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Semiclassical image potential at a solid surface
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A surface dielectric function of a semi-infinite plane-bounded metal is defined in the spirit of the plasmon-pole
dielectric function of the bulk. It is modeled in such a way that the surface-plasmon dispersion relation is recovered
for small momentum transfer. This function is employed to compute the image potential at all distances outside the
surface. Interaction with bulk modes is neglected for simplicity and clarity. The interaction of a massive point
charge with a metal surface is also considered in the context of a boson model for surface-plasmon excitation. We
present a new definition of the image potential for this case.

INTRODUCTION

A charged particle approaching a solid surface
experiences a potential arising from the polariza-
tion it induces in the medium. This complex po-
tential corresponds to the self-energy of the inci-
dent particle due to its interaction with surface
modes, and the real part of this potential is due to
virtual excitation of such modes. Real processes
(i.e., creation of surface excitations via inelastic
scattering) are responsible for the imaginary part
of the potential.

When the particle is far away from the surface,
it couples to long-wavelength collective modes of
the system. The importance of surface modes to
the image potential was emphasized independently
by Lucas,! Mahan,? Ritchie,® and Feibelman.* This
followed the earlier discovery that van der Waals
forces also have their origin in surface modes.>'®
Dynamical corrections to the image potential have
been subject of considerable interest.”™ All these
investigations have focused on the real part of the
surface potential without including dispersion of
the surface modes. The effect of dispersion upon
the real part of the potential has been studied by
Harris and Jones,'° Heinrichs,!* and more recently
by Chan and Richmond !? They find that for small
distances from the surface, dispersion effects
can alter significantly the image potential with re-
spect to the undispersed case.

Recent developments in the field of low-energy
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electron diffraction'®!* have shown the importance
of obtaining a good one-electron complex optical
potential at distances close to the surface where
single-particle excitations become important.
Quantum-mechanical treatments have been pro-
posed!®™8 put result in.a formalism much less
transparent than the classical theory. The results
are quite complicated and are probably too cum-
bersome for use in low-energy electron diffraction
(LEED) and reflection high-energy electron dif-
fraction (RHEED) calculations. Flores and Garcia-
Moliner*® have derived recently a formula for the
complex self-energy, valid for an arbitrary di-
electric function both within a semiclassical and a
quantum formulation. We present in this paper a
model for the surface dielectric function that in-
cludes collective effects and single-particle ef-
fects, being at the same time simple enough so
that the potentials derived from it may be used
readily in a number of surface-related problems.

In all of the work presented here, we neglect in-
teractions with bulk modes for emphasis and for
simplicity. Their effect is negligible until the
particle is very close (z <1 a.u.) to the solid.
These interactions could be included in a straight-
forward way and in our linear approximation give
a simple additive effect that is important only in-
side the solid, tending to cancel the surface-plas-
mon contributions there. This neglect implies
that our results are valid only when the charged
particle is outside of the solid. In addition, Eq.
(1) below applies only when this is true, since
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use of the specular reflection boundary condition
results in a different formula when z> 0. We dis-
play the surface contribution to the image poten-
tial in several graphs below. The contribution
from these modes is asymmetric with respect to
the surface when the charge is in motion because
of the possibility of real excitation. The graphs
of the image potential ®; (and Z;, in Fig. 4) are to
be interpreted as follows. Values for z<0 corres-
pond to the image potential for a charged particle
approaching the surface. Values for z>0 corres-
pond to the image potential for a charged particle
emerging from the metal into vacuum.

First we introduce an approximation to the sur-
face dielectric constant and illustrate its use by
calculating the static image potential. Next we
recast the problem in a Hamiltonian formalism
which allows us to separate effects associated with
virtual and real processes (i.e., with the real and
imaginary part of the surface potential). There
seems to be some ambiguity about this point in
the literature.”?°
)

e-Qlsl

DIELECTRIC FORMULATION

The model we take is that of a solid in the re-
gion z> 0 characterized by a bulk dielectric func-
tion <(E, w) and with vacuum in the region z<0.
We assume the surface of our model system to be
located half of the interatomic distance outside of
the last atomic layer of a real solid.

The classical self-energy &,() (the image po-
tential) experienced by a charge Z,e moving in a
fixed trajectory =Vt may be found from the spec-
ular reflection model. This model was first used
to study the dispersive properties of the surface
plasmon some time ago by Ritchie and Marusak?®
and was discussed independently by Wagner.?? It
has been shown to describe some properties of
the ‘electron gas with surprisingly good accura-
cy.?® Many other workers have used this model
subsequently to study various aspects of the
image potential at a charge near a metal sur-
face.10712:2425 Tp this model, for a charge ap-
proaching the solid from vacuum,

1 "'E(Q,w)

2 o .
(bl(z)=...Z471Tv; fsz f dwe“a‘v“”)‘/%

where V, and-V, are components of the velocity
normal and parallel to the surface, respectively,
and the position of the particle at time ¢ is
(vyt,0,v,t). This expression is valid while

the charge is outside the solid. It is evalua-
ted by a standard electrodynamic self-energy ar-
gument in which the scalar potential generated in
the medium by the particle is evaluated at the po-
sition of the particle and multiplied by one-half of
its charge. We use atomic units throughout (e=7%
=m=1),

Note also that the equivalent real part of the
self-energy is denoted by Z,(r) in quantal treat-
ments.? A quantity which has been termed the
surface dielectric constant by Newns?! is defined
by

z N .
“@9-% | mmenms @

where k= (k2+Q2%)2. Equation (1) gives the inter-
action energy of a charged particle with a surface
in terms of the bulk dielectric constant e(l'{, w).
Moreover, as found by Ritchie and Marusak,* the
surface-plasmon dispersion relation is given by
the solution of

€Q,w)+1=0, (3)

We could take any of the well-known dielectric
functions for the bulk and solve Eq. (1) with
é@,w) given by Eq. (2) (see the Appendix). In-

Qv+ @ ¥, —w)p 1+8Q,w)’

(1)

@ad, and in the spirit of the plasmon-pole ap-
proximation to the bulk dielectric constant,?® we
introduce a kind of surface=-plasmon-pole approxi-
mation for €(Q,w) given by

€Q,w)=1+ w/[w(w+iy) - w2 —aQ -BR2-Q*/4],
(4)

where w, is the bulk plasma frequency, v is an
infinitesimal damping constant, and ¢ is given by

a=v3/5vpw,, (5)

where vp is the Fermi velocity and w,=w,/V2
is the surface-plasma frequency. This dielectric
function reproduces the results of Ritchie and
Marusak?! and Inkson' for the surface-plasmon
dispersion relation for small @ and takes into
account single-particle response through the
presence of the @* term.

Using Eq. (4) in Eq. (3) and solving for the
resonant frequency w (@), one finds

w Q)= (wi+ aQ +BQ2+Q* /42, (6)

The Q2 term is added in Eq. (4) to force the sur-
face-plasmon dispersion relation to join the
single-particle continuum at the same point as the
bulk line does, as prescribed by Wikborg and
Inglesfield.?” The values of the parameter 8 are
given in Table I. A similar model without the

@2 term has been used by Barberan et al.,?® to
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TABLE I. Cutoff wave number versus ;. @, is the
value of the cutoff wave number at which the bulk plas-
mon dispersion curve enters the single-particle contin-
uum. It is defined by w(Q;) = Q(Q,+2kF)/2, Where w,(k)
is the volume plasmon frequency at wave vector 2, The
quantity B exact = v — (€ @, + w? — @v )/ @ is chosen so that
the analytical expression given in Eq. (6) passes through
the point (w,(Q,), @) in the (w-Q) plane, The analytical
approximation 8(7g) =a+b/7$ is chosen so that agreement
With B exact(75) is obtained to two significant figures over
the range of 7; shown. The constants were found to be
a=0,0026, b=2.6798, and c=1.85. An analytical fit to
Q.(7,) that gives comparable accuracy is @,=0.9259/rL/2
+ 0.2117/73— 0.0621.

7s Qe B exact B=a+ b/’)’i
2 0.6985 0.7458 0.7460

3 0.5424 0.3524 0.3537

4 0.4538 0.2090 0.2088

5 0.3937 0.1384 0.1391

6 0.3512 0.0999 0.100

study the influence of the image force on the tra-
jectory of an electron in grazing-incidence reflec-
tion inelastic electron spectroscopy. Note that
Eq. (6) appears to yield values of w Q) that are
somewhat too large compared with experiment?®
for @ = w2/a. The reason is presumably that the
density profile of a real metal surface deviates
from the step function variation assumed in Refs.
17 and 21. It would be a simple matter to fit ob-
served dispersion curves using a form similar to
Eq. (6). The surface dielectric function defined
by Eq. (4) satisfies the sum rule f: wIm(—€)dw
=7w2/2 as it must from the sum rule [ wIm
(-1/€)dw=mw?/2 applied to Eq. (2).

Before analyzing the case of a moving charge,
it is instructive to consider a fixed charge loca-
ted at a distance z from the surface in vacuum.
For this case the image potential becomes
Z3w? f" e™gg 7
T2 ), Gmaqeferqva
where we tentatively extend the integration to in-
finity. The contribution from the interval Q@ <@
<o amounts to s30% of that from the interval
0=@ s @, at metallic densities. Clearly as z —~

00
’

®,(z)=

2

Z1
4]2’ ’ (8)

®,(z)~ -
which is the classical Coulombic image potential.
For small values of z, the image potential differs
significantly from its classical limit. The devia-
tion from this result increases as |z | decreases.
In Fig. 1 we have plotted ®,(z) from Eq. (7) and the
asymptotic form, Eq. (8), for the case of alumi-

ECHENIQUE, RITCHIE, BARBERAN, AND INKSON 23

23

num metal to illustrate how surface-plasmon dis-
persion and single-particle excitations affect the
image potential with respect to its classical limit.
As stated above, although we plot ®,(z) for both
positive and negative values of z, it does not
represent the true potential inside the solid (z> 0).
The potential there may be analyzed in terms of
the contribution from virtual excitation of bulk
plasmons as well as surface plasmons.!*'?° Re-
cently, Eguiluz®® has studied the image potential
for a static point charge at points outside and
within the solid in the hydrodynamic approxima-

tion.
The potential at the origin can be approximated

analytically as

0.382%
‘1’1(0)z - 7.0.6221 . (9)
S

This gives -6.57 eV for the case of a proton inter-
acting with a solid at the electron density of alum-
inum.

HAMILTONIAN FORMULATION

Real part

The total Hamiltonian of a system composed of
a fast charged particle interacting with the sur-
face may be approximated as3'3!

H=H,+H,+H,g, (10)
where
H,=p2/2 y (11)
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FIG. 1. Static image potential &,(z) vs z for a unit
charge (Z;=1) at distance z from a metal surface. The
solid line shows the results of calculations using Eq. (7).
The dashed line is computed from the asymptotic ex-
pression, Eq. (8). For this case » =(3/4mno)!/3, the

one-electron radius in the equivalent electron gas, was
taken to be 2.07. The electron density is n;.
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1/2
H =zw (a'a +i) (12) -_-(M
0sT 4z Q\dgagtz2/, Cq AQuw, , (15)
and while a'a and ag are creation and annihilation oper-
. ators of a surface mode corresponding to wave
H,fzr(aae'(a'b)*' H.c.). (13) vector Q, and A is a normalization area. The
a swift particle is taken to have charge Z, and to be
Here located at 7(t)=(b(t), z(t)).
Ty=Coer®lt!, (14) The wave fur;;:taizo? of thg surface modes can be
solved exactly®?'®? in the interaction picture and is
p is the incident particle momentum, K given by
H ¢ dlé(s) . ¥ g =
H}(t)): s exp(—f dsIg(s) ds exp[tla(t)aa]exp(—zlaaa)[il)(-°°)), (16)

where |¢(—°°)) represents the vacuum state of the
surface-plasmon field when the incoming particle
is at z= =, The integral I, (¢) is given by

t -
Ia(t)= =i f To(t,) expl—iQ *B(t,)+ iwgt,dt, . (17)

We define the real part of the image potential
(i.e., the real part.of the self-energy of the parti-
cle) as half of the expectation value of the scalar
electric potential operator evaluated at the parti-
cle position, i.e.,

AT(E))=3 (V)| Hps| ¥(2))
=§Re[rq(t)la(t)e"“’0‘] . (8)

The same result for £<0 (z < 0) could be obtained
defining the image potential ®; as®

@, = (YE)| (Hop+ Hyg) | 9(2)) - (19)

This definition gives the same result for 2<0, be-
cause in this case

(Y| Hog| 9()y= = 2AF()) . (20)

However, definition (19) cannot reproduce the re-
sults of a dielectric calculation once the particle
has crossed the surface.!® The value (J|H,|¥) is
connected with the average number of real surface
modes created and is related to the energy loss of
the incident particle (i.e., to the imaginary part of
the interaction energy).

The fact that Eq. (20) holds for negative times
(2<0) is due to the particular form of the coupling
constant I'y(¢), and is not a general feature of
particle-surface interactions.’¥3* We take Eq.
(18) as the definition of the image potential for
all times. The results obtained agree with those
derived from electromagnetic theory. The factor
3 relates the scalar potential to the interaction
energy, the so-called real part of the self-energy,
in many-body language.

To keep the algebra simple, we treat the case of

f
normal incidence (z =vt) and find

Zw? ([ e 9'%dQ
2 Jy w(wi+0°Q%)
x[woe"““ +2Qu sin(—oi-z-z—>e(z )] ,
(21)

where O(z) is the Heaviside step function. For
z2<0and |z|>v/w, this equation reproduces the
undispersed [ws(Q)= ws] result for the dynamical
image potential since at such distances the parti-
cle only couples effectively to the long-wavelength

surface modes.”™ ! In this limit Eq. (21) reduces
to

8,(z)= —Zgz)s[f(Zws[z |/0) =2 sin(ﬁﬁ>g(i"iz)e(z )] ,

@I(z)= -—

v
22
where (22)
© pTUx © e "d
f(x)=_[ Toaad%, glx)= A t-tm—;ﬂ (23)

In Fig. 2 we show the results of a numerical
calculation of ®,(z) from Eq. (21) and compare
with the @,(z) from Eq. (22). The difference in the
results increases as the distance from the sur-
face decreases. Once the particle has crossed
the surface and penetrates into the metal (or pen-
etrates into the vacuum for the case of a particle
coming from inside the solid), the potential ac-
quires an oscillatory component in agreement with
the dielectric results of Mahan'® but now, due to
the inclusion of dispersion and single-particle ef-
fects in the medium response, does not show the
unphysical divergence at the surface [see Egs.
(36) and (37). below]. Inclusion of single-particle
effects produces a realistic potential for points
near the surface even after the particle has
crossed the surface. The wavelength of such
oscillations will be of the order of

A=2mp/w, . (24)

Such oscillations, present in Mahan’s dielectric
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FIG. 2. Variation in &;(z), the dynamic image po-
tential appropriate to a particle of unit charge, plotted
as a function of z. The dashed line corresponds to the
neglect of dispersion, while the solid line shows results
including dispersion and single particle excitations.
The velocity » =0.19 a.u. is taken in the direction of
positive z and w=0.13 a.u.

treatment of this problem, are smoothed out in
the presence of dispersion.

Imaginary part

The imaginary part of the image potential ac-
counts for the energy loss of the incident particle
due to the creation of real surface excitations.
The probability that a surface mode of momentum
@ will have been excited at time ¢ is given by [see

Eq. (16)]
Pq()= |Io(0)]?. (25)

The rate of transition to the final state ag | 0) will
be given by

'VQ(t)— PQ(t) (26)

The energy absorbed at momentum @ per unit path
length of the incident electron is then

aW _ wg dPq

dx v dt g (27)
We can simulate this energy loss of the incident
particle by defining an absorptive part iZ,(z) of the
image potential, where

%) =% 2 1 dW-— Yolt). (28)

For the case of normal inc1dence, we have

e 29 1#1 g

ﬁwzvf (29)
275 L wo(wd+Q%?)’

Ei(z)luo: -

VA « al
2o ~3 o [ o
x[z cos (%Qﬁ>e'°‘ —e"”‘].
(30)

For |z|>v/w, we get the following formulas cor-
responding to the undispersed model w (@)= w,:

1) o= =5 L2 g(2l2L), (31)
540)] 0= % 7s[g(zcu;lz | ) _ 2"’(%1';2 '>cos<wT’Z)].
(32)

It is interesting to note here that Eq. (31) and the
first term of Eq. (32) represent a “conservative”
contribution to Z; in the following sense. Equation
(31) arises because the incident particle gains en-
ergy in ' moving through a field that attracts it
toward the surface for z<0. That energy is ex-
tracted again as the particle moves away from the
surface in the region z> 0. Hence Eq. (31) and the
first term of Eq. (32) give a net zero result over
the entire trajectory of the particle, leaving only
the second term of Eq. (32) that represents the ef-
fect of real excitation of plasmons. For large z
(<0, |z|>»>v/w,), expression (31) reproduces the
asymptotic form of Inkson’s'” quantum-mechanical
result for normal incidence, i.e.,

@)= =vZ%/Bwgz?. (33)

The average number of surface modes created is
given by

nen==2 [ z,6"as" (34)

This expression reproduces, in the undispersed
model, Ritchie’s original result3®

(n(=))=5-23. (35)

Figure 3 shows the average number of modes for
the case of a small velocity charge »=0.19 a.u.
approaching a surface characterized by a surface
plasma energy of 0.13 a.u. The average number of
modes is much smaller than the result found ne-
glecting dispersion. As the velocity of the incident
particle increases, the undispersed model be-
comes nearer to our results. For the case of
parallel incidence, of crucial importance in the
case of RHEED experiments,° we get

ZQltle

Zzu(Z)=-%w§fo W?(w%q—da? (36)
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FIG. 3. Average number of surface modes {(x(2z)),
created by a particle of unit charge having velocity
v =0.19 a.u. (wg=0.13 a.u.) as a function of distance
from the surface. The velocity is taken in the direction
of positive z. The dashed curve shows results neglect-
ing dispersion and the solid curve corresponds to the
inclusion of dispersion.

For large |z | this expression reproduces the re-
sult of Echenique and Pendry**

Z3ws . (2
Zul@)= ——sz”—K(%z') 37

where K is the Bessel function. This, in turn,
has the same asymptotic limit as Inkson’s ex-
pression for the imaginary part of the self-ener-
gy.V

Figure 4 shows the results of a calculation of
the imaginary part of the self energy for a parti-
cle with v="7 a.u. moving perpendicular to a solid

(@)

]
\
i
INCIDENT o1 IL’ | EMERGENT
|
]

FIG. 4. Variation in 3;(z), the imaginary part of
the self-energy of particle, as it depends on distance
from the surface. The particle is taken to have unit
charge and is normally incident on an aluminum surface.
The velocity, » =7 a.u., is taken in the direction of
positive z, and » ;=2.07. The dashed curve shows
results neglecting dispersion and the solid curve corres-
ponds to the inclusion of dispersion.

INCIDENT

EMERGENT

FIG. 5. Imaginary part of the surface potential,
Z;u(2z), for a particle with unit charge traveling parallel
to an aluminum surface. The velocity v =3. The po-
tential is plotted as a function of distance from the
surface in vacuum. The dashed curve shows results
neglecting dispersion and the solid curve corresponds
to the inclusion of dispersion.

surface. In Fig. 5 we show the effect of including
plasmon dispersion and single-particle effects on
the imaginary part of the self-energy of a particle
with velocity » =3 a.u. incident glancingly upon an
aluminum surface.

CONCLUSIONS

We have shown how plasmon dispersion and
single-~particle effects can be included in a simpli-
fied way in the study of the interaction of charged
particles with solid surfaces. The introduction of
the surface-plasmon-pole approximation allows us
to obtain reasonably simple expressions with cor-
rect asymptotic behavior for both the real and
imaginary parts of the surface potential. A good
knowledge of such potential is important for a
large variety of problems such as LEED and
RHEED reflectivities and especially to the under-
standing of surface resonances.

Our analysis shows that dispersion and single-
particle effects can reduce significantly the pos-
sibility of inelastic scattering, reducing the aver-
age number of surface modes created. The model
presented here should also find very useful appli-
cations in the study of localized positron states at
metal surfaces.3%:37
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APPENDIX

The surface dielectric constant is obtained
from
- _Q f" - B2 = k*/4)dk,
€Q,@)=7 (Q2+ k2)(w2_w2 B - %/4) °
(A1)

where we use the standard expression €(w,k)

=1+ w3/(B?k?+ k*/4 — w?) in the bulk plasmon-pole
approximation.?® The integral may be evaluated in
a straightforward manner by deforming the &, con-
tour into the upper half-plane and evaluating the
residues at the three simple poles enclosed. We
find, when 5%+ Q2> 0 and p2+Q2/2> (B*+ Q2)V2

1 1
Q2 A_—A,,(A,,(Q"’-2A+)‘72_A_(Q2—

2A_)‘72> ’
(A2)

where
= w? =i,
= [[32 ﬁ4+ 92)1/2]
When B4+ 22<0,

- W 2Q wi(QZ+.c? = 3d?)
€—'Q"’—d(dh cA)[(Q3+ c? - d?)?+ 4c2d?] ’ (A3)

lere
= ‘/‘l:[(a2+ b2)1/2+ a];/z , d= ‘/___;_[(az_'_ b2)1/2 _a]]/2 ,
and

a=-(@Q%+2P?), b=2(|B*+Q?|)V2.
For the case 5%+ Q2<0, we find that € is complex.
We do not inquire into this case since here we are
only interested in the real solution of the equation
€+1=0. Thus we seek the solution w, of the
equation €(wy,Q)+ 1=0 only from € as given in
Eq. (A2). Although the resulting surface-plasmon-
pole dispersion relation does not agree precisely
with that found by substituting Eq. (4) in Eq. (3), it
is linear in @ when @ is small and is represented
reasonably well in general trend by Eq. (6). For
convenience and in the spirit of the plasmon-pole
approximation, we choose Eq. (6) to represent the
surface dielectric function in this paper.
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