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Calculation of the formation entropy and diffusivity constants for the vacancy in Mg
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By assuming a pair interatomic potential which reproduces some Mg properties, we calculate the formation

entropy for a vacancy in. an hcp lattice. A value of that entropy between 1.5 and 2k is obtained at variance with

previous experimental findings which favor a very small value. By a quasistatic computer-simulation approach the

migration energies for the vacancy on different lattice directions are also calculated; two different potentials are used

for this calculation. Subsequently migration entropies and diffusivities are evaluated. A good agreement with

reported experimental values is obtained, Diffusion in hcp structures is space anisotropic, and the relative influence

on this anisotropy of the migration energy with respect to the entropy is discussed.

I. INTRODUCTION

The study of the micro- and macroscopic be-
havior of hcp metals is always involved, due to the
intrinsic crystal anisotropy. This anisotropy is
generally enhanced as the lattice-parameter ratio
c/a separates from the rigid-sphere packing value
[c/a= (8/3)'~']. However, even for Mg, with a
c/a ratio of 1.6237, very near the ideal one, the
value of most physical quantities depends on the
crystal orientation. For example, Janot et al. '
tried to obtain the vacancy-formation energy and

entropy by measuring the macroscopic and lattice
thermal dilation of Mg single crystals. These
authors found not only a strong anisotropy in those
dilations but they inferred a formation-energy val-
ue for the vacancy of 0.58 eV which differs strong-
ly from those deduced previously by resistivity
measurements' and diffusivity. ' These latter
values are larger, in the range of 0.78-0.$3
eV. Also Janot et al. report a very small vacancy-
formation entropy (0+0.3k). This value is, how-
ever, very difficult to determine experimentally
even for the comparatively isotropic cubic metals
where the formation energy for the vacancy is rel-
atively well known. In Mg, single-crystal diffusiv-
ity measurements are reported by Shewmon' and
Combronde and Brebec. These authors found that
tracer diffusion in a direction perpendicular to the
crystal c axis was faster than in the parallel di-
rection. Shewmon attributed the difference to the
entropy contribution in the vacancy migration. By
contrast, Combronde et al. , basing their consid-
erations on a simple model, ascribed it to a dif-
ference in migration energies. This anisotropic
behavior of the self-diffusion coefficient is larger
for other hcp metals with a different c/a ratio
(see Adda and Philibert' for a review).

A deeper theoretical understanding of the statics
and dynamics of the relevant lattice defects there-
fore seems necessary in order to clarify the above

experimental findings. This involves the develop-
ment of detailed atomic models which, although
more or less empirical, retain enough informa-
tion about some lattice properties and above all
about the proper lattice symmetry. As we have
argued in a previous paper' the similarity between
lattice defects in fcc and hcp metals may cause
one to overlook some relevant differences. On the
other hand, as discussed by Batcher et al. ,

' the
theoretical predictions of the vacancy-formation
entropy, even in a well studied metal such as Cu,
give widely diverging results and, as pointed out
by Lidiard, ' the calculation of migration entropies
has been, relatively neglected in the literature.
Hatcher et al. recently performed a self-consis-
tent pair-potential calculation of the vacancy and
divacancy formation energies and entropies to-
gether with the self-diffusion constants for cubic
Cu and &-Fe. A similar study is reported here
for the vacancy and its migration in the hcp Mg.

The distortion around the vacancy in the static
Mg lattice has already been calculated by several
authors. ' In the paper of Tome et al. two dif-
ferent pair. interatomic potentials were discussed.
Both have a relatively snort range; one, called EP
hereafter (for "empirical potential" ), is a cubic
spline chosen to give a vacancy-formation energy
of 0.8 eV and to reproduce approximately the Mg
elastic constants, while the other, SP (for "pseu-
dopotential"), is based on the ion interaction part
of the optimized pseudopotential deduced by Appa-
pillai and Heine. ' However, the vacancy-forma-
tion energy calculated through this potential is
0.24 eV, ' the rest in principle being contributed by
the electron-gas volume-dependent term. For the
EP the rigid-sphere packing c/a ratio is adopted
while for the SP c/a = 1.6237. In most of the cal-
culations reported below the EP is used because
of its shorter range that allows for quicker con-
vergency and its appropriate adjustment to the
vacancy-formation energy. The SP is only used
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for making comparisons at constant volume.
The plan of the present paper is as follows. In

Sec. II we calculate the vacancy-formation entropy.
Then in Sec. III the vacancy diffusivity in the hexa-
gonal-close-packed structure is discussed and the
migration energies and entropies as mell as the
isotope factors are calculated for Mg. Finally the
diffusivity is calculated and in Sec. IV the theoreti-
cal findings are compared with the experimental
ones.

II. VACANCY-FORMATION ENTROPY

A. Theory

Here we follow the work of Hatcher et al.' The
entropy S is there divided into a vibrational part
S" and an electronic contribution 8'. They found
the electronic contribution to be negligible except
for materials with a.large density of states at the
Fermi energy. We concentrate then in the vibra-
tional contribution. The formation entropy for the
defect is

( Qf 3N

s, =s,"=—in' ",I[ (ru', )' U ( .)'),
in the classical limit of high temperatures, where

refers to the & eigenfrequency of the defect
lattice and ~' to that of the perfect lattice. As, by
forming the vacancy, the atom at the now vacant
site is transferred to the surface, both lattices
contain the same number N of atoms and therefore
3N eigenfrequencies. Some authors have calcu-
lated (1) for the vacancy in Cu within an Einstein
approximation, "' where each atom is allowed to
vibrate in the potential mell created by the equi-
librium configuration of neighboring atoms. How-
ever, coupling terms may make a large contribu-
tion to the entropy. " Also the appropriate lattice
relaxation and boundary corrections may be rele-
vant. Batcher et al.' favor a determinant method,
which includes coupling terms and lattice relaxa-
tion and in which

hcp lattice, ' are used for the entropy calculations.
Within that region, N atoms around the vacant site
are allowed to vibrate while the remaining atoms
are held fixed at their relaxed sites. Both the
Einstein approximation, Sec. IIB, and the deter-
minant method, Eq. (3), Sec. IIC, are used in
order to calculate the entropy. A comparison of
the results obtained by either method allows us to
assess the relative influence of the coupling com-
ponents. The results are extrapolated to N- ~;
therefore, within the validity of that extrapolation,
long-range effects are explicitly included in the
calculation.

B. Einstein approximation

If only a first-neighbor-range interaction is al-
lowed in the unrelaxed lattice, then the equation
for vacancy-formation entropy agrees with that
deduced, under the same assumptions, by Hatcher
et al.' for fcc lattices,

Here f, and f, are, respectively, the longitudinal
and transverse force constants. For the EP at
the first neighbor f,/f, = 9 x 10 '. Under the as-
sumption f, = 0, Eq. (3) is potential independent and

S,"=1.73k
If the defect-lattice configuration which results

from computer simulation' is adopted, Eq. (1) can
be calculated within the Einstein approximation by
allowing for the vibration of, N relaxed atoms, each
one within the potential mell created by all neigh-
bors within the EP range. 'The calculated values
depend on the number N of atoms. Some of these
values are reported in Fig. 1 as a function of 1/N.
The entropy seems for large N to average a value
of Sf= 1.55k which is 10% smaller than the one
obtained assuming first-neighbor interaction and
no relaxation.

S,"=—In(detpo/detp),

P being the 3N x3N force-constant matrix of the
perfect (P') and defect (p) lattice. The'influence
of elastic and surface correction is also discussed
in Ref. 7 and it will be considered by us below
(Sec. IIC).

We shaQ next, in Sec. IIB, deduce an explicit
expression for the vacancy-formation entropy in an
unrelaxed hcp structure within a first-neighbor
Einstein approximation. Thereafter, the atomic
coordinates, obtained by allowing numerical re-
laxation of a region with approximately 2000 atoms
held together by the EP and bounded by a perfect
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FIG. 1. Formation entropy of the vacancy as a function
of 1/N, where N is the number of atoms allowed to vi-
brate. ~: Determinant approximation, Eq. (2). +:
Einstein approximation.
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C. Determinant method

By using Eq. (2), where the determinant of the
force-constant matrix for N atoms within the re-
laxed lattice region must be calculated, the col-
lective vibration modes of those atoms are ex-
plicitly included in the calculation of the vacancy-
formation entropy. The main difficulty with this
method is computer storage and time. For ex-
ample, our present computer facility does not al-
low us to handle more than approximately 250
atoms. Even then, the calculation for that number
of atoms requires the evaluation of the determi-
nant of a 750 && 750 matrix.

Perfect and defect lattice differ in (i) the vacant
site at the origin of the last one, plus (ii) an extra
atom at the surface and (iii) the displacement of
all remaining atoms for minimizing the energy.
Although both lattices show equal numbers of vi-
bration modes, equal-size finite regions which in-
clude the origin lack three vibration modes in the
defect lattice with respect to the perfect one. As
(detp) depends on the size and shape of the region,
equivalent regions for either lattice have to be
used for calculating S, and the difference in the
number of normal modes has to be either weighted
or the lacking modes properly included. However,
the influence of three modes is smeared out for
large N and the error introduced for any approxi-
mation adopted for those modes should be small.
Hatcher et al. ' propose to evaluate the determinant
for the available atoms within a region and then to
multiply the perfect-lattice ln(detg') value by
(N —1)/N. The same approach is adopted by us in
what follows. Also, the above-mentioned authors
show that the calculated formation entropy for N
atoms S,"(N) converges to the one S,"(~) for an in-
finite number of atom as

to correct the above-calculated constant'-volume
entropy (more accurately the constant lat-tice
parameter entropy) with respect to the 'true, "
constant-pressure, formation entropy. (This rela-
tion was pointed out to us by Lidiard, and it is al-
so reviewed by Flynn. ) In (5) E stands for the
experimental bulk modulus and & for thermal ex-
pansion while &t/' should be the calculated relaxa-
tion volume. We have found that, even for the va-
cancy case, there is always some error in deter-
mining that volume. " However, for the EP calcu-
lations by using the method proposed by Schober
and Ingle, ' a value of 4V/f1= -0.1 is obtained;
therefore we calculate for (S, ~r —S,

~
«) = —0.16k.

III. VACANCY DIFFUSION IN AN hcp CRYSTAL

A. Diffusivity in hcp lattices

The diffusivity in an hcp lattice is anisotropic.
If diffusion takes place by a vacancy mechanism
the tracer can either jump to a vacant site lo'cated
in the same basal plane, with a rate &~,, or to one
located outside that plane, with a rate &~ . In Fig.

0

Q2

Q]

Q3

S,"(N) = S",(~) + const/N . (4)

In Fig. 1 we plot the values of Eq. (2) with the
above-mentioned correction against 1/N, the in-
verse of the number of atoms included in the cal-
culation of detp. Although there is some influ-
ence of the region shape for different values of N,
it can be seen that P(N) approximately converges
to a value S,"(~)=1.97k.

The vacancy-formation entropy calculated above
should be accurate for a crystal of approximately
5000 atoms (these included in the relaxed and un-
relaxed regions for the computer simulation), hold
together by the EP with a disPlacement free sur--
face. Real crystals are generally larger and
bounded by a force free surface-. Eshelby, as re-
ferred to in Ref. 13, suggests the thermodynamic
relation

(5)

(b)

Qp

C2

FIG. 2. Scheme of the two possible tracer-vacancy
jumps in an hcp structure. Dotted sphere: vacant site.
Shaded sphere: tracer (a) Ao jump; (b) Bo jump.
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2 the two jumps are schematically shown. The
tracer diffusion has one component parallel to the
c axis,

3 2Pi = ~c f~,o ~~, ~

and a different one perpendicular to it,

(6a)

D = ~~ fa ~s, +~~ f~ p'~, (6b)

where f are the correlation factors. For self-dif-
fusion these factors have been deduced by Com-
bronde and Brebec, based on the work of Ghate, "
and they depend on the ratio r = ~~je„, which is

0
itself temperature dependent. The jump rates are

A0, 80 e~ 1 e~ 0 Ap 30

where E, is the vacancy-formation energy, &»
0~ 0

the migration energy for the &0 or +0 jump and,
from Vineyard's theory, "the frequency ~* is

CO

= av:x

B. Vacancy migration energy

The defect migration barrier can be computer
simulated within a quasistatic approximation. Thz.
amounts to assuming that the defect migration is
composed of successive 3N-dimension configura-
tions in the space of atomic displacements, such
that, for each of those configurations, 3N relaxed
force-constant eigenvalues with their correspond-
ing eigenvectors can be found where only one is
unstable while the perpendicular (3N —1) hyper-
plane is in equilibrium. A similar procedure is
adopted by Johnson, " Ingle and Crocker, "and
Sinclair and Fletcher. " The latter have adapted
the conjugate-gradient method for saddle-point

where ~' are the eigenfrequencies for the defect
lattice with an equilibrium vacant site, while v
are those for the saddle-point configuration; in
the product at the bottom of (8) the eigenfrequency
for the unstable mode [(u&„'„)'&0] is excluded. Evi-
dently two different saddle points have to be con-
sidered for the Ap and Bp jumps. The frequency
~~ may be written as"

&u* = uo exp(A S /k),

where ~0 is arbitrary. This is often taken as the
Einstein, eigenfrequency of an atom first neighbor
to the vacancy and vibrating towards it. It is as-
sumed to account for the number of attempts made
by the atom per unit time for crossing the potential
barrier to the vacancy. ES defined by (8) and (9)
is the motion entropy.

localization. %ithin the quasistatic approximation
we shall calculate the barrier foi the vacancy mi-
gration by creating a nearest-neighbor divacancy
conveniently oriented. Thereafter an extra lattice
atom is located as an interstitial between the two
vacant sites but not allowing its displacement' to-
wards the nearest vacancy in order to prevent re-
combination. The (SN —1) coordinates that remain
free (i.e., those which do not include the projec-
tion of the interstitial coordinates on the direction
of the vacancy) are allowed to relax in order to
minimize the energy under either the EP or the
SP interaction. "Trial and error" is employed in
order to find the minimum-energy path, i.e., the
minimum-energy sequence of (SN —1)-dimension
hyperplanes above defined where the migration
path is determined by the perpendicular 3N-dimen-
sion-displacements eigenvector, corresponding to
a negative eigenvalue of the relaxed force-constant
matrix. That displacement sequence allows the
interstitial to move from one vacant site to the
other. Approximately 2000 atoms are allowed to
relax and both the EP and the SP are used for the
simulation.

Even for a rigid-sphere-packing cia ratio,
where the jump distance is the same for the &0 or
the Bp jump, their saddle-point configuration is
quite different. ' For &0, the jumping atom when
located midway between the two vacant sites has
four first neighbors, marked as C in Fig. 2, while
for the Bp jump the three atoms, named Cy and C2
in Fig. 2, constitute the main barrier for the mi-
gration. As a consequence of the lattice symme-
try, the saddle-point location of the jumping atom
in the &0 jump is at the center of the rectangle de-
termined by the C atoms, which should relax keep-
ing that center invariant. In contrast, for the &0
jump, the only lattice symmetry that has to be kept
by the jumping atom is to remain within the same
basal plane. There remains at least one degree of
freedom for the saddle-point configuration which
is not determined by the lattice symmetry and
which is therefore potential dependent. For the
sake of giving some description of the saddle-
point configurations we report in Table I the cal-
culated displacement of the above-mentioned &,
C„and C, atoms together with the location of the
tracer atom at the saddle point. For the calcula-
tion of the Bp jump which uses the EP, the saddle
point is found not to be for the jumping atom at an
equidistant location between the two vacant sites;
actually, as discussed below, when it is there,
local equilibrium is created. In Table I some
atom locations for that equilibrium configuration
are also reported.

The energy barrier for migration is calculated
in the quasistatic approximation mentioned above.
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i E (ev) TABLE II. Energy barrier for vacancy migration.

Reference

0.66
0.54
0.59

0.59
0.47
0.57

0.07
0.07
0'.02

EP
SP

Experimental, Hef. 4

{0,0,0- {a,0,0)

{ Q Q C )22/9 2
larger than Hs and the same difference (6H) be-
tween values. This result seems to show an influ-
ence of the lattice symmetry on the migration en-
ergy which is independent of the potential used for
the calculation.

(0,0,0) {Q,0,0)

&a a c)
2 242

C. Vacancy migration entropy

The migration frequency defined by Eg. (8) must
now be calculated. For the calculation procedure
we find it useful to rewrite (8) as

5S Sv~*=Im (d„'„exp
FIG. 3. Migration energy for the vacancy. {a) EP;

{b) SI'.

The energy values are plotted in Fig. 3 against the
distance from the jumping-atom relaxed location
to its original site, now vacant (or, more accu-
rately, against the projection of that distance into
the straight line joining the jumping-atom site be-
fore the jump with its site after the jump). It can
be seen that for the Bp jump calculation with the
EI', the above-mentioned local equilibrium con-
figuration appears for the jumping atom located
midway between those locations. Its existence is
further confirmed by calculating the eigenfrequen-
cies of this configuration which are aH real. The
calculated maxima in the energy barrier for the
+p and Bp jumps are reported in Table II together
rvith the values deduced in Ref. 4 from the experi-
mental data. It can be seen that, although the cal-
culations with the two different potentials predict
different absolute values for the energy-barrier-
maximum H (as expected due to the above-men-
tioned difference in their predictions of vacancy-
formation energy), both sets predict H„ to be

where 6S is defined as a parameter. to be calcu-
lated as

and 8,"was defined in (1). For the calculation of
5S the 3N eigenfrequencies of both the perfect
lattice (~') and the saddle-point configuration
(&o'„) are used, the unstable one —.(~„'„)'&0—being
included. The minus sign within the ln function
in Eg. (11) compensates for this negative value.
Both the unstable frequency ~'„, and the eigen-
frequencies necessary for obtaining the parameter

can be calculated within either the Einstein
or the determinant approximations as discussed
for the vacancy-formation entropy. Some eigen-
frequencies +'„, calculated by using the EP are
reported in Table III. To evaluate the unstable
eigenfrequency within the determinant approxima-
tion involves finding the eigenvalues of relatively
large matrices. Computer time did not allow us
to go into the eigenvalue calculation beyond the

TABLE III. Unstable eigenfrequencies and &X factors for vacancy migration.

~ g
-&~un&p

{103 sec ')

~ $—~~unap

{10 sec ') 3p

12
38
68
86

1.97
2.12
2.27
2.27

0.92
0.86
0.82
0.82

1.86
2.28
2.30
2.30

0.87
0.80
0.80
0.80

Einstein

Determinant
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number of atoms reported in that table. However,
convergence seems to have been obtained. By
using the EP interaction we have calculated 5S,
Eq. (11), within the Einstein approximation for
a varying number of atoms and extrapolated the
values 58 „,=3.5k and 5S ~ =3.0k. From these
values together with S, =1.55k, there results:
~„* =1.1x10"sec ' and ~~~ =6.8x10' sec '
Within the determinant approximation

6$ =- 1n(detg') —ln(- detP')
k' N-1

m (12)

cf S~/k

Srn A

10 l5

l

20

I I

25 )0-3 VN

FIG. 4. Equation (12) is plotted for the Ao and BO
jumps as a function of 1/N, where' is the number of
atoms used for the calculation.

This quantity is plotted as a function of 1/N and
extrapolated to 1/N-0 in Fig. 4 (5S~, =7.&k,
5S s, =4.5k). From those extrapolated values
and the unstable eigenfrequencies of Table III
one obtains &~~,—5.3x10" sec ' and ~~ = 3.2

0x10" sec '. If the attempt jump frequency (op

in Eq. (9), for a near-neighbor atom to a vacancy
is calculated within the Einstein approximation
there results ~,„=~,~ = ~, =2.9x10' sec '.
Then, the migration entropies are calculated as
~~ =1.33k, AS ~, =0.85k, for 5$ obtained
within the Einstein approximation, and 4S „mAp

=5.21k, AS s =2.40k if Eq. (12) is used for
0

55 . The entropy ratio is then about 2 while the
energy ratio is H„ /Hs =1.1.

Ao Bp
Both the frequencies ~ and the entropies h, S

have been obtained at constant lattice-parameter-
boundary condition. For referring those values
to constant pressure, "true"-crystal variables,
a correction equivalent to the one in Eq. (5), must
be included. This correction is proportional to
the difference between the saddle-point and the
equilibrium-vacancy relaxation volumes and it
has also been discussed by Flynn. " Our calcu-
lation of the saddle-point relaxation volume is,
however, affected by a relatively large numerical
error, "and an approximate correction of -0.5k
results for the migration entropy in either jump.
This value is perhaps too large and, surprisingly,
it is negative, but one must not forget that the

volume-relaxation value, on which it depends,
has been found' to be strongly potential dependent.
The above-mentioned volume-relaxation correc-
tion is used for calculating within the determinant
approximation the ~~ values needed in Sec. III E
for diffusivity calculations.

D. Isotope factor

The isotope factor 4E is generally defined by
the change of ~~..

6~* 1 5M
2 M

when a tracer isotope with mass M+5M is used
for diffusion with respect to its values for one
of mass M. &E can be calculated within our
model as'

bJC=(U ) (14)

where U,„is the normalized eigenvector of the
matrix corresponding to the unstable frequency

Those factors calculated by using the EP
are reported in Table III together with their cor-
responding „', . It can be seen that they seem to
converge to a value of approximately 0.8 even
for relatively few atoms and ~„seems to be

0
slightly larger than ~~ .

E Diffusivity calculation

Throughout this section and the preceding sec-
tion we have calculated all the parameters neces-
sary for evaluating expressions (5) and (6). Two
self-consistent approximations have been applied
for all the calculations that involve atomic vibra-
tion modes: the Einstein and the determinant one.
Equations (5) and (6) can then be calculated within
either approximation. We do so in the range
500-640'C, which is that used experimentally,
and compare in Fig. 5 the theoretical predictions
with the experimental values obtained by Com-
bronde and Brebec' by measuring the residual
activity. It can be seen that the diffusivities
obtained within either approximation show the
correct activation energy. Also those obtained
within the Einstein approximation show the cor-
rect ratio DgD„, though their separate values
are one order of magnitude smaller than the ex-
perimental. On the other hand, the diffusivities
obtained within the determ. inant approximation
appear to have the correct order of magnitude
but the incorrect ratio D,/D~~ ~ Dy being almost
twice D~. If the calculated diffusivities are
represented by a straight line, values of activa-
tion energies Q and D, [D, =D(1/T), 1/T- 0] are
obtained. Those are x eported in Table IV.



CALCULATION OF THK FORMATION ENTROPY AND. . .

N

E
4J

C3
1

10

Dl'. EXPERIMENTAL [I ]

~DII

—--—Di, DETERMINANT APPROXIMATION

-Dg,

———Dg, EINSTEIN

---- Dll,

1.15
j

1.20
l l

1.25 1.30
& (10K)

PIG. 5. Experimental and calculated diffusivities as
a function of 1/T.

In this paper we have used a pair-interaction-
potential model to ealeulate the following prop-
erties of vacancies in Mg:

(i) The vacancy-formation entropy, where the
vibrational contribution mas considered and sur-
face and boundary corrections included through
thermodynamic relations.

(ii) The migration energy of the vacancy within
and outside the basal plane; Hpp Hp

(iii) The unstable vibration eigenfrequencies
at the saddle-point configurations and the related
4E factors.

(lv) Tile 111igl'atlo11 freIIuencles Id i EII. (8)~
which are related to the migration entropy 48
by EII. (9).

(v) Finally, the diffusivity constants due to
vaeaney migration in an hcp single crystal D, and

D„mere calculated in the same temperature

range as the experimental measurements reported
in the literature.

(vi) From those diffusivity values the activation
energies for diffusion Q, and Q„and the D~ and

&p» factors ax e deduced.
We want nom to comment on the above-mentioned

results. Our calculation predicts a vacaney-
formation entropy for Mg of approximately 1.8k.
This differs from the only value me have found
in the literature, ' where a very small value fol
this entropy mas obtained. It is hard for us to
understand hom this entropy can be close to zero
if, as previously discussed, its main contribution
is due to lattice vibrations. We have seen that
the vacancy first neighbors alone contribute —1.Vk

to the entropy without allowing for their relaxa-
tion, assuming f, =0. A great deal of cancellation
must take place to compensate for that value. In
our model, relaxation plus the inclusion of co-
operative modes increase this value while the
boundary condition of constant pressure reduces
it. Also it can be pointed out that by comparing
the formation entropy calculated within the
Einstein approximation even for a relative large
number of atoms, with the one resulting from
the more accurate determinant method, the
coupling among vibration modes gives a contri-
bution of over 15% of the total. In the case of the
migration entropy (Sec. III C) the differences
between the I esults of the two approximations
show that neglecting coupling terms in the
Einstein approximation substantially underesti-
mates the entropy values.

The migration energies calculated by using the
EP agree fairly mell with those reported in the
literature. The resulting activation energy H~,
of the nonbasal vacancy jump A. p is found to be
larger than that of the basal jump H~ . Their

p
difference seems to be more sensitive to the dif-
ferent saddle-point conf lguratlons tI1an to t11e po-
tential assumed f'or the atomic interaction, It
is also interesting that the calculated migration
entropy is larger for the nonbasa1, than for the
basal jump, independent of the approximation
(Einstein or determinant) used for the calculation.
This result agrees with Zener's early prediction'~

TABLE IV. Activation energy for diffusion and Do values.

Do»

(cm2/sec)

Dos

(eV) Reference

1.0
1.78
0.18
4.69

1.5
1.75
0.11
1.38

1.40
1.44
1.46
1.46

1.41
1.43
1.41
1.45

Experimental.
Exp.eriDlental

Theory, Einstein
Theory, determinant

3
4

this work
this vrork
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that larger migration energy implies also larger
migration entropy. The calculated constant-
volume migration-entropy values are relatively
large, and this finding contradicts Flynn's as-
sumption" that the motion entropy must originate
principally in the volume dependence of the phonon
frequencies.

Concerning the calculated diffusivity values we
can say that in view of the large number of ap-
proximations used for the calculation it is quite
encouraging to find sensible values for that pa-
rameter. On the other hand, as stated above we
found anisotropic values both in the migration
energy and entropy for the vacancy jump. The
first one favors a vacancy jump perpendicular to
the c axis while the second favors the opposite
one. The measured anisotropy must be a con-
sequence of the relative values of those parame-
ters. Therefore, for the calculation which uses
the Einstein approximation for entropy calcula-
tions, a ratio D,/D„which agrees with the ex-

perimental findings is obtained while for the
determinant method, which should be more accu-
rate, an incorrect ratio is obtained. However the
calculated diffusivity is closer to the experimental
values if this last method is used.
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