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Correlation functions of amorphous multiphase systems
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We give two general integral expressions for the first and second derivatives of the so-called stick probability

functions which are commonly used in analyzing x-ray-scattering results. Then it is shown that by letting the length

of the stick go to zero, the limit of the second derivative can be expressed in terms of an integral over the singularity

lines of the surfaces which separate the different phases of the sample. In this way one has achieved the

generalization of the well-known result that the limit of the second derivative is always zero when phase boundaries

are smooth.

I. INTRODUCTION

Light or x- ray scattering experiments are one
of the most powerful tools for investigating the
underlying texture of materials. Indeed, accord-
ing to the experimental apparatus one uses, they
allow one to obtain precise information on the
arrangement of the atoms in condensed matter
or to evaluate the specific separation surfaces
for multiphase systems. It is well known that
the knowledge of the last parameter is very im-
portant for those solid systems, whose distinc-
tive property reflects mainly the interactions
between contiguous environments.

Let us briefly recall how information is ob-
tained from the measured scattered intensity.
For the sake of generality, we assume that our
material sample is made up of N different phases.
Each of these, characterized by the index i, has
an electronic density n, (r) and occupies a spatial
set V„whose volume is denoted by V, .' The
total average density r7 will be

(rl'} = —- R~(r)d r ..&~ v'
According to classical theory, ' the scattering
intensity i(k) is given by

((k) =- Q fafar, n, (r,,)rl;(, ) exp(. '): r„),
i,q= i.

(1.4)

(1 5)

where r» —=r, —r, and k=—k, —k, is the difference
vectors between ingoing and outgoing wave vec-
tors. Comparison with Eq. (1.3) yields the funda-
mental relation

i(k) = V(q } e'"'y(r)d r,
X

(1.6)

which relates the scattered intensity to the Four-
ier transform of the correlation function. If
we assume that our system is isotropic, the
correlation function and the scattered intensity
will depend only on x and k, respectively. In
particular, Eq. (1.5) takes the simpler form

n =, — n, (r)d r,

where V is the volume of the sample set V, i.e.,
y UN y

It is useful to introduce the local fluctuation
density function

OQ

i(k) =4wV(rP} r y(r) dr, —
kr

while its inverse integral transform is
OO

kr

(1.7a)

(1.7b)

n, (r) —K if r(= V,
n;(r) =-

0 if rgV,.

and then the global correlation function

y(r) =- — d r,q, (r, + r)qz(ro)/(q2},
V

where

Clearly, through Eq. (1.6) or (1.7), according
to the particular case one is concerned with,
one can obtain the information we have given at
the beginning. One possibility is to hypothesize
a particular spatial distribution for the scatterers,
that is, to evaluate the "theoretical" scattering
intensity by Fourier-transforming the resulting
correlation function and finally to compare this
intensity with the experimental one. If the agree-
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ment turns out to be satisfactory, then one can
confidently conclude that the spatial configuration
one has chosen at the start is fairly close to the
real one. With this procedure it has been possi-
ble, for instance, to get accurate information on
the structure of pure liquids and of electrolytic
solutions. '

In this paper we shall be concerned with a dif-
ferent approach, which consists of finding out

direct connections between the correlation func-
tion and some physical quantities of the sample
as well as getting the explicit form of correlation
functions through the use of some general and

apparently mild hypotheses. Two celebrated
examples are, respectively, the Debye -Porod'
relation and the Debye definition of "random"
system. The first result, which is of paramount
importance in small-angle x-ray scattering,
states that the value of the derivative of the corre-
lation function at the origin [i.e.,y(0)] is propor-
tional to the specific surface (i.e., the ratio be-
tween the total phases separating surface and
the total volume of the sample). The second re-
sult shows that for random two-phase systems,
the correlation function is a simple exponential
function. Both these results have been general-
ized by Peterlin' and by Brumberger and Good-
isman' to N-component systems. However, while
the first generalization appears quite safe, it
has been noted recently' that the second one leads
to the following, rather puzzling consequence:
It is not generally possible to recover the corre-

- lation function of a two-phase random system
from the correlation function of a three-phase
random one, once we have made the two phases
of the last system equal. This result clearly
indicates the necessity of a more thorough investi-
gation of the "randomness" hypothesis by looking
more carefully at the connection between this
hypothesis and the approximations performed
in obtaining the previous results.

In this paper, we report the first results that
we obtained by looking at these problems with
the above-mentioned motivation in mind. In
particular, we shall show that the first- and the
second-order derivatives of the correlation func-
tion [y(r) and y(r), respectively] can be expressed
through integral formulas which are mainly rela-
ted to the boundaries of the scatterers. Then by
evaluating the limit of these expressions as x-0
we shall get the well known Debye-Porod relation
and the generalization of the result found a long
time ago by Kirste and Porod' for smooth parti-
cles only.

In fact, we will show that when the boundaries
of the phases are sufficiently regular (in practice,
the tangent plane exists at any boundary point},

II. THE FIRST-ORDER DERIVATIVE OF THE
"STICK-PROBABILITY FUNCTIONS"

Before introducing these quantities, we must
recall that our sample's idealization explicitly
assumes that any constituting piece behaves as
a homogeneous medium. By this we mean that
the relevant electronic density q, (r) takes the
same value at any point P inside the chosen ith
phase. Hence the value of n, (r) is either zero,
when P (i.e., the point whose position vector is
r;) does not lie in the region occupied by the ith
phase, or n, , when' does. Therefore if we
recall the definition of the characteristic function
p„(P) of a set V,

1 when Pc V

pY(P) =

0 when PQ V,

we immediately realize that

(2 1)

(2.2)n, (r) =n;pr (r) .
Then all quantities defined in the preceding

section can be written in terms of the set charac-
teristic functions. In fact, the local fluctuation
function q, (F) defined by E(I. (1.2) becomes

')i((r) = (n( n)pr;(r)-, (2.3)

while from E(I. (1.1) we immediately have the
average electron density

(2.4)

in terms of the ith-phase volume fraction (f,
—= V, /V. Similarly, from E(ls. (1.4) and (1.3) we
get, respectively,

(2.5)

then y(0}=0, while when we have lines of singu-
larities, such as sharp edges or lines where
at least three phases meet, then y(0) is different
from zero. Indeed the value of y'(0) is related to
the integral of a known weight function along the
singularity lines.

The paper is organized as follows. In the next
section we 'shall give the main definition as well
as the integral expression of the first-order deri-
vative of the correlation function. In the Sec.
ID we report the integral expression of the second-
order derivative and we sketch the proof that
y(0) =0 for the regular-surface case. In the Sec.
IV we give the value of y(0) for the more general
cases, namely, when physical singularities of
the boundaries are allowed. Finally, a few tech-
nical details are discussed in Appendixes A and
B.
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N

( ) g (n, —z)(n, —m)~ ( ) (2 6)

where we have set

(}p(r) p
=f—drp, (,r,)p,(r,,+ r) . (2.7)

For the support properties of the two character-
istic functions which appear in the integrand of
Eq. (2.7), the integration region can be the Eucli-
dean three-dimensional space or the V set. From
Eq. (2.6) one sees that the knowledge of Q, z's
implies that of the correlation function, while
Eq. (2.7) clearly shows the importance of the
geometrical aspect in the definition of the @;&(r).

So far we have not taken into account that our
sample is an amorphous system. The last prop-
erty implies that any anisotropic effect must
disappear when the sample becomes infinitely
large. Therefore the sample's infinite volume
limit of Q,z(r) must be always the same whatever
the direction of r; hence

(2.8)

Moreover, the angular average of %,z(r) over all
possible directions r2 of r

rp(r)= fd), (rd)
d

dg (2.9)

in the infinite-volume limit must be equal to the
previous function

limP, ,(r) P, ,(r) .
V» ~

(2.10)

Since our subsequent analysis deals only with

P,&(r) functions, it follows that the results we

get will refer to the angular average of the corre-
lation functions,

N

(2.11)
V1 7

so that they hold true not only for isotropic sys-
tems but to a certain extent also for. anisotropic
ones. The positive-value functions

P&r(r) fdr& fdtdpr=-(r&)p (r,.rrtr)

(2.12)

have been introduced in Ref. 4 and they will be
called "stick-probability functions" or more sim-
ply, probability functions. The reason for this
nomenclature is the following. Let us toss at
random a stick of length r for a very large num-
ber of times and let us ask how many times we

find one end of the stick, say A, in the set V,
and the other end in the set V&. The ratio of
these two numbers represents the probability
for the last configuration when the toss number
increases indefinitely. One can easily convince one-
self that P,~(r), defined by Eq. (2.12), represents
exactly this probability. In fact, the probability
that the end & of the stick falls inside the set of
measure dr, , located at the point r,. inside the
set V, , is equal to the ratio of favorable cases
(x: dr, p„(r,) to the total number of cases o- V;
hence it is p„, (P, )df, /V

Now we require that the 8 end falls inside V&

and the stick's orientation is 8. According to
the principle of conditional probabilities, in
order to get the total probability, we must multi-
ply the probability evaluated above by the prob-
ability of the last event, i.e. , p„(r,.+ r(&)d(3/4v.

By summing over all favorable cases we end
up with Eq. (2.12) and thus we can correctly refer
to PU(r) as the stick-probability function rele-
vant to the ith and jth phases. Moreover, by
following this interpretation one immediately
recognizes that the result of the angular inte-
gration in Eq. (2.12) is equal to the value of the
solid angle of the intersection set between Vz
and the sphere B(r;,r) whose center lines at
r, and whose radius is r. For later convenience,
we shall denote by Q&(r„r) the corresponding
solid-angle set (i.e., the set obtained by projec-
ting the previously defined intersection set on
the unit-radius sphere with center at r, ) and by

Qz(r„r) the measure of the latter.
Then we immediately have

P, ~(r) = dr, A.~(r, , r.) . (2.13)
V ~

However, this expression can also be written
in the following way:

Pp(rl= d,. dd, fd (P,. rr-tP",),
V. V

(2.14)

where the Dirac function clearly accounts for
the fact that the distance between the two points
r; and r&, which are inside the ith and the jth
phase, respectively, must be equal to r. The
use of Eq. (2.14) makes the accomplishment of
our first task very easy, namely, to obtain the
integral expression of the 1st derivative of P,z(r).

In fact, the increment of the stick-probability
function when the stick's length is increased by
&r is given by

dpp(r)= f dp, . dp~fd [ (, d}lr pr}-r~)rd
V. V~

-{)(r,. + (dr r,)]. -
(2.15)
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By handling the Dirac function as an ordinary
function, we apply Lagrange's theorem for ob-
taining

6(r,.+ Q(r+ (( r) r-z} 6—(r, + (2)r —rz)

= () r((9 27')6(r, + (dr+ $(d)ar —r&) 2 (2.16)

where $ is a suitable positive number which does
not exceed 1. Since the differentiil operator on
the right-hand side (rhs) of Eq. (2.16) can be
thought of as acting on the variables r;, and

since cQ does not depend on the latter, the rhs
of Eq. (2.16) is the divergence of the vectorial
field

(d6(r, + &.+ $(9&r r~)—.
Hence, after substituting Eq. (2.16) into Eq. (2.15)
we can apply the Gauss theorem and obtain

&P,&(r}= d(0 dr& dS,.&, ~ (2}
4~V s

&& 6(r, + &.+ $(3nr —r, ),

(2.i7}

where S, denotes the boundary set of V, and 0,
is the unit vector perpendicular at the surface
S, in the point r;, to which the differential ele-
ment dS, refers. Moreover, 8, lies outside the
set V,.

By taking the limit Ax-0 we arrive at the de-
sired result

P',.r(r) = fdd f drr dS,.S, t00(r,. r Sr- r),
4m V | s ~-i

(2.i6}

tion for "random" systems. We shall leave this
discussion to a further paper, but before attempt-
ing the evaluation of the second derivative we
mould like to show how the generalized Debye-
Porod result on specific surfaces immediately
follows from Eq. (2.19).

To this aim we must evaluate the limit of P;z(r),
as r-o, which will be denoted by 2,&(0). Let
us refer to a general point I',. belonging to S,.
If we consider a sufficiently small spherical
neighborhood of P;, B(r;,6), we meet with one
of the following cases: (a) no j th phase is con-
tained in B, (b) only the ith and the jth phases
are contained in B, and finally (c) besides these
two phases there is at least another phase in
B. In the first case, we find that Qz(r„r}.=S—
(null set) for any r smaller than B radius 6;
in the second case since by hypothesis S, has
a tangent plane at r„Q~(r~, r) as r-0 becomes
a half sphere; in the third case, the value of the
limit of Q~(r;, r) will depend on the particular
configuration. However, on physical grounds
the set of points I'; where more than two phases
meet is extremely small. This implies that the
measure of the last set is zero. Hence we get

P&&(0) )r f dS~ f dd 0~ ' 0 (2 20)4"V s

where 8;& is the surface set mhich separates the
ith from the j th phase and Qz(r;, 0') is the unit
radius half sphere. Once we have recalled that
Pu, like 8;, goes from the ith to the jth phase,
and that o, represents the top point of the half
sphere, the evaluation of the last integral gives
as a result ~. In this way me obtain

which can be also written p, ,(0) =~&~ (f~j),S (2.21a)

(2.19),(.) ,', f'. f=. ',
4wV

~ 9(p „)
The derivation of the last result is mathematic-

ally meaningful, provided the boundary S; is such
that at any of its points it allows for the existence
of the tangent plane. Of course, we assume also
that the measure of S; is finite, as far as V is
finite. We must also note that the rhs of Eq.
(2.19) makes sense also when the boundary S,
contains a set of singular points (i.e., points
where the tangent plane does not exist}, provided
the last points can be included into closed sets
whose measure can be made arbitrarily small.

The integral expression that we have obtained
for the first derivative of the stick probability
is very useful for understanding the mathematical
approximations mhich Debye and co-workers
implicitly did when they got the correlation func-

which generalizes to N-component systems the
result found by Debye and Porod for tmo-compo-
nent one' s.' We remark that the result given
by Eq. (2.21a) is not new, since it has been
achieved by Goodisman and Brumberger' and by
Peterlin' with a procedure different from ours
but quite similar to Debye's one. Finally, the
evaluation of P, , (0) can be performed along
the same line, with the obvious differences that
0; points toward the opposite direction of the
half sphere's top point and that all S; surfaces
will contribute. Thus one finds

p, (o)=-~.fi 4V
' (2.2ib)

Finally, by substituting Eq. (2.19) or Eqs. (2.21a)
and (2.21b) into Eq. (2.11), one obtains the value
of y (0) in the most general case:
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where 8&,. =—-S,

x 5(r;+re r&)—, (3,1)

where the meaning of symbols involved is the same as
that explained after Eq. (2.1V) and the minus sign
in front of the rhs follows from the fact that the
del operator & has been converted to the operator
&z which acts on the variables r&.

Although quite elegant, Eq. (3.1) is not very
convenient for calculations because the integra-
tion of the 6 function requires the application
of the general theory of distributions defined on

regular surfaces" or an appropriate change of
integration variables, which in general is not

easy to obtain.
However, one succeeds in eliminating the 6

function in Eq. (3.1) by following a different ap-
proach. To this aim, we start from Eq. (2.19).
The increment of P,&(r), induced b. y the variation
~~@ of the stick's length, will be

+P;~(r)= f dS,. f (I, 2)dd
4wV s

' „(-, ~~„)

8] ' (d d(3 ~ 3.2
Qg(r. , r)

namely,

eP,~(r) = dS,. (8'. ~ (3)dd), (3'.3)
4m V g

' ~„(~ „)

where &Qz(r;, x) denotes the difference set between

Q&(r„r+ nr) and Qz(r„r). With reference to Fig.
AQ is composed of the tips of all those vectors.f

cQ whose directions fall into the shaded region.
Moreover, when ar goes to zero, the measure
AQ&(r, , r) of 40& also goes to zero Therefo. re
in order to get the second derivative P,~(r), we
must evaluate

(3.4)+I= d4) 0'~ ' (d

~Q~(r, r)

up to terms 0 (e.r)." To this aim, let us choose

III. THE SECOND-ORDER DERIVATIVE

The second-order derivative of P,.z(x) can also
be expressed in terms of a suitable integral on
the relevant phase boundaries. In order to arrive
at this formula one could start from Eq. (2.18)
and parallel the same procedure which led us
from Eq. (2.14) to Eq. (2.18). In this way, one
obtains the result

n I=- d, ( )
[tt,' u(I)]+ o(cy),

where the integral is evaluated along the curve
I'„, depicted in Fig. 1. One should also note the
reported dependence of (d on the curvilinear ab-
scissa E, which is, of course correct only up to

(3.5)

FIG. 1. ABB' A. and 00' denote the frontal views of
two regions which are filled up by jth and ith phases,
respectively. Moreover, the arcs AA' and BB' denote
the corresponding intersections with P;-centered
spheres of radii r and r +Br, respectively. In addition,
BB"B' and AA."A' represent the contours of the inter-
section sets between the previous two spheres and the
considered jth-phase region. The contour CC-"C' is
the projection of the contour BB"8' on the sphere of
radius r. The curves AA"A', BB"B', and CC"C'
will be denoted by I'„, l„and I&. Finally, the set of
all unit vectors co which give the directions of straight
half lines, leaving from P& and crossing the shaded re-
gion, corresponds to EQ& (r&, 4r).

a point, say &, on the "external" contour I'~,
AA "2', whi. ch must be also thought of as possess-
ing orientation, and let P be a particular point
on it. Of course, we can associate with any
point P (= I'„a real number l, which corresponds
to the length of the oriented arc AP. Moreover,
let An(l) denote the length of the segment PQ„
which is perpendicular to the curve I'„at the point
P and which intersects the projected curve I'~

at the point Q, . (See Fig. 2, where the spatial
configuration around P is reported in a more
detailed way. Besides, its caption also gives
the precise definition of the symbols we shall
use in the following. ) Clearly up to terms 0(b r),
we obtain
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curve. Turning back to Fig. 2 one sees that
(I),(II, =&r, while (I),(I), denotes the differential
of the function which represents the curve I',
and then (I),(I), =Dr+ 0(&r). From the triangle
PQ, Q„rectangular in Q„we have

&n(l) tan@&(l) =dr+ 0(nr), (3.8)

Fu

I'u
where 4& is the angle between ~, and 7', or between
o~ and (3(l)."

By substituting this result into Eq. (3.5) and
hence into Eq. (3.3), we can immediately evaluate
the limit of (&P(~/&r) as &r-0. Therefore the
final expression for the second derivative of
P(, (r) is

FIG. 2. Enlarged view of the spatial configuration of
intersections sets in a neighborhood of a general point
P&. The meaning of symbols involved is as follows.
B(r&, ~) is a sphere with a center at r; and radius r,
Fz= SOB(r—;, r), I'„—=S(flB(r;, r n. r), I'& is the pro-
jection set through P& of F„upon B(r;, r). 7.(l) is the
unit vector of the line tangent to F„atthe point P, whose
curvilinear coordinate is l; v(l ) is the unit vector perpen-
dicular to7 (l ) and tangent toB(r;, r); 0-(l ) is the unit vector
perpendicular to S& at the point P; 7l is the plane defined by
the points P& and P and by v(l ); 7~ (l ) is the vector of
the straight line tangent to S, at the point P and lying on
the plane 7t; I' —= S&P n; Q~ is the point belonging to
n AF& and nearest to P; Q2 is the projection of Q& on

F„;Q3 is the intersection of the straight line leaving P
along the direction 7~(l) with Q~Q2. Finally, we note that
this line is also tangent to Fe at P.

terms O(r(r).
We must now relate An(l) to r(r. With refer-

ence to Fig. 2, let us call Q, the projection on
I'„of the point Q, . We denote respectively by
P(l), P(l), and r",(l) the unit vectors of the tan-
gent to I'~ of that normal to T(l) which lies on the
plane tangent to the spherical surface B(r, , r)
and finally of the tangent to the curve I"„which
is determined as the intersection of the surface
Sz with the plane which passes through the points
P, (I)„and P, (i.e., the point on S, whose position
vector is r,}. (I), will denote the intersection of
the line, which leaves P along the direction r„
with the segment Q, Q, .

We assume that the boundaries 8&, which we are
dealing with, are C, functions, "namely, that
the parametric equations of the boundaries are
at least doubly differentiable functions and more-
over that the previous equations and the resulting
derivatives are continuous functions. When the
last condition is fulfilled we are sure that the in-
tersection of S, with any t", surface will be cer-
tainly a continuous and doubly differentiable

lim P,((r) =0. .
y-so

(3.8)

In this way we have achieved a different proof of
the result found for the first time by Kirste and
Porod.

IV. THE LIMIT OF THE SECOND-ORDER
DERIVATIVE WHEN SHARP EDGES

ARE PRESENT

Although the result (3.8) holds true for apparently
quite general surfaces, the regularity conditions
required for its validity are rarely fulfilled by the
boundaries of real multiphase systems. In fact,
in order to arrive safely at Eq. (3.7) it has been

P,J(r) =—., dS, dl [o( (d(l)] cotC, (l),cf 4&yr

(3.V)

where the second integral is performed along the
curve I', (r, , r}, which is on the surface S( and is
such that the distance of any of its points from
P, (=r,.) is r. .

We must now evaluate the limit of P,, (r) asr- 0. Since I'&( r, , r), provided it does exist,
must lie on a sphere of radius r, it is evident
that its length goes to zero when r-0. Moreover,
the assumed continuity of I'((r, , r) with respect
to r,. and r also implies that C)(l) asr-Oapproaches
a unit vector which lies on the plane tangent to the
surface S(( at the point r, . Hence o, (d(l)-0 as
r-0. At the same time o((I), which is the unit
vector perpendicular to S,.( at the point P(l) at a
distance r from r, , as r-0., will approach 0, for
the continuity of the boundary. Hence also
az(l) ~ (o-0. In conclusion, as r- 0 the limits of
the two factors inside the second integral of (3.'I)
are both zero and also the integration interval
tends to zero. Moreover, the continuity of the
partial derivative of the boundary assures us that
any of these factors is at least O(r) (for a more
detailed proof, see Appendix A) and thus we can
conclude that the limit is zero, i.e.,
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necessa yr to assume ath t at any point of the set
Then we must ex-S. the tangent plane exists. en, wtJ&

-se arating surfaces such as cubes,s, n these cases tangent planessharp edges, because in e
do not exist at any boundary por int. In addition,

made u by N phaseslet us consider a system ma e p y
3 I eneral, there is no reason for ex-with N& . n ge

eluding the con i indition that more than two p a
n a iven line. In such cases, at least

one o ef the separating surfaces mus ave
th line of contact. Therefor eif weedge along e ine

for theant the regularity conditions, necessary or e
't of result (3.8), to be u i e

r that any of its con-t systems, it is necessary aponen
iven hase, be im-t d regions, occupied by a given pnec e r
d onl one phase.* t l s rrounded by one and o y

to this discussion, on the one
ars clear that the most e y cit appears c e

violate the previous
itious and then that the limit of P,z(r), as

st be somehow related to the sin-this limit mus e
' s of the separating surfaces. n orgu

to find out this relation, we mus, irs
derstand at which point the p roof of relationun ers

im we shall start(3.3) breaks down. To this aim,
lest discontinuity we canby considering the simp es

t It corresponds to the case depic e
. 3. There, the jth-phase wedge, e '

by the half planes m, and 7t„and e i -p
ited b the half planes m, and m4, share

the figure one realizes that tthe contour I'z r, , x,
E . (3.7) and which refers to thewhich appears in Eq.

s I' and 1'3 on' t P =-C is composed of curves I', an
the half planes 7t, and m„respec i y.

h' h ctually are arcs of circles,these curves, w ic ac u
the integrand of q.E . (3.V) is almost everywhere

d—we must, in fact, only exc u e e
' t H and H',—we conclude a e '

two poin s
Therefore oneI' U 1 is a function of P, Thereover 2 3 i

d i)S. ish t P .(r) does exist providedXp ff.

finite ll the singularities are simp y e g
vertices, an iiid ('") r is different from zero.

cond deri ti hi h ].t
igu io

and by m2 an

d C/are erpe d l to thth erp ndicular r""t
cle F is r while th d t

as dxd . C3 is e per
e C 8 is denote y x.co r pi

f the circle I' is given y= x cosA, an d the radius of the arc o
-PC/2.
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The last item is particularly important, be-
cause when r goes to zero, from Fig. 3 one can
see that the limit of P,~(r) can depend on the way
we let r approach zero. In fact, if we let the
contour I'J shrink to zero by maintaining C, fixed,
I'z will necessarily become the null set so that
the resulting contribution to P,~(r) would be zero.
On the other hand, we could let r go to zero and
simultaneously let C, approach the edge in such a
way that the resulting I"z(F„r) will always be com-
posed of the two relevant subsets I', and I",. In
this case, neither o&(P,} nor 8'z(P, ) will approach
o, as x-0. Hence, as r-0, $~(l), defined in
Eq. (3.V), will not approa'ch v/2, and therefore
we must expect that result (3.8) will no longer be
true. Although both limiting procedures require
an interchange of limits, it will soon appear clear
that the conditions required for the validity of
the interchange related to the second procedure
are much weaker than those required by the first
one.

To this aim, let us write the contribution to
P„(r}due to the two half planes v, and v, by using
the explicit parametrization of the boundary set
m,. AS„which is visualized in Fig. 3,

where

+L

A L
(4.1)

r /S illa
p(,")(y, ~}-=, dx dl o, (l) ~ (d(l)

0 F3(x, y, r)

xcot4J(l) . (4.2)

The upper limit of the first integral in Eq. (4.2)
represents the distance of the generic point P,
=—(x,y) from the edge AA', beyond which the sphere
II (C„x) no longer intersects v, . The definition
of the angle n is evident from Fig. 3. However,
it is not useless to remark here that the previous
upper limit is r when we consider the contribution
P,'J" (r} due to the half planes w, and v, . In fact,
the general recipe is this: The upper limit is r/
sine or r according to whether the smallest of the
two dihedral angles between the two considered
half planes is smaller or larger than v/2. Cor-
respondingly, in the two cases a is the smallest
dihedral angle or -its complement to m, and thus
the condition 0 & n & v/2 is always true.

We can continue the previous discussion. Indeed,
we claim that the correct procedure for evaluating
the zero-distance limit of P,J(r) when a sharp.
edge is present is the following:

+L
lim P ,.," ((r) )= —

4
dy lim P,',"(y, r) .

0 7T g~0

(4.3)

limP(~" (y, ~) = —,'[1—(v —P", ) cot(v —P", )], (4.4)
0

where p', ~
(0&p,'~3&2v) is one of the two dihedral

angles between the half planes m, and m, . A straight
edge is formed by the intersection of two half
planes that delimit, respectively, the ith and the
jth phase; by substituting this last result into Eq.
(4.3), we can conclude that this straight edge con-
tributes to the P, (rf)'s zero-length limit with the
quantity:

)'!)"(0') = —
q f d) [1—(!!—(),',*)!:o)(!!-)),',*.)] .

(4.5)

From the previous particular configuration, we
can immediately proceed to much more general
cases. In fact, when more edges are present, we
must sum over all edge contributions. When more
than two half planes meet along the same edge,
indexed through the integer E, we must sum over
all possible pairs of (lth, jth) phases delimiting
half planes. If we number these pairs with the
index 0, we find that the zero-length limit of the
second derivative of the stick-probability function
is given by

P,y(0') =—„,Z f E( -(.—;,())
x cot[w —p'„(y}]j,

(4.8)

Equation (4.3) represents the exact definition of
the expression "second limiting procedure" we
have used before. It also appears clear that
through Eq. (4.3) the limit x- 0 is interchanged
only with the integration with respect to y, while
through the procedure followed for obtaining Eq.
(3.8) the further interchange with the g integration
was required also.

We must now show why the limiting procedure
(4.3} is correct. From Fig. 3, it is evident that

P,(~")(y, r) is certainly a continuous function when

y and r range, respectively, in the two intervals
[-I +6,I +5], [0, i)], where 6 is a positive number
which can be taken arbitrary small. The existence
of the limit of p', &" as r- 0, which will be proved
in Appendix 8, assures us that the limit inter-
change (4.3) holds true, except, possibly at the
two small end-point sets. Since we can let the
measure of these two sets approach zero, barring
unlikely pathological behavior of p,'&" at the end
points, one concludes that Eq. (4.3) holds true
all over the considered edges.

In Appendix B, we have directly evaluated

P,'z" (y, r) for the sample's configuration we are
considering. The result is given by Eq. (818)
and turns out r independent; therefore
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where for notational simplicity we have not
specified both thy limits of the integrations and
of the sum. So far, we have confined ourselves
to the case of straight edges. However, with the
case of curves one expects that Eq. (4.6) still
holds true. In this case the relevant integral
must be interpreted as a curvilinear one, and

P",.z(y) represents the dihedral angle between the
half-planes which are tangent to the 0th pair's
separating surfaces at the point P(y) which lies
on the considered edge and which is characterized
by the curvilinear abscissa y. An equivalent way
for defining the angles P",.z(y) is the following:
Imagine that the considered lth edge at the point
P(y) is cut with a plane perpendicular to the edge.

This plane will cut the surfaces. which are con-
fluent on the edge along some lines. Choose the
lines which correspond to the 4th pair. P~J(y) is
the angle between the tangents (more precisely
the limits of the tangents) to these two curves at
the point P.

From this discussion, it appears evident that
the edges must be endowed with a tangent at any
of their points and moreover that the separating
surfaces must be C, functions except for the inter-
section edges, In this way we are sure that all
quantities which appear in Eq. (4.6) exist. More-
over, these conditions should suffice for ob-
taining a rigorous proof of Eq. (4.6) according to
the following argument. One locally approxi-
mates intersecting boundaries through wedges
that meet. The previous continuity assumptions
should assure us that the corresponding error
is O(x). Consequently the limit x-0 gives the
result {4.6). Before concluding the paper, we

want, however, to give two simple applications of
result (4.6).

Let us first consider the simple two-phase
system made of one cylinder, whose height and

radius are h and 8, respectively. 'The discon-
tinuity lines are the two circles which delimit'the
two bases. Along these lines, the angles P» are
equal to Sv/2. Then we get

P„(0)= ——(2vff +2vft)2,

where the factor 2 accounts for the fact that we
have two pairs of intersecting half planes. Since
the system is a two-phase one, from Eq. (3.'7)

we derive that P»(r}= P„(r ) H-ence P.»(0)
= 4R/SV. This result coincides with the correspon-
ding value calculated from the correlation function

y'Sq x 2A
4V' '

SV
' 64R' 30 ft'a '

V=-.zR h, 8 =—2' +2@Ah,

relevant to this system and evaluated directly
from Eq. (2.12) by Mering and Tchoubar [see Eq.
(3.10) of Ref. 15].

As a second example, let us consider the case
of a prism whose base is an equilateral triangle.
I et the triangle's side be a, and the height of the
prism be h. In order to evaluate P»(0), we apply
Eq. (4.6) once more. Now, along the three vertical
edges the angl& 3» is 5v/3, while along the six
horizontal edge the relevant angle P„ is Sv/2.
Hence we get

0 ~ 2mb-P»{0)=P„tu) = — 2a+h+

By direct evaluation we have found that, at small
x, the correlation function relevant to the pre-
vious system is

P»(r) =1 — — ' + 6a+Sh+ SO-SS] 2r

where 8, is the total surface. Thus one can im-
mediately check that Eq. (4.6) gives the right
result.

V. CONCLUDING REMARKS

Perhaps it is not fully useless to note that the
expressions we have obtained for the first and
second derivatives of the stick-probability func-
tions —i.e. , Eqs. (2.20), (3.1), and (3.7)—can be
taken as correct even when the phase-delimiting
surfaces do not share the continuity conditions we
have required in working out the previous expres-
sions. In fact, from a practical point of view, it
seems sufficient to require the existence of the
relevant integrals.

%e have taken this attitude in evaluating the
zero-length limits of the two previous quantities
P,,(0) and P,.J(0). However, this analysis must be
carefully done, owing to involved limit inter-
changes. We believe that through Eqs. (3.8) and
(4.6) we have correctly analyzed the cases which
are physically the most important ones. In par-
ticular, Eq. (4.6} takes into account the contri-
butions of all singularities except for isolated
singular points. However, at least for convex
bodies, the last singularities, i.e. , the vertices,
should not contribute as is indicated by the known
expression of P,.~ for cubes, prisms, etc. There-
fore one can believe that Eq. {4.6) has been proved
with the same accuracy of the generalized formu-
lations (2.20), (3.1), and (3.7).

Mathematically it is amusing to note that the
stick-probability functions relevant to different
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APPENDIX A: EVALUATION OF PIg(0+)
FOR CONTINUOUS BOUNDARIES

We must show that if the boundary surfaces are
continuous differentiable functions, then the limit
of the second derivative of P,z(r), as r 0.+, is-
zero. More definitely, according to the dis-
cussion in Sec. III, we must show that at each
point P, of the boundary S,&

between, the ith and
the jth phase one has

cot/, (l)8, ~ n
lim dl =0.
r~0 I

Clearly, the contour along which the integral is
evaluated lies on the surface S,&

is well as on
the sphere of radius r. For the last condition,
the contour has a finite length unless it has an
infinite number of 'oscillations. " However, this
possibility is ruled out by the C,-continuity prop-
erties of S,.z. Hence the contour for finite x's has

(Al)

phases must always be convex and increasing
x functions in a neighborhood of the origin. This
follows from the fact that (a) P&( 0) &0 according
to Eq. (2.2'la) and (b) P, &(0") ~ 0 according to Eq.
(3.8) or (4.6). Indeed the integrand of Eq. (4.6) is
a negative-valued function whose values range in
the set [0, -~], as the variable v —P",.z ranges in
the physically allowed set [-v, v].

From a physical point of view, it must be
emphasized that Eq. (4.6) might be veryuseful. In
fact, when we can sensibly approximate the di-
hedral angles values, then Eq. (4.6} will give a
direct correlation between the value y(0) and the
specific length I /V, where I denotes the total
length of the edges. Thus the experimental deter-
mination of the scattered intensity allows us to
know y(0) and consequently the specific length
also. The knowledge of the latter can be very
important. Indeed, over the past years there has
been a great deal of experimental evidence that
different types of surface sites have different
chemistries, "and thus the chemical behavior
of edge atoms should be different from that of
atoms lying inside the regular part of the sur;
faces. Now the edge specific length is propor-
tional to the number of atoms which are located
on the edges. Consequently, Eq. (4.6) allows us
to exploit possible quantitative connections be-
tween the catalytic properties of a sample and the
specific length of its edges.

a finite length and, consequently, the integral
(Al) is evaluated on a compact set.

In order to analyze the behavior of remaining
factors inside the integral (Al), let us refer to
Fig. 4, where Z and Z' denote, respectively, the
sections of the surface S&& with the figure's plane
and the circle which osculates g at P, There,

~
P,P =r, while &o is parallel to P,.P, and o,. ~ &3

= cosf).
It follows that [ PP'[ = O(r}

+O(r), and ~ ~ e'=1+O(r). Moreover, the con-
tinuity conditions imply that (u ~ &i, )

—= cosp&
=, (e' ~ &i') +O(r) and 8, ~ 9 =o, ~ ~' +O(r}. If we de-
note by p the radius of the osculating circle Z',
from the previous relation and from Fig. 3 one
immediately sees that

4,.=(o,. ~ ~')+O(r) = ' +O(r}= ' +O(P, P' P~P

and

cos P, = (~ ~ a', ) = (~' ~ o') + O (r)

= cos(f&,. +O(r) = +O(r) .

By substituting these two last expressions in the
integral (Al) one realizes that the limit as r-0
of the function which must be integrated is finite
at any fixed P, . But, as we have said before,
the integral is performed on a compact set whose
measure goes to zero as r- 0. Hence Eq. (Al)
is proved once we assumed that the limit inter-
change is correct.

APPENDIX B: EXISTENCE OF LIMIT OF p.

C

FIG. 4. Normal section of the separating surface S&&.

%'ith reference to Fig. 3 we want to evaluate now
the following integral:

r /sine

PI,"'(y, r)= —, -dx df4, ,(x, y, r)
0 F3(x„y, g)
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where we have set for convenience

4,.,(x,y, r) = &,.(I) &u(l) cotC, (l) (B2)

r/sina
p, (y, r) = — dx R,(x)dy @,.~(x, y, r),

r

p,","(y,r) =p, (y, r}+p,(y, r),
where

(B3)

= 1
p, (y, r) = —, dx dl O', J(x, y, r),

0 I'3(x, y, r&

(B4)

and

r/sine
p, (y, r) —= —, dx 4',.z(x, y, r)dl .

r r3(x;;y, r)

(B5}

Since in the two cases, (B4) and (B5), the contour

1,(x,y, r) is an arc of a circle or a complete
circle, respectively, it is convenient to para-
metrize the second integration variable as well
as the integrand in terms of the angle p between
the axis X' and the vector C,P, where P is a
generic point belonging to I', (see the caption of
Fig. 3 for more details on the definition of some
symbols). To this aim, we observe that

C,P=C,C, +C,P =res(l}, (B6a)

(B6b)C,C, = -x sinabf, 0,. ~ 0'& = cosa .

Since the Cartesian components of C, P with re-
spect to HX'F'Z'. are (R,(x) cosy, R,(x) sing, 0}
where R,(x), the radius of F,( yx, r), is given

by

R,(x) = (r '- x'sina)'~', (B6c)

and the components of 6,. are (-sina, 0, cosa), then

by using Eqs. (3.6a}-(3.6e) we immediately ob-
tain

o, ~ ~(P) =[-x sinn cosa —R,(x) sina cosy]/r .

(B7)

It is also convenient to split the integral (B1) into
two contributions:

y'
0

2sin Q+, R,(x)xdx sing„(x) .
p

(B12)

Now, the calculation of the second integral is
trivial and gives

—Sin'Q (B13a)

while the calculation of the first integral through
the relation

2 sin Q cos& 71' x cosax'dx arccos
0 R,~x~

(B13b)

amounts to the calculation of the following inte-
gral:

x dx arccos (B14)

The last task can be accomplished by first per-
forming an integration by parts and subsequently
changing the variables x'- x'—= z'r'. In this way,
after straightforward manipulations one finds that
the value of (B14) is

(r '/3) cosa [-1/sin'a+ a/(sin'a cosa)] . (B15)

and after using Eq. (B9) we have

P, (y, r) = (2v/3) sin'a cosa(l/sin'a —1) . (B10)

The evaluation of p, (y, r) is a little bit more in-
volved, since the contour I; is an arc of a circle,
whose corresponding angle is 24~ and

4 „(x)= v —arccos [x cosa/R, (x)] (B11)

(see Fig. 3). By using Eqs. (B11), (B9), and

(B4), we have

From the relation

eos4, (P) = v, (P) ~ ~(P) = -x s-ina/r

By collecting all results, we get

p(',"'(y, r) = —', (w —a) cota+ —,'. (B16)
we get very easily that

cot4&(P) = -x sina/R, (x) .

Finally, the integrand becomes

x sin / Cosa x sin'n cosye,~(x, y~r)=-
( )

+

(B8b)

(B9)

%'e can now start with the direct evaluation of
integrals (B4) and (B5). In fact, Eq. (B5) ean be
written as

It is important to note that this result depends
neither on y nor on r, and moreover that it is a
decreasing positive-valued function of n in the
subset [0,v/2). The value a =0 must be excluded,
since at such a value the half plane z, is strictly
coincident with v, and the decomposition (B3) is
no longer true.

So far we have not considered all possible rela-
tive orientations of half planes z, and n, . Indeed,
result (B16) explicitly refers to the case where the
lowest of two possible dihedral angles between
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PIg (3 ~F) =
g

—~g Q. cot&, (B1V)

w, and m, is lower than m/2. Therefore we must
still analyze the case where the previously defined
angle is greater than w/2, or more precisely,
belongs to the set [w/2, m]. In Fig. 3, this situation
corresponds to considering half planes m, and m„
for instance.

By proceeding along the same lines we followed
before, one can easily show that in this case one
has

where a (denoted by n„ in Fig. 3) corresponds
to the n-complementary angle of the smallest
dihedral angle between m, and m, .

Finally, both Eqs. (2.16) and (2.1V) can be ex-
pressed through the single relation

(B18)

where P, denotes one of the dihedral angles be-
tween the half planes, indexed for greater gen-
erality by l and m, which meet along the common
edge considered.
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