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Hartree-Fock energy levels in solids: Application to argon
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We examine the reliability of first-principles electronic calculations performed with the orthogonalized-plane-wave
method and the Gaussian representation of occupied orbitals. A good feature of such a procedure is that the
exchange potential in its nonlocal form can be included rigorously and the matrix elements are still in analytic form.
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As a specific application, we consider the case of argon, and we compare our results with previous calculations.

I. INTRODUCTION

The importance of first-principles band-struc-
ture calculations has focused the attention of sev-
eral authors on the foundation of the methods tra-
ditionally applied in this field (see, for instance,
the papers of Brener and Fry' and references
quoted therein). In particular, the orthogonalized-
plane-wave (OPW) method?® has been thoroughly
investigated in this context.®® The paper of Brink-
man and Goodman® of 1966 and that of Lipari and
Fowler* four years later provided a numerical
technique for treating rigorously the Hartree-Fock
(HF) operator. In these papers®* occupied atomic
states are expressed in terms of Slater-type or-
bitals (STO); the resulting numerical technique,
however, is so laborious as to prevent a routine
application of the procedure. Very recently the
problem has been reopened®® and major simplifi-
cations have been shown to occur if occupied
atomic states are expressed in terms of Gaussian-
type orbitals” (GTO).

The main motivation of this paper is to examine
the HF energy bands obtained combining the stand-
ard OPW method with the Gaussian representation
of occupied orbitals; we refer to this approach as
the GOPW (Gaussian OPW method). Its advantage
is that all the ingredients needed for constructing
the matrix elements of the secular equation (ortho-
gonalization coefficients, Fourier transforms of
the Coulomb potential, bielectronic exchange inte-
grals) are analytic.

As a specific application we consider the case
of solid argon. There is a very large number of
band-structure calculations on solid argon,*®¢
from the pioneering work of Knox and Bassani® of
1961 to the recent one of Khan and Callaway'® of
1980; in the literature solid argon has often con-
stituted an ideal system to test new methods and
procedures. Most of these papers provide, at

least in principle, the HF energy bands of argon
and are thus directly comparable with our results.

In Sec. II we give the basic tools for construct-
ing analytically the matrix elements of the GOPW
method. To show its convenience, we consider in
Sec. III the specific application to solid argon.
Section IV contains the conclusions.

II. CONSTRUCTION OF THE MATRIX ELEMENTS
OF THE GAUSSIAN OPW METHOD

A. General considerations

The OPW method has been widely used in the
literature'” mostly with the following choices: (i)
occupied atomiclike states are expressed in terms
of STO’s, and (ii) the crystal potential is approxi-
mated as a sum of local atomiclike potentials.
With choices (i) and (ii), the matrix elements of
the OPW method can be evaluated analytically;
this advantage, however, carries with it the draw-
back that some type of local density approximation
to the exchange potential'® has to be made.

A way to overcome this difficulty has been sug-
gested in two previous works,*® which adopt the
expansion of STO’s into a number, for example,

N, of GTO’s before computing the bielectronic
exchange integrals; in those papers the value of N
was set equal to four. This technique, however,
becomes unnecessarily complicated when a rela-
tively high number of STO’s is put in the basis set
to provide accurate HF results.'® In this case it is
convenient to abandon the mixed representation in
terms of STO’s and GTO’s as is done in the pres-
ent paper. As we shall see, all the matrix ele-
ments appearing in the GOPW method are very
simple and manageable. )

In the OPW one makes a separation (arbitrary to
some extent) between core states and outer states
(conduction and/or valence states). Corresponding
to each atomic core wave function ¢, of orbital en-
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ergy E_ one forms the Bloch sum

- _ 1 ii'? - -
q)c(k’;)—'\_/_—ﬁ ;me m¢c(r_Tm)’ (1)
Valence- and/or conduction-band wave functions
are expanded into plane waves

WK, )= (1/VNQ) exp[i(K +h,) « ]

orthogonalized to the core states. The standard
secular equation of the OPW method has the form

(Wi, [Huz - E W)

+ 2, (E-E)XWg |8,)(8,|W )| [=0. (2

core
The operator Hyy is the Hartree-Fock crystalline
Hamiltonian

~2

Hyp= Ep;_n- + Voot Vexens ®)

and its expression contains the kinetic energy op-

erator, the electronic and nuclear Coulomb poten-
tial, and the electronic exchange potential. In
crystals such as argon, composed of closed-shell
units, we can assume that the Coulomb and ex-
change potential of the crystal is the sum of the
contributions of the individual atoms. We pass
thus to a brief account of HF calculations of the
isolated argon atom, in view of their utilization
for the HF calculations of the solid.

B. Hartree-Fock calculations for atoms

In the literature first-principles calculations of
atoms have been performed extensively using as
basis functions either Slater-type orbitals'® or
Gaussian-type orbitals.?® In the case of argon, we
consider the Gaussian representation and adopt as
our starting point the HF calculations of Huzi-
naga,?® which are summarized for convenience in
Table I. The calculations of Huzinaga are practi-
cally coincident with the results of Clementi and

TABLE 1. Hartree-Fock calculations for the argon atom with Gaussian-type orbitals as basis functions. The 1s, 2s,
and 3s atomic wave functions are expanded on a basis formed by eleven 1s GTO’s, while 2p and 3p atomic wave func-
tions are expanded on a basis formed with seven 2p GTO’s. For convenience the orbital energies, in eV, are also

given (after Huzinaga, Ref. 20).

T
o174 2
‘pns(f )= WZ! Cnimil lg=oyr YoolF)
‘I

a; (a.u.) Vs Vs ¥3s
4.5654 x10* 1.0039 x10~3 2.8432 x1074 ~8.8955 x10~°
6.9132 x10° 7.6020%10"3 2.1805 x10~3 ~6.7856 x10™*
1.5946 x10° 3.7728 x102 1.0857 x10~2 ~3.4139 x10"3
4.5730 x10° 1.3725 x10~} 4.2372 x10~2 ~-1.3224 x10~2
1.5121 x10° 3.3985 x10~? 1.1717 x10- ~3.7795 x10~2
5.5980 x10 4.3554 x10°1 2.2328 x10-! ~7.2141 x10~2
2.2625 x10 1.8298 x10~? 8.8144 x10~2 ~3.5457 x1072
7.1177 1.0595 x10-2 ~5.5957 x10~1 2.6328 x10~}
2.8287 -1.1900x103 -5.5962 x10~1 3.8921 x10~}
6.3348 x10-} 2.9795 x104 ~3.6007 x10~2 —6.7844 x10~!
2.2525 x10-1 —1.4066 x10~* 6.7204 x10~° -5.3553 x10~!

Eyg=~3227.21 Ey =—335.12 Ey = —34.59
gt/a Y @)
Ypp= A Zc,,,a?“re'“t’z x4 ¥y5(F)
i=1 Yi.4(F)

a; (a.u.) PN ¥sp
2.6878x 10? 1.3568 x10~2 —3.7565 x1073
6.3214 x10! 9.2168 x10~2 —2.7009 x10~?
1.9948 x10! 3.0682 x10-? —8.9052 x10~2
7.1087 4.9433 x10-1 ~1.7027 x10~}
2.7159 2.8040 x10-1 —-9.8686 x103
7.6352 x10-1 1.8778 x10°2 5.6312 x10-1
2.1992 x10-! —~1.7887 x103 5.5200 x10~

Eyy=—-260.19 E3y=-15.88




Roetti'® which used eight STO’s basis functions;
for instance, the orbital energies of argon given
in Refs. 20 and 19 differ at most by 0.2 eV.

In the present work we are basically concerned
with HF calculations; nevertheless, a few com-
ments on the correlation effects may be of inter-
est. To estimate the correlation energy on the
levels of the isolated argon atom, we consider the
difference Z between the computed Hartree-Fock
orbital energies —E and the experimental ioniza-
tion energies I.

The experimental ionization energies of the 3p,,,

and 3p,,, states are 13p3/2= 15.76 eV, 13,1/2=15.94

(Ref. 21), with a weighted average I,,=15.82. For
the 3s state we have 1,,=29.24 eV (Ref. 22). For
the 2p,,, and 2p,,, states we have 12p3/2=248.63

eV, I, ,=250.78 (Ref. 23), with a weighted aver-
aged I,,=249.34 eV. Comparing the ionization en-
ergies with the orbital energies of Table I, we ob-
tain Z,,=0.06 eV, Z;,=5.35 eV, Z,,=10.85 eV;
these values of the correlation energies are not
significantly changed if one takes into account the
relativistic effects® due to mass velocity operator
and Darwin term. Thus the correlation effects on
the argon levels are quite important and for core
states are much larger than correlation effects due
to the presence of the other atoms in the condensed
solid-state phase. These considerations counsel
caution in theoretical interpretations of energy
thresholds in argon (atom and/or solid), as dis-
cussed, for instance, in Ref. 25.

C. Matrix elements of the secular equation

The crystal structure of solid argon is fcc with
lattice parameter a =10.05 a.u. The fundamental
vectors of the direct and reciprocal lattice are
give by 7,=(a/2)(0,1,1), b, =(2r/a)(-1,1,1), and
cyclic permutations, respectively.

The ingredients needed for constructing the ma-
trix elements in Eq. (2) are the kinetic operator
matrix elements, the orthogonalization terms, the
Coulomb-potential Fourier transforms, and the bi-
electronic exchange integrals. We give here the
basic formulas for their analytic evaluation, omit-
ting whenever possible inessential details.

The kinetic operator matrix elements are trivial.
The orthogonalization terms are also very simple;
we have

1 B R iR - . -
Wi |e=gyg X [ ettt g (F-7 )ai
m

=\/—1§ e"im'fqbc(i:)di (4a)

If ¢, is expressed in terms of 1s Gaussian func-
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tions, we are left with integrals of the type
fe-iim.;e-mzd;=<”_>3/ ze-k 2/ . (4b)
a

If ¢, is expressed in terms of 2p Gaussian func-
tions, we have to consider integrals of the type

I
fe'“‘rn"e ar’dr

cib R —arZym
fe ikm'T oy =4
ok

mx

; 3/2
E—a(zf) B €2 (40)
The use of the derivation technique allows straight-
forward generalizations to the case of 3d, 4f, etc.,
Gaussian functions. With the aid of the addition
theorem of spherical harmonics, one can further
simplify the sum on core states in Eq. (2) to a
single term for each state with given n! quantum
numbers.

We examine now the Fourier transforms of the
crystal electronic and nuclear Coulomb potential.
Since the crystal potential is taken as the sum of
atomiclike potentials we have

1 IR -
(Wiml VConll Win>=§ fe # (hyy~hp)) rVB (;)dr

1 - -
=g Va(hm—h"). (5)

The electron density distribution p,(¥) for the ar-
gon atom is obtained from the wave functions of
Table I. The Poisson equation for the potential
energy

-V2V,(T)=4me?p,(T) - 41Z0(T) (62)

implies for the Fourier coefficients

va(q)=4;’§2 [0, (@)-2]. (6b)

Replacing (6b) into (5), we have

4re? - -
= h,, - -Z|.
Q(hm_h”)z[pa(i =, ]) - 7]
(7

The Fourier transforms p,(¢q) are obtained ana-
lytically. For reasons of simplicity we here con-
sider only the formulas encountered in the case of
a doubly occupied 1s Gaussian orbital and fully
occupied 2p Gaussian orbitals.

A (normalized) 1s GTO is given by

We | Vooul We)

274 3/ 4 r2
gu(D:ﬂ—iﬁa e Y g,
Thus
3/2
p(D) =2, (|22 3 ) e

and
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plq)=2e0% 8, ®)

Similarly for a (normalized) 2p GTO fully occu-
pied, we have

9l1/4 Vi a
f(D = d X S H().
i
Thus

J

1
- - P-4 - 1
TR 0,8,K)= 3 [etitirte iy, (7)) et

r,-r

m==]

11/2
MD:Z%'Z,?ITE‘ @5/ 2,2 5-2ar? E e ;)Ym(a

m

29/2
- a’/ 2,2 e~2a72
m

and
- 4\ e
p(q)—2(3—4a)e° . ©)

Finally we have to consider the bielectronic ex-
change integrals, involving two Gaussian functions
and two plane waves, of the type

rie iy, (T,) et¥if2dr,dT,. (10)

The integrals defined by Eq. (10) are evaluated by means of the auxiliary Dawson function®®

x
‘I>(x)=-1-e"‘zf et?dt .
x ()

For s and p wave functions, we report for completeness the results of Refs. 5 and 6:

-~ -~ 3/2 . .

J (k,, a’B’kf)=2aB(ﬂa+ﬁ)1 - e-(k‘-—kj)z/[ua*ﬁ)](b(k\/?) , (11)
. o § i) E -

Jp(k”a,ﬁ,kj)=8a ﬁzzra+6)‘ s e kﬂZ/“wml((—L-Egl——[@(kﬁ)_1]+k,-kjé(kfy_nzr), (12)

where

We have given the tools needed for analytic eval-
uation of the matrix elements appearing in the
Gaussian OPW method, and we are ready to dis-
cuss the specific case of solid argon.

III. ENERGY BANDS OF SOLID ARGON

Our computed Hartree-Fock energy bands of
solid argon are reported in Fig. 1. The energy
levels are labeled following the notations of Koster
et al.?" The crystal energies at some symmetry
points are reported in Table II.

The argon atom has the closed-shell electronic
configuration 1s?, 2s22p%, 3s%23p®; we have con-
sidered as core states the K and L levels. We
have calculated the band energies at I' including
the first 16 lowest values of |h|. This means that
we have included plane waves up to shell (442) and
(600), with a total of 259 orthogonalized plane
waves. At the other points of the Brillouin zone
we have used the same cutoff energy as at I'. An
elevated number of orthogonalized plane waves is
necessary in order to give a reliable description
also of the 3p valence band, as noted by Lipari
and Fowler.*

We can make a few comments on the energy
bands and on the sequence of levels. In corre-

r
spondence to 1s, 2s, and 2p atomic states we have

core bands. In correspondence to 3s and 3p atomic
states we have a 3s band, which bends upward
moving from K= 0, and a 3p valence band, which
bends downward, as expected by their tight-bind-
ing nature. The width of the 3p valence band is
1.85 eV in the present calculation, and is in rea-
sonable agreement with the experimental band-
width®® of ~1.7 eV. Then we have the conduction
bands, whose sequence of levels can be understood
on the basis of semiqualitative considerations.

For the following speculations, we consider as
core states all occupied states, and we analyze
qualitatively the OPW secular equation in the per-
turbative approximation.®!” The orthogonalization
effects concern only empty lattice states having the
same symmetry of core states; the repulsive ef-
fects are stronger as core wave functions are
larger. In argon, the radial part of the 3p wave
function is more extended than the 3s wave func-
tion; this can be seen either from Table I or more
simply from the screening parameters £,,=2.5856
a.u., £,;,=2.2547 of the single zeta functions given
by Clementi and Roetti.'®* Thus we expect in gen-
eral that the orthogonalization effects are impor-
tant for s-like states, are more important for p -
like states, and vanish for d-like states and higher
angular momentum states.

Consider, for instance, point I'. In the empty
lattice we have the sequence
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FIG. 1. Hartree-Fock energy bands of solid argon.
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with kinetic energies 0, (27/a)?3, and (27/a)*

rydberg. The state I'; is s-like, I is p-like, I';
and I'; are d-like, I'; is f-like. The degeneracy of

X
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the empty lattice states I7, I';, I';, I'; is removed
raising I'f and I'; with respect to I';, I';. Further-
more, the d-like state I';, which does not feel
orthogonalization effects, has in the crystal an en-

ergy lower than that of I’}

+*

TABLE II. Energies (in eV) of relevant crystal states in solid argon at the points I, X,L,K

of the Brillouin zone.

Core states
3s valence band

3p valence band

Conduction states

E;,-3227.21
Iy —34.77

I —14.73

T 3.20
s 11.79
Iy 15.05
r; 15.28
Iy 17.97
Iy 19.15

Eys—335.12
L]-34.35 X{ —34.22
L5~-16.58 X5-16.45
L;-14.96 X5-15.32
L] 6.28 X{ 5.67
L; 8.28 Xy .71
L3 11.09 X; 10.33
Lj;14.45 X5 15.04
L3 18.14 X3 18.35
L} 19.12. X; 19.28

Ey,—260.19

Ky —34.23

K, —16.00
K;—15.60
K;—15.11

Ky 6.60
Ky 8.18
Ky, 9.77
K, 13.33
Ky 14.09
K; 17.29

, T'3. The expected se-
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quence of levels at I'is thus I'y KI';< I';< I
<I}, Ty, etc., in agreement with the detailed cal-
culations.

At the point X in the empty lattice, we have the
sequence X;,X; at energy (2n/a)? rydberg and
X;, X3, X; at (2r/a)?2. Amongthese states only the
d-like state X} does not feel orthogonalization ef-
fects. The lowest conduction state at X remains
X; followed by the d-like state Xj; then we find X;
and X levels, etc. Similarly, at the point L we
have in the empty lattice the levels L}, L; at ener-
gy (2r/a)? & rydberg, followed by L}, L; L3 Lj at
energy (2r/a)? 4. Among these statesonly L;does
not experience orthogonalization effects; however,
the difference of the zero-order energies is large
and the empty lattice sequence is maintained for
the lower energy levels. We find, in fact, that the
lowest conduction state at L is the s-like state Lj,
followed by the p-like state L;; then we find the d-
like state L3, etc.

We wish now to discuss our results in connection
with the other calculations available in the litera-
ture.

Knox and Bassani® opened the investigations on
the band structure of argon using a perturbative
approximation to the OPW method. Mattheiss®
used the augmented-plane-wave (APW) method with
the Slater free-electron exchange approximation.
Rossler!® applied the Green’s-function method with
a semiempirical adjustment of the constant in the
muffin-tin potential in order to reproduce the ex-

perimental energy gap. Lipari and Fowler* and
Lipari'? investigated the energy bands in the HF
approximation both with the OPW method and with
the mixed basis (MB) method. Dagens and Perrot'!
used the APW method including in a nearly exact
way the nonlocal HF exchange potential. Kunz and
Mickish!®* used a tight-binding formalism with
modified localized orbitals. Erre and Resta!® in
their application of the APW method exploited the
electron-atom scattering phase shifts calculated in
the HF approximation. Finally Khan and Calla-
way'® used linear combinations of GTO’s with
semiempirical modifications of the Slater free-
electron exchange approximation.

For a comparison of the results of the various
authors we refer to the review article of Rossler.?®
Here we confine our attention to the results of
Refs. 11-15, which are strictly of HF type (at
least in principle). In Table III we report at the
symmetry points I', X, L the HF conduction-band
energies of argon available in the literature; the
notations used are those of Koster et al.?

From Table III, we can see the generally satis-
factory agreement between our results and those
in the literature for the lower conduction states.
At higher energies some discrepancy exists among
the different authors. Our calculations maintain a
reasonable agreement with the APW calculations
of Dagens and Perrot,! thus justifying the muffin-
tin approximation of these authors. For instance,
let us consider the energy difference at the point

TABLE III. Hartree-Fock conduction-band energies (eV) in solid argon calculated by

several authors.

Dagens and Kunz and Erre and
Present Perrot Lipari Lipari Mickish Resta
work (Ref. 11) (OPW—Ref. 12)  (MB—Ref. 12)  (Ref. 14)  (Ref. 15)
I 3.20 3.33 2.25 2.41 2.80 2.62
T 11.79 11.65 12.55 12.26 12.9 11.19
I 15.05 15.36 14.29 14.37
s 15.28 14.66 15.09 15.11 15.7
X; 5.67 5.91 5.22 5.30 5.80 5.28
X; 7.71 7.92 7.43 7.48 8.47 7.27
X3 10.33 10.19 9.62 9.66 10.6 10.06
X3 15.04 15.11 14.30 14.31 18.2
LY 6.28 6.49 5.65 5,71 6.57 5.80
L; 8.28 8.11 7.59 7.68 8.66 8.02
L 11.09 11.04 10.90 10.77 12.6 10.61
13.77

Ly 14.45 14.70 13.70
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I between s and d conduction bands (I'j-I'; separa-
tion). We obtain a separation of 8.59 eV to be com-
pared with the value of 8.32 eV of the APW meth-
od.'! Thus the enigma of the relatively large sep-
aration of 10.30 eV of the OPW method of Lipari'?
is removed by the present calculation, which in-
cludes exchange in a much simpler way and has a
higher number of basis functions. Also the separ-
ation between the f-like state I'; and the d-like I';
is in better agreement with the calculations of
Dagens and Perrot. We also notice that our con-
duction-band effective mass at I' is m}=0.54m,;
this value as well as the conduction-band shape
confirms the reliability of the band parameters
used in the interpretation of the valence- and in-
ner-shell excitons in argon (see Ref. 25 and ref-
erences quoted therein).

Before closing, we make a few comments on the
HF energy gap of argon. The HF energy gap in the
present calculation is 17.93 eV. Lipari'? gives an
energy gap of 16.39 eV with the MB method and
16.20 eV with the OPW method. Kunz and Mick-
ish'* and Dagens and Perrot'! obtain, respectively,
an energy gap of 18.5 and 18.52 eV, close to
ours. We do not repeat here the considerations and

the approaches developed to estimate the correla-
tion effects and justify the correlated energy gap
of 14.08 eV, which can be inferred from experi-
ments (see, for instances, Refs. 11, 14, and 25
and references quoted therein).

IV. CONCLUSIONS

In this paper we have examined the possibility of
performing first-principles electronic-state calcu-
lations using the OPW method and the Gaussian de-
scription of the occupied orbitals. The novelty of
the GOPW method consists in the fact that the ma-
trix elements of the HF Hamiltonian are con-
structed analytically. The accuracy of the proce-
dure has been tested with specific reference to
solid argon. The approach used should allow wider
investigations in the field of first-principles band-
structure calculations.
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