contributions of
the terms within the larger parentheses in Eq. (Al)
vanish in Eq. (A3) since they remain unchanged
when an electron is thus removed. ] lf we now

choose the same form for p ( r ) as suggested by

Mahan and Schaich

p (r)=—,JI p (r)dr =ldp

pJ dx

Consider a sample with plane crystal faces labeled

by the index i. The total energy F. of this sample
may be written as

t

E=aQ+XA; E, , +q, X, +-,' Xy„.X,. X, (8l)
I .l

~here 0 is the volume and e the bulk energy densi-

ty. For the facet i, A; is the surface area, X; the sur-

face charge density, E„ the surface energy when

X;-0, and 4;=dE, ;/dX;~q 0 is the work function

when X; =0. The X;, arise from long-range electro-
static interactions and so may depend in a complicat-
ed way on the size and shape of the sample. Howev-

er, F., ;, 4;, and X;; are independent of the X;. The
X, are determined by minimization of the energy F.

subject to the constraint that the total surface charge

(82)Q = XA;X;=0
I

On introducing a Lagrange multiplier 4, the result of
the variational minimization

APPENDIX 8: POLYCRYSTALI. INE %'ORK FUNCTION

dx —— V„(x)= V„(a)
d.p.

. dxp
(A5)

where A is the surface area of the sample, and em-

ploy the identity

5(E —@Q) =0
or equivalently

d E-q XW, X, =0,
dX;

fs

(83)

(84)

we have

Ew-E~-~=ar(»=- )+ V..(~)

l dp(x)+ dx —— Sv(x)
dxp

(A6)

XX(,X, =4 —4&;

from which, employing the identity

X(x ')„;(x(,) =5„, ,

(85)

(86)
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(87)

@- X&ic')/Xfj

~here

f, =xA;(x ')„"

(88)

(89)

we obtain

X, =X(X-t)„(d -d, ) .

Substituting Eq. (87) for X; into Eq. (82) leads to

The Lagrange multiplier 4 can easily be identified as
the work functiont~ since from Eq. (83) @=dE/dQ.

For simplicity our derivation of (BS) has assumed
a uniform (or lattice periodic) surface charge density
on each facet. The same derivation can be made if
the surface charge density varies slowly over each
facet, i.e., if each facet can be divided into portions,
large on the microscopic scale, over which the surface
charge density is essentially uniform.
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