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A metal-insulator transition was found by Aubry in a one-dimensional tight-binding model containing a

modulation potential incommensurate with the crystal lattice. In this article the extended bandlike states that occur
in the metallic regime are studied using a quasiclassical approach. Near the metal-insulator transition the bands

contain a hierarchy of gaps of ever decreasing magnitude. Although there is in principle a gap at every energy, since

most gaps are negligible, the system is still expected to behave like a metal. In the insulating regime the wave

functions were found to be exponentially localized with a localization length which approaches infinity at the metal-

insulator transition. Possible experimental consequences of the predicted spectrum are discussed.

I. INTRODUCTION

Crystalline solids with two incommensurate per-
iodic potentials form a class of solid intermedi-
ate between crystalline and disordered. Unlike
disordered solids for which all single-particle
states are localized in one dimension, and peri-
odic solids for which all states are extended,
these solids possess a metal-to-insulator transi-
tion in one dimension in which the system switches
from all states extended to all states localized, as
a function of the strength of the periodice modula-
tion potential. Examples of solids with incom-
mensurate periodic potentials are crystals with
charge- and spin-density waves, ' ionic conduc-
tors, ' crystals with artificially produced super-
lattices, and certain alloys. ' Aubry has claimed
that the metal-insulator transition represents a
transition in which the analyticity of the wave func-
tion is broken. ' Azbel has discussed the spectrum
of such systems using quasiclassical methods valid
for very-long-period modulations. ' The present
author has shown that such methods can be used
even for short-period incommensurate modula-
tions. ' These methods always show a changeover
from a state in which all the classical trajectories
are localized to one in which some of them are
extended at the point of the insulator-metal trans-
ition. One would then expect that tunneling be-
tween the localized trajectories would broaden
then into bands of extended states, implying that
all states are extended. ' Since the quasiclassical
methods depend on replacing the difference equa-
tion by a differential equation, however, a metal-
insulator transition could still occur if there were
a break in analyticity of the wave functions, in the
sense that the solution to the difference equation
g„cannot be continued to noninteger values of n
in the insulating regime as claimed by Aubry. ' In
the present article Aubry's claim is substantiated.
By using quasiclassical'methods on the metallic

side and perturbation theory on the insulating side,
it is possible to study the band structure and the
form of the wave functions, and thus give a phy-
sical picture of the metal-insulator transition and
to predict certain experimental consequences.
The picture that emerges is a transition from ex-
tended but narrow bandlike states to exponentially
localized states. The energy spectrum switches
from a spectrum of narrow bands separated by
gaps on the metallic side to a spectrum of discrete
energy levels on the insulating side.

II. THE METAL-INSULATOR TRANSITION CAUSED
BY INCOMMENSURABILITY

Aubry' has shown, using a formula from Thou-
less, that a one-dimensional tight-binding model
with a sinusoidal modulation potential incommen-
surate with the lattice will undergo a metal-insula-
tor transition when the modulation potential
strength is equal to the bandwidth. The model
that he considered is

t(P„„+g„,)+ Vocos(gan+h)P„= Eg„,

where f, is the hopping matrix element, V, is the
modulation potential strength, 4 is a phase factor,
a is the lattice constant„and Q is the wave vector
of the modulation. The wave function is defined
by

@(x)= Q g„y(x —na),

where y(x —na) is an atomic or Wannier function
centered about site na. In this section, Aubry' s
results will be derived using a quasiclassical ap-
proach and perturbation theory. The quasiclassi-
cal method allows one to study the nature of the
band structure in the metallic regime and the per.-
turbational approach allows one to study the wave
function in the insulating regime.

First, let us consider the metallic regime which
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occurs when V, &2t. Consider rational Q values
[(i.e., Q=(2w/a)(J!M), where L andM are in-
tegers]. Equation (1) can then be written as M x M
almost tridiagonal matri~ equation, i.e., an equa-
tion of the form'

where

X .= 2t cos[(h+mQ)a]c„~

+ a(f. ..„+O. ..„}
for 1B and tB

OMAN

and Ko ~ K g 0 (Vo/2)8
where

Hence, in the incommensurate (i.e., M-~) limit
the band structure becomes independent of the
phase. This is always the case if the solution to
Eq. (1) can be analytically continued to noninteger
values of pg, since in such a case it is easily seen
that if g(n) is the solution for phase h= 0, g[n+(h/
Q)j is the solution for the same energy of Eq. (1)
with phase h.'

It will now be shown that the band structure re-
mains independent of phase for all V, & 2t, but that
this behavior breaks down for V, &2t. The calcula-
tion will be performed by recognizing that the
self-energy 8„for the Green's function for Eq. (1),
6„„, can be written as'~

t
t'

E V, cosQ(n+ 1)a ——
t2

E —Vo cosQ(n+ 2)a ——
@

E —Vo cosQ(n —1)a— t'
E -V, cosQ(n- 2)a-E—

(8)

if Q of the form (2w/a)(I /M), the continued frac-
tions are periodice (i.e., they repeat after M
terms) If X, rep.resents each of the continued

The secular determinant for Eq. (3) is easily
shown to have the form

]Q [E-Z,.(h)j+ a (I-cosh)=0, (6)
2

where E,(h) are the . eigenvalues for h=0. Clearly
for V, « the bandwidth, the dependence of each
band on the phase h is of the form

V N

E=E,(h)+0 —' .(1 —cosMh).

fractions, it can be shown that"

where

f „=(E-V, cosQMa-X, )f „,—f'f „„(Ioa)
(10b)

Equations (9) and (10) combined result in a quad-
ratic equation for X,. P„and Q„can be found by
iterating difference equations. " If the solution is
complex there is an extended state at energy E; if
it is real there is a localized state. This method
was used to search for the existence of bands of
extended states. The results are shown in Fig. l.
As can be seen, the band structure becomes in-
dependent of the phase for Vo&2t as M increases,
but not for Vo &2t. Thus, from the arguments in
the previous paragraph we conclude that P„can
only be analytic for Vo&2t. This is the analytici-
ty-breaking transition predicted by Aubry. ' Phys-
ically, it represents a breaking of translational
symmetry in this problem.

In Ref. 7 it was proposed that since Q could al-
ways be approximated by a high-order commen-
surate wave vector, we could use a quasiclassical
approach to solve Eq. (1}to any desired degree of
approximation. In this approach we write Q = Q,
+ q, where Q, is a high-order commensurate ap-
proximation to Q and q is the correction. Since
qg«1, we may, to first approximation, diagon-
alize Eq. (1) treating qan as a constant. The re-
sulting phase trajectories E (h, qna) =E, where
E is the energy in the ath band, are the starting
points for a WEB approximation in which q plays
the role of 8" to treat the corrections due to the
fact that qna is actually a variable and not a con-
stant phase. The starting point for the &KB meth-
od is to replace Eq. (1) with a differential equation
by using the relationship

This procedure is only valid if g„ is an analytic
function of n. Thus, from what was said in the
previous paragraph it may be concluded that these
methods are only valid for Vo& 2t, and thus, they
cannot aGow us to conclude anything about the
localization which occurs when V, &21. For V, &2g,
however, these methods allow us to draw a very
important conclusion regarding the electronic
structuxe. As seen in Figs. I and 2, if we take
the phase to be qua, the "classical" trajectories
are extended for Vo&2t. By approximating Q by
a sufficiently high-order commensurate Q„q
may be made arbitrarily small. The WEB method
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FIG. 1. Allowed bands as a function of phase A, for h, going from 0 to z/M for Pp=1.9t. The ones represent bands
of extended states and the zeros are regions where no' states exist. Q/27}-=

&z
in (a), 33 in (b)

gpg
in (c) These values

are obtained by keeping successive terms in the continued fraction expansion of

Q/2m= (~3—3)/2.=
3+ '

1
3 + 3+

In (d), a small range of energy for Q/27} =foe is looked at in more detail. The band structure becomes independent=33

of h as Q/2m is approximated by ratios of )arger integers. Also to be noted is that no new gaps are introduced in the
centers of the wider bands as Q/27] is approximated by ratios of larger integers.
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FIG. 2. Allowed states are shown as a function of phase A for h going from 0 to m/M for Vp= 2.1f for Q/2x=~p in (a),
fp . 33 .
& in (b), and

gpg
ln (d) In (c) and (e) a more detailed view of the energy levels shown in (b) and (d), respectively, is

shown. It should be noted that the states are never independent of phase.
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may now be applied to the "classical trajectories. "
The problem of using tQe WEB method to treat
open phase trajectories has already been studied
by Zilberman" for the problem of an electron in
a magnetic field, and the results may be taken over
completely for the present problem. The WEB
calculation of Zilberman shows that new gaps are
introduced in the "classical" extended-state bands
but as we move into the center of the bands the
gaps decrease in magnitude as e-'~", where c is
a constant and E is the energy measured from the
"classical" band edge. Thus, for small q the gaps
become negligible as we move into centers of the
bands. This effect may be verified by examining
the "classical phase trajectories, " shown in Fig.
1. Because almost every wave vector is a recipro-
cal-lattice vector (because all sums and differ-
ences of the reciprocal-lattice vectors of both per-
iodic potentials are reciprocal-lattice vectors),
there should be band gaps almost everywhere.
Most of the gaps, however, are negligibly small.
Thus, although in theory one might expect the
bands of an incommensurate system to become
completely fragmented into negligibly narrow
bands, the reverse is actually true. Each band

contains a hierarchy of gaps that become negligi-
bly small as one gets into the centers of the bands.
When Vp approaches 2t, although the bands get
broken up into narrower and narrower sub-bands,
the sub-bands do not really become fragmented
further into subands of neglibible width because
the gaps that occur away from the edges of the
"classical" bands have negligible widths and as
such are insignificant. (They are insignificant in
the sense that electrons Zener tunnel through them
even in an infinitesimal electric field. )

Since we have seen that for Vp&2t the WEB
method cannot be used, the wave functions will
now be studied using perturbation theory valid for
Vp&2t. For t=0, each Wannier function is obvious-
ly an eigenstate and the energy of the Wannier
function on site n is Vp cosQna, which gives a con-
tinuum of discrete states. As t is increased from
zero, we expect each of these Wannier functions
to mix in such a way that the resulting state de-
cays exponentially as we move away from the site
around which it is localized. Let us look for a
state localized about site np. Then, if we assume

= 1, it can easily be shown by iterating Eq. (1)
that for n &n, (upper sign) and n»n, (lower sign),

~(n-np )

n
6yE'2 ~ ~ ~ E„

1- 1—
t 2

Ey62

g
2

& f1' ft-1
g2

16p-2

t
&n

&n&n-X

t2
~Hm

(n-yE n-2

(12)

where ~„= E —V, cos[Q(n +n, ) + h]. It is easily shown that the second term is of order (t/V, )' smaller than
the first term in Eq. (12). The continued fractions in (12) do not affect the value of g„significantly. Thus,
if E is not equal to a value which makes one of the continued fractions vanish, the first term in Eq. (12)
may be replaced by its geometric mean, (2t/Vo)'" "&&'. Thus, we conclude that &t&„decays with exponent y
given by

y=ln —'
in agreement with Aubry. h The decay length I/t becomes infinitely large as Vo- 2t For incomm. ensurate
Q, the above procedure is valid because for most values of E the denorrinators will not vanish. Such terms
of successively higher order were calculated numerically to verify this conclusion. '' The energy eigen-
values are calculated by using the difference equation for &t&„, which becomes for iC&„= 1,Np

E= V, cos(Qn, + h)+ (g„,„+g„,) . (i4)

Substituting for P„ from Eq. (12) we obtain a perturbation theory for E
Incidentally, for V, » 2t, Aubry' has shown that Eq. (1) may be transformed using

eih«g f e&&Qh+h)m
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to the equation

t'(f „+f,)+ Vocos(Qm+k)f =Ef (16)

where V0=4t, and f' = Vo. Then, by making the substitutions f = p„, V,'~ V„ t'~ I, and k~h, Eqs. (12)-
(14) may be taken over to treat the f s, which are localized in k space in this regime. In the lowest few
orders this is recognized as the nearly-free-electron model.

The nth-order term in the perturbation theory for the energy obtained by substituting Eq. (12) into Eq.
(14) is of the form

t2

t2

Ey&2

t2

t2

2

&n&n i

1--
& n-j.~n-2
1-

This. term has a simple pole when one of the last
two contined fractions in the denominator vanishes
(which occurs in the vicinity of c„=0for small f)
The dependence of the perturbation theory repre-
sented by Eq. (14) on E is illustrated qualitatively
in Fig. 3. Also illustrated is an illustrative
straight line to represent E —V, cos(@n+h). Each
intersection of these curves represents a state.
When h i.s such that two successive solutions have
minimum separation, the energy difference be-
tween these states represents the energy gap in
the bands of E versus h. Since the pole which oc-
curs in the vicinity of &„=0 occurs in a term of
order (2t/V, )", we conclude that the residue is of
this order. (Remember that when a denominator
is not close to vanishing, we may approximate it
by its geometric mean. ) Thus, the corresponding
gap will be of order (2t/VJ"~'. Note that since the
actual solution for the energy will lie away from
any poles in the perturbation theory, the perturba-
tion theory for the wave function in Eq. (12) will
be well behaved at the eigenvalue, and hence, the
arguments given below Eq. (12) are still correct.

When the same arguments are applied to the case
V, & 2t using Eq. (15) and (16), we conclude that al-
though there exists a gap at every energy, most
of the gaps are high-order gaps which come about
because of poles in very-high-order terms in per-
turbation theory. Since these poles have negligi-
ble residues, most of the high-order gaps are
negligible, although as Vp approaches 2t, more
and more of the gaps become important. This
conclusion agrees with the argument given earlier
in this section, based on quasiclassical methods.
The advantage of the method based on perturbation
theory, however, is that it is, in principle, pos-
sible to apply it in two and three dimensions.
There would probably be some differences, how-

A
I

I-

l~
I

l

I

I

I

I

I

I

I

I

I

FEG. 3. A sketch is given of the right-hand side of Eq.
(14) as a function of energy, The straight line labeled
A represents a sample sketch of E -Vocos(gno+h).

ever. For example, unlike one dimension, the
geometric mean of the equivalent to Eq. (12) for
the two-dimensional square lattice is a function of
energy which for a given ratio of f/V, may diverge
for some energies and converge for others. " Thus,
we expect a metallic and a insulating regime and
an intermediate regime in which there exist mo-
bility edges as predicted earlier. " Although, ad-
mittedly, the two- and three-dimensional cases
require more study because the perturbation theory
is more complicated, it appears quite likely that
the nature of the metallic and insulating regimes
will be qualitatively similar to that for the one-
dimensional case. A more detailed discussion of
the two- and three-dimensional cases will be pre-
sented in a future publication.

The physical reason for the localization for
small t/V, can easily be understood. Because of
the incommensurate nature of the system, an
electron in a state of energy Vpcosgnpa at site pip

will never be able to tunnel into a state of exactly
the same energy and thus form extended bandlike
states. For small Volt, V, becomes the perturba-
tion on the extended bandlike states.

In actual practice it will be difficult to disting-
uish a high-order commensurate from an incom-
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mensurate system. For example, consider a
high-order commensurate state for which sites
degenerate with the site n, repeat every ~ sites.
Divide the system into unit cells by bisecting the
distances between these degenerate sites. Using
Ell. (12) to calculate wave functions localized
about sites n„n,'+M, n,'+2M, n,'+3~, etc., at
the boundaries between. cells, me find that the
overlap of wave functions localized in neighboring
cells is -(2f/V) ". Thus, applying the tight-binding
approximation to such R system we get bands of
width -(2t/V, )'lI. Between degenerate sites, how-
ever, the wave functions decay exponentially.
Thus, if the system's size is smaller than one of
the large unit cells (e.g. , if the crystal is coherent
over a distance smaller than Ma), it will be im-
possible to distinguish between incommensurate
and high-order commensurate systems. That is,
the bandlike states could still behave essentially
as localized states over coherence regions smaller
tha. n M a.

III. MSCUSSION OF EXPERIMENTAL
CONSEQUENCES

The insulating state is characterized by expon-
entially localized wave functions, whose decay
length becomes infinite as the transition is ap-
proached. Following the discussion in the book by
Mott and Davis, ' me would predict that at T =0,
the dc electrical conductivity will be zero. As T
increases, we find at low temperatures a con-
ductivity proportional to e '~, where C is pro-cyy1 j2

portional to (V, —2t)'~' by applying the method of
Mott and Davis to our localized states in one dim-
ension. The ac conductivity will go approximately
as & and the optical spectrum mill be continuous.
Gn the metallic side but close to the metal-in-
sulator transition, there exist very narrom bands
of extended states separated by gaps. As Vo ap-
proaches 2t, the bandwidth narrows, approaching
0 at Vo=2t. Thus, we would also expect the zero-
temperature metallic conductivity to go to zero as
t/'0 approaches 2t.

Because of the relatively narrow gaps near the
metal-insulator transition, we would expect to
observe Zener tunneling in. the electrical conduc-
tion. %e mould also expect to observe in very
pure materials the negative differential resistance

and Stark or Bloch oscillations predicted by
Esaki'7 for commensurate superlattice systems
of long period because the Brillouin zones are also
very narrow in the incommensurate system. To
observe such oscillations requires that the fre-
Iluency eE/kk, where e is the electric charge,
E the electric field, and 0 the width of a Bril-
louin zone (which can be very narrow for incom-
inensurate systems) be much larger than the re-
ciprocal of the electron scattering time.

The one-dimensional model is applicable to the
case of a three-dimensional crystal with R one-
dimensional modulation, Rs shown in Ref. 15, pro-
vided me consider only electrical conduction in the
direction of the wave vector Q of the modulation.
In directions perpendicular to Q there mill, of
course, be no metal-insulator transition. Higher-
dimensional cases mill be considered in future
publications.

The optical spectrum of the present model con-
sists of interband transtions for V, &2t. This mill
RppeRr Rs R series of nRrrom peRks which grow in
intensity and become closer together as V, ap-
proaches 2f. This is substantiated by numerical
calculations of the frequency-dependent conductiv-
ity using the continued-fraction method. " On the
insulating side (i.e. , V, &2f), since the states are
independent of wave vector (in the same way that
the spectrum is independent of phase for V, & 2t),
me expect to see a density-of-states-like broad
spectrum. Most likely the metallic-state spec-
trum evolves smoothly into the insulating-state
one.

%'hat has been said here regarding electrons in
incommensurate lattices is, in principle, appli-
cable also to phonons in such systems. '4 In the
phonon case, however, it is crucial to consider
the rearrangement of the equilibrium positions of
tile lolls 111 stl'ollg-collpllllg cases ('tile I'eglIIle ill
which localization takes place), This will be the
subject of future investigations.
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