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Low-temperature specific heat of a thin film
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On the basis of a simple model of a simple cubic crystal, calculations are carried out of the low-temperature specific
heat of a thin film ofI. layers bounded by two free (001) surfaces. The specific heat is given as the sum of four terms,

namely: C' '(T), C"(T),C"(T),and C"(T),corresponding, respectively, to the bulk specific heat, the two surface

specific heats, and a term which depends on the proximity of the two surfaces.

I. INTRODUCTION

There has been a great deal of interest in recent
years in studying, both theoretically and experi-
mentally, the thermodynamic and electromagnetic
properties of thin films. The great interest, no
doubt, has been stimulated by the enormous variety
of technological applications of thin films. On the
basis of a simple model of a simple cubic crystal,
calculations are carried out of the low-tempera-
ture specific heat of a thin film of L layers bounded
by two free (001) surfaces. The specific heat is
determined as the sum of four terms, namely,
C ' '(T), C '"(T),. C"'(T) and C "''(T) corres-
ponding, respectively, to the bulk specific heat,
the two surface specific heats, and a term which
depends on the proximity of the two surfaces. The
lattice model which we have chosen to use is the
so-called Montroll-Potts model of a simple cubic
crystal with nearest-neighbor, central- and non-
central-force interactions between atoms. ' It is
well known that this model does not satisfy the con-
ditions imposed by the requirements of infinitesi-
mal rotational invariance'; it does not give rise
to Hayleigh surface waves; a film based on it also
does not possess the plate modes in the long-wave-
length limit predicted both by continuum theory'
and by lattice theory. 4 These deficiencies of the
model notwithstanding, exact calculations on this
model and ones similar to it have predicted many
interesting characteristics of the lattice vibra-
tion frequency spectrum which have pointed a way
to the understanding of the frequency spectra to be
expected from more realistic models. An out-. .

standing example of this is Montroll's' calculation
of the frequency spectrum of a square lattice
where he demonstrated exactly that the frequency
spectrum contains singularities. Van Hove' later
showed, using a theorem of Morse, that the sin-
gularities were a consequence of the periodic na-
ture of the dispersion relation (()(q). Although
much work has been done' on calculating the sur-
face specific heat on the continuum level and nu-

merically on lattice-dynamical models we are not
aware of any attempt to calculate analytically the
specific heat of a thin film for a lattice even as
simple as the Montroll-Potts model.

Our method is first to obtain the dynamical
Green's function for a thin film of a Montroll-Potts
crystal, bounded by a pair of (001) free surfaces.
This result is then used directly to calculate the
specific heat of a thin film.

Note added in Proof. The Montroll-Potts model
does give rise to Rayleigh waves if the interlayer
bonds are not normal to the surface, as in the
case of a (110) surface. See S. L. Cunningham,
Surf. Sci. 33, 139 (1972).

II. DYNAMICAL GREEN'S FUNCTION
FOR A CRYSTAL FILM

The dynamical Green's function for a crystal
film has been obtained by Maradudin. ' The de-
rivation is described in detail in Ref. 9. For com-
pleteness, we describe the model of the film being
used.

We construct the film in the following way. We
begin with an infinitely extended simple cubic
crystal whose lattice translation vectors are given
by

x(l) = a, (l„l„l,),
where g, is the lattice parameter, and l„l,, l, are
any three integers, positive, negative, or zero,
which we denote collectively by l. We then excise
a film of I. layers by equating to pero all inter-
actions between atoms in the plane l, =0 and atoms
in the plane l, =1 and between atoms in the plane
l, =L and atoms in the plane l, =L+1, and then
restricting l, to assume only the values 1 &13

The time-independent equations of motion of the
infinite crystal perturbed by the annulment of the
interactions between the layers l, =0 and l, =1
and between the layers l, =L and l, =L+1 can be
written in the form

(L(0) gL(1), fl (2))u —0
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where the elements of the matrices L"', 5L"', and 5L""are given by

+'r(6« &5«-5«+6«"i~« 6~» +6«6« ~ &~, ,11223311+22331122 l3l3

+6 .O, , S,+O,O,e, +all l2 l2 l2+1 l3l3 l1 l1 l2 l2 l3 l3-1 l1 l1 l2l2 l3 l3+1 l1l1 l2 l2 l3 l

where M is the mass of an atom in the crystal,
and y is the nearest-neighbor force constant. To
simplify the Montroll-Potts model further, we
have assumed that the central- and non-central-
force constants are all equal. In these expressions
n and P label the Cartesian axes. The matrix
L' " describes the vibrations of the infinitely ex-
tended crystal, 6L"' subtracts the interactions
between the planes l3=0 and l3=1, and 5L"' sub-
tracts the interactions between the planes l3 I.
and l3=L+1.

We now define the Green's function G ~ and
U z(ll', a2) as the solution of the equation

(L&» 6L&» 61,&»)U=f.

Equation (1) is solved by assuming that

U (tf I ~ ~2) — ™BQU(k ~ [ f tt)sikf} &x[f &&)-x„&I )0 '(2)
N2 II ( 33

k~,

where k, =x1k1+x2k2 is a two-dimensional wave

vector parallel to the surface, and where', and x2
are unit vectors in the 1 and 2 directions. We assume
periodic boundary conditions in the 1 and 2 direc-
tions, with the periodicity element being a square
with edges of length Ng0 along each of these direc-
tions. The N'. allowed values of the wave vector
k„are therefore given by

27r N Nk„= (m„ma, 0), ——+1 &m, ; m &—, (3)
0

where m, and rn2 are integers. The area swept
out by the allowed values of kj) is the two-dimen-
sional first Brillouin zone for this problem.

It is shown in Ref. 9 that

1 ) '3 '3 " 1 g'3"3
U(k &oil l') =- — +- +— (t '»+ +t 3+ ~+t 3 3+t 3 3 &)

y' t —1 yt —1 yP —11—P~ (4)

where

and

(g2 ])1/2 g)]
t = /+i(l —l )'~2, -1& g& 1

C+ (C'-1)'",

&
= 3 —cosk g —cosk g ——v .M

1 0 2 0

(5a)

(5b)

(5c)

(5d)

I

of the sth normal mode, and the sum on s runs
over all the normal modes of the crystal. In the
limit of low temperatures, when P is large, it is
convenient to expand the summand on the right-
hand side of Eq. (6) in powers of exp(-Pk&u, ), in
which ease we obtain

C„(T)=ks Qn Q (PR(u )'e
n=l

III. THE LOW-TEMPERATURE SPECIFIC HEAT'
OF A,THIN FILM

To evaluate the sum on s in the expression we
introduce the function E(z) of the complex variable
z by

In this section we utilize the results of Sec. II
to obtain the low-temperature specific heat of a
thin film. What is meant by low temperature will
emerge in the course of this discussion.

In the harmonic approximation the specific heat
of a crystal is given by

C (T) =k
sing —'p (6)

where P=(ksT) ', with T the absolute temperature
and k~ Boltzmann's constant, ~, is the frequency

z(z) =Z, (8)

C.(T) = '. gn ~

z'e "'"'Z(z)dz, -
WS n-1 + Cl

This function has simple poles at z =we„with
residues sl/(2u&, ), respectively. Because only
positive values of the {m,J appear on the right-hand
side of Eq. (7) we can rewrite the sum on s in this
equation in the form of a contour integral involving
the function F(s),
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where the integration contour is shown in Fig. 1(a).
The presence of the descending exponential in

the integrand in Eq. (9) means that we may deform
the integration contour into the contour C, shown
in Fig. 1(b), and we know that the contribution
from the infinite semicircle vanishes, so that we
are left with an integral down the imaginary axis.
With the change of variable z =iy we obtain for the
specific heat the result

ks Ph)
C„(T)= g n

~

y'E(iy) simzPhy dy . (10)
7l'

ft l N«OQ

In obtaining this result we have used the fact, evi-
dent from Eq. (8), that E(iy) is an even function
of y.

Since n in Eq. (10) is always greater than or
equal to unity, and since P is large at low tempera-
ture for the calculation of C„(T) at low tempera-
tures we require the asymptotic behavior of the
integral

00

y'E(iy) sinnpfiy dy
4 «aO

in the limit as nPS-+~. The theory of the asymp-
totic behavior of Fourier integrals" yields the
result that the large-nPS behavior of the integral
J is determined by the singularities of the function
y~E(iy). It can be shown easily" that the function
E(iy) can have its only singularity at the point y =-0.
Qur task, therefore is to determine the nature of
the singularity in E(iy) at y =0, from which the
asymptotic behavior of the integral J can be infer-
red from tabulated results.

We are aided in this task by the observation that
it is a general result from the theory of the effects
of defects on the vibrations of crystal lattices

V n

2- PLANE

(a)

V V V V V
IL /'\

, = E(&u) =M Z U, (/I
l
uP),

1

te
(12)

in the case of a Bravais crystal in the presence
of a defect that changes none of the masses of the
constituent atoms. This result, together with
Eqs. (4) and (5) enables us to write

FIG. 1. (a) Path of integration for the line integral in
Eq. (9) which encompasses all of the positive poles of
E(g). (b) Deformed semicircular path along which the
line integral in Eq. (9) is actually calculated.

N N L

E(gy)= ~, QQ QQ U(k„iylV )
El=i gg=l )3=1 k))

17)) l3=1

where now

(tR I )1/2

because

(14)
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+ 3 —cosk~g( —cosk2Q0 & 1
My'
2y

We carry out the sums on /, and replace summation on k by integration over 8, and 8, according to

(15)

k,a0 = 8„
to obtain

k2a0 = 82, -W ~ 8~, 82 ~ m, (16)

3M ' ' t 3M .2
' ' t2 3M ' ' t2

F(fy) = —
2
—N'L d8, d82 2

—
2 N d8, d82, 1 2,2

—
2 N d8, d8~ (1,)2

6M " ' t t'i
r'y

N2L d8 dg—1 21 t21 t2I
0 0

where P is now given by

+3 —cos8 —cos8 .My2

2y 1 2'

(17}

The first term in Eq. (17), E's}(iy), is the bulk contribution; the second and third terms, E "}(iy), are
equal to ea,ch other, each representing the contribution associated with the presence of a, single, bounding
surface on the crystal, i.e., it gives the surface contribution for a semi-. infinite crystal; the contribution
given by the last term, E ~"(fy), has its origin in the presence of the second surface, and describes the
effects of the interference between the contributions associated with each surface separately. We will see
that this term vanishes as the number of layers in the film, L, increases without limit.

We consider each of these' several contributions in turn. The function E' s(i}y) is given by

F' }(fy)=— NL d8, d8 = — NL d8, d8(). 3M ' ' t 3M

f f
d8, d8 d8

2 y v', ', ', 'My'/2y+3 —cos8, —cos8, —cos8, ' (19)

where we have used successively the fact that

t 1
P 2(P 1)}~2 (20)

by

1 }' cosl8, [t —(g —1)'~2]"'
CN3 — — —-2

v g,
' t' —cos8, (g' —1)'" (21)

The first few terms in the expansion of the
three-dimensional integral of Eq. (19) have been
obtained in Ref. 13. The result is

F"'(fy) ---—N'L 0.5o546- —
I ~y ~

(~} . 3 M 2 1 34 t

—0.01'4 625 —y2
2y

1 M~~
+ — ——2I [yf +O(y) .

(22)

The singular terms in this expansion are those
containing ~y (, ~y )', . . . . With the aid of the re-
sults of Ref. 10, we find that the leading terms
in the large nfl expansion of the integral J, Eq.
(ll), associated with the function E's'(iy) are given

where the frequency ~0 is defined by,

-y—
40 =—= ~Q)2 — 1 2 (25)

and ~~ is the largest normal-mode frequency of
the Montroll-Potts model. We note that 3N2L is
the total number of degrees of freedom in the
film.

We turn now to the determination of the small-

~y ~
behavior of the function F "}(iy), or more

precisely the singular part of this behavior. We
have that

(23)

Substitution of this result into Eq. (10) yields the
first two terms in the low-temperature expansion
of the bulk specific heat of the Montroll-Potts
model,

C,' '( 8 }}L}}}(")+—
(

— -) +

(24}
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3N' "' "' t2 3 2P f' ' 1F (zy) 2 2 l del d82 I1 f212 4 2 2 Jl del d82 2
m (u00 „, ( -t) m 0

pP et 1 1
2 2 1 2 2 2 2ss' n' ., ' ) ' «tc'+1 —cons, —coss, s'/sn' +4 —coss, —cons, ) ' (26)

It is clear that the function defined by the second integral has derivatives of all orders at y =0. The sin-
gular part of F(8)(ty) can arise only from the first integral, which we rewrite as

PP 1 t' r t)
~ 2' t' (2O y2F")(iy) =- ——— d8 II de dt exp -t — +2- cos8 —cosesing 8 (d2 +2& lg 2 „ 248 1 2

0 0 0 0 Ls 0

S ~ J)
~)sso — 2,.+Sl) );(C)=-—, ~ )s,,«n, » )s,,&cn,), (2V)

here K(k) is the complete elliptic integrai of the
first kind.

We now use the fact that K(k) has the following
expansion in the vicinity of k =1 (Ref. 14}:

K(k) -- (1+—,k"+ x2rk" + ~~' k'8+ ~ ~ ~ ) ln-t2 9 I4 25 is k'
4

where

lk 2+ 21 k 8+ 185 k 8+.. . , }Xgf 1536 (28}

k) —(1 k2)i/2

In the present case

y' 1+y'j8&u',
2(d8 (1 +y /4(d8)

ki y 1 y + yI I

21/2N 16M02 512~04

The singular part of F")(iy) can come only from
the terms in the first line of Eq. (28). Combining

Eblis. (2V), (28), and (29) we obtain finally that

2 4

8oP 8' 8

(29)

When we substitute this result into E(l. (10) we
obtain as the surface contribution to the low-tem-
perature specific heat of the semi-infinite Mon-
troll- Potts model,

k IkT2 4
C „'*)(T)-328~ 6$(3)~ + 15$(5)

8m (5v 5(d

km'
+630&(V) 8 + ~ ~ ~

@~0
(31}

It follows from the results of Ref. 10 that the
leading terms in the large-nPI expansion of the
integral d, E(l. (11), corresponding to the function
F")(2y) are given by

(,) 2~+2 ( 6m 15m 630m
ss(l, (npl)tc )' (ng))n )' (nplfn )' ) '

(30)

We look for the singular part of Fe8)(ty). Since
it does not appear possible to calculate the inte-
gral in E(l. (32) by straightforward analytical
methods, we resort to an approximate procedure.
We note first that t lies between 0 and 1, no matter
what the value of y, and is equal to 1 only when

y =8, =82=0. The minimum value of f occurs at
8, =8,=0. Consequently we see that the integrand
in Eq. (32) is strongly peaked at the origin

(y =8, = 8, =0) and decreases exponentially with I,
as one moves away from the origin. It woul. d ap-
pear legitimate, therefore, for large I., to ex-
pand the integrand around 8, =8,=0.

Letting 8, = r sin8 and 8, =r cos8, we expand t
and g around 8, =8, =0 to get

r2
f =1+b+—+Rl(r, e),

2

l2- 1 = b'+ 2b+ (b+1)r'+R, (r, 8),
with

(33)

R, (r, e) -O(r'),

R,(r, 8) O(r'), -

t =1+b+ +R,(r,e)—r2

—[b +2b2+ (b+ l)r +R2j'~2, (34)

where

The leading term in this expansion had been ob-
tained previously by Dobrzynski and Leman. ."

We come finally to the contribution to the specific
heat rising from the presence of a second sur-
face. The function Fe*'(iy) is given by

3~2' r +

( y) 4 2 2 d 1 Jl 2 ( 1+t&L)(g2 1)1/8 '



t-31 —e-2L 1nf (35)

Since we are interested in the singular behavior

2 400

V'fe need further to substitute for t '~ in the inte-
grand of Eq. (32) which we rewrite as

of E""(fy) which occurs at y =0, we expand ln to
give

lnf =-[b'+25+ (b+1)r']-—— — +O(r') . (38)2 2

Substituting for Inf from Eq. (36) and for g~ —I
from Eq. (33) into Eq. (32) we obtain

Sb/~L r dr48
4v'&u~~ . (exp [-2L[-u&/~ ——,'b' —&be + O(r')])- l)u'" ' (37)

u = [b'+2b+(b+1)r'+O(r') j.
Since to order r', the integrand in Eq. (37) is

independent of 8, we can integrate over 8 (0 to 2&/)

and extend the integration over x to infinity since
J.» ]..

%'e now expand the term in bold parentheses in
the denominator of Eq. (37) as follows:

Note that the first integral E&e"(iy) in Eq. (39) is
singular at y =0 while the second integral Ebs&(fy)
and, therefore, the rest of the terxns in the series
of Eq. (39) are zero at y =0. We now treat these
integrals with y c0.

In E,""(iy), we make the change of variables

g = [b~+ 2b+(b+1)r']'",
(40)

e e e( b I 2Jt4 2L fbr~12+0(t )3 &J) «

(e/, 2 z ea/u&/2 I )

(38)

to obtain

&~,&(. )
SLAV L "" dZ

3' 2~~8 '

«(2 e $2L eR+s
0 " (5~+35)'

, [2LZ —ln(e' ~e'~x —1)] ~,
"(p„,&&/2

4m ~',
Substituting Eq. (38) into Eq. (37) we obtain

Sb/'L " rdr
( y 2&/~2 (e &R/ em/gl/2 1)ul/2

3¹I dr QY31 e ~~e2~~
+ + ~ ~ &39)

2w(u,' (e~ze»~" —1)'u'"

3N
ln (1—exp{-2L [(b'+ 2b)'"+ —'b']})

4m'(O02

(41)

Substituting the above expression for E&
* (fy) into

Eq. (10) we obtain

b e(P)l)'SN
C„~&)&

= e» n y' ln(1 —exp[-2L[(b'+26)'/'+ —,'b'])) sinnphy dy .
m'o

We now expand the ln in Eq. (42):

ln(l —expj-2L[(b2+2b)' '+ 2b']]) =ln(l —e I)

e '~~2~(l —exp[-2I, ~2b (v'1+b/2 —1+b' /2v/2b )]j
(+ln 1+—

Note that the first ln in Eq. (43) is singular at y =0, while the second In vanishes at y =0.
Substitute Eq. (43) into Eq. (42) to obtain

Sk Ph)~N~ t'"
C„e&,'I= e 3, Qn l~ y'ln(l —e'~~2') sinuPhy dy

4&/ 400

She(PR)'N'~ "", e '~ "(I— p[e-x2L 2b v( l vbi2+—1+ b'j2v'2b )]] sinnP@y dy .4~ ~o' nx 1-e

(43)
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The integral inthe first sum of Eq. (44) can be done exactly. The integrand in the second sum is analytic
at y =0 and, according to Lighthill, '0 gives no contribution to the low-temperature specific heat.

Before proceeding with the exact calculation of the first sum of Eq. (44), we show that E,"5}(iy) from Eq.
(39) gives no contribution to the specific heat at iow temperature. We have

3NI. ""dhbHI e e
(45)

Again we let e = (b'+25+ (b+ l)r'}1" Then

3N L, ""b 55z, (e' —b'- 2b)e'~'ds
2FII}0 w (55 55+}1/5 (e} & e 1) (1 + b}

%'e integrate by parts to obtain

3¹I.'6,"" . 2zdg 1Eus}(f ) -+ w~', 5„„}i5e&&e'~' —1 (1+b}5

(46)

The integrated part vanishes.
Since the integrand in Eq. (47) is finite at Z=0, we can set the lower limit on the integral to zero. The

integral can be evaluated as a poorer series to give

E~"(iy) = (1+-'e ' ~+ ' e "z+ ~ -)3Ã~b

Sm v'e ~'L
0

Substituting Eq. (43) into Eq. (10) we obtain

(48)

C""= n
I

y'be +z(l+-'e ~~+" e "z+ ~ ~ ~ )sinnpaydy.
0 et=i

(49)

According to Lighthill, ' the asymptotic expan-
sion of

f E(Q) EII (Q) EIIII (Q)E(y) sln2'1rxy dy ~
2 (2 )5+ (2 )5

+ ~

Comparing Eq. (49) with Eq. (50) we see that

E(y) y5 e-III}

and that all even derivatives of E(y) evaluated at
y =0 are zero. Consequently C""=0 in the lom-
temperature limit.

We have, therefore, that C„"5}(T)reduces to the
flrs't slllll ill Eq. (44), wlllcll ls

l„}( )
3ks(ph)'N'g

0 4@8~20 n=l

E„= y' ln(1- e ~~ ")sinnPky dy
a oo

It is interesting to observe that as g0-~ or
O that

2 +6g 0

which gives, in this limit, a contribution to the
specific heat given by

(53)

Equation (53& is not valid for large I since co must
be large. In the limit of large 1., the sum in Eq.
(51) can be converted to an integral which can be
shown to be

with

{d0 12 7 t 1 2cosh cF
g (slnh Q~+ - sinh Q ~p

3g' cosh& „~
g~ sinh q„g &„sinh f„g
3m cosh&„m
&4„sinh&„g

where E(e) is E (s) given by Eq. (52), dropping the
subscript n.

The first term in Eq. (53} (more than) cancels
all of the leading term in the bulk contribution
[see Eq. (24)] while the second term is exactly
equal to the leading term in the surface contribu-
tion, given by 2C„'"(T).

We have finally for the total specific heat of a
thin fi1.m at low temperature,
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FIG. 2. Separate contributions to the total specific
heat for a thin film of ten layers. Note that the inter-
active contribution (C'~2~~ is magnified 100 times compared

to the bulk and surface contributions.

IO I5 25

FIG. 4. Plot of the interactive contribution C «2') to
the specific heat for a fixed temperature as a function
of film thickness showing the expected vanishing of this
term as L increases.

C (a) (Z ) + 2C l s) (Z ) +C ls sl P )

FBI k B IBNT ', 3

Esses

g use 1 2 coshse„w 3mB 3l/s coshs„ll 3l/ cosh'„N
15 5'&us 16 l/'I, ' „,, n sinh'&„l/ sinh e„l/ e„sinh'e„lT sinh'e„B s'„sinhc„g, '

(53)

0.0I 0.02 0.03

k s T / tl 4/o

0.04

rn Fig. 2 we have plotted C„'~&, 2C„"', and C""
as a function of the temperature for a thin film
of ten layers. Note particularly the maximum in

C„" &. In Fig. 3 is plotted the total specific heat,
C„(=C„'B'+2C„"!+Cts")as a function of tempera-
ture for the same thin film. The maximum in
C„""leads to a bump in the total specific heat
which should be observable with available ex-
perimental techniques. For an insulating layer
whose Debye temperature is 100 K, the bump
should be observable in the temperature range of
one to two degrees Kelvin.

In Fig. 4 is plotted C„""versus the thickness of
the film for a fixed temperature. The contribution
to the specific heat of the term becomes negligible
for a film of the order of 30 layers.

There is no reason to expect that the bump is
related to the model crystal which has been in-
vestigated here. Such an interference term be-
tween the two surfaces of the film represented by
C„""should certainly be present in more realistic
models.
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