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Recent studies point to the possibility that condensed hydrogen will undergo a transition from an insulating
molecular crystal phase to a metallic liquid phase at zero temperature and high pressure. Liquid metallic hydrogen

(LMH) comprising interpenetrating proton and electron fluids, would constitute a-two-component Fermi liquid

having both long-range, species-dependent bare interactions and a very high component-mass ratio. We examine the
low-temperature equilibrium properties of LMH (assuming that it is "normal" ) by means of a generalization to the
case of two components of the phenomenological Landau Fermi-liquid theory. The general two-component
formalism is discussed in some detail. Estimates for the relevant phenomenological Landau parameters for LMH are

made, and results for low-temperature specific heat, compressibility, thermal expansion coefficient, and spin

susceptibility are given. The specific heat and thermal expansion coefficient are found to be vastly greater in the

liquid than in the corresponding solid due to the presence of proton quasiparticle excitations in the liquid. The
possibility of a negative expansion coefficient of the liquid cannot be dismissed.

I. INTRODUCTION

It has been realized for some time that any
ordinary macroscopic substance subjected to
sufficiently high pressure can exist in a metallic
state. Historically, one of the most tantalizing
prospects for metallization has been the element
hydrogen. ' At atmospheric pressure and at tem-
peratures of the order of 1 K, hydrogen exists
in an insulating molecular solid phase. ' At these
temperatures it is believed that the transition
to the atomic metallic phase occurs at a pressure
in the range -1-10Mbar. '

In general, it has been assumed that through
the low-temperature insulator -to-metal transi-
tion, hydrogen remains a solid. However, the
possibility of transforming from the solid in-
sulating phase into a liquid' metallic phase has
been put forward by Brovman ef; al. ' on the basis
of an exhaustive study of the relative energies
of possible structural modifications of H at various
densities. 4 They included electronic screening
in the Hubbard approximation and third-order
effects in the electron-proton screened inter-
action. Hammerberg' subsequently calculated
the ground-state energies of the possible liquid
and several simple cubic solids within perturba-
tion theory using the Geldart-Vosko modication of
Hubbard screening, and also by taking into account
second- (fourth-) order effects in the electron-
proton screened interaction in the liquid (solid). He
concluded that the ground-state energies of liquid
and solid phases were indistinguishable within the
errors of the approximations .for certain densi-
ties. More recently, Mon eg al. ' calculated upper
bounds for ground-state energies of liquid and
solid phases with a Jastrow-'function variational
ansatz and Monte Carlo techniques, and taking

into account second-order effects in the electron-
proton screened interaction, They concluded that
at a density corresponding' to z, = 1.6 the liquid
phase could not be ruled out, though at higher den-
sities, y, =0.8-1.6, the solid phase was preferred.
Most recently, Chakravarty and Ashcroft' calcu-
lated a variational upper bound to the ground-state
energies of metallic hydrogen in including impor-
tant third-order effects in the electron-proton
screened interaction and again concluded that the
possibility of a T =0 liquid metallic phase cannot
be ruled out for g, =1.64.

Naturally, one might consider undertaking even
more elaborate calculations to shed further light
on the question of the preferred phase. ' In due
course the issue may be resolved in the labora-
tory, with efforts toward attaining -Mbar pres-
sures already actively underway. " But faced as
we are with significant preliminary evidence
pointing to the possibility of a stable (or perhaps
metastable) phase of liquid metallic hydrogen at
low temperatures and at least for a certain nar-
row' density range, it seems appropriate to con-
sider the behavior such a substance might exhibit.
For instance, will liquid metallic, hydrogen dis-
play any striking or novel behavior as compared
with other quantum liquids such as 'He, 'He,
electrons in a metal, etc. ? Or, in a more utili-
tarian vein, we may ask how the behavior of the
putative liquid metallic phase compares with
that of the corresponding solid metallic phase.
Any differences in behavior (e.g. , in resistivity
versus temperature) will be potentially useful
in distinguishing experimentally between the two
phases when metallization is finally achieved. "

Liquid metallic hydrogen (LMH), comprising in-
terpenetrating electron and proton fluids, would
constitute a two-component Fermi liquid with the
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components each charged and each of spin —,'." In
contrast to the situation prevailing in two other
two-component Fermi liquids, namely, nuclear
matter (neutrons and protons) and the electron-
hole liquid of semiconductors (electrons and

holes), in LMH the masses of the two species
are vastly different. In further contrast to nu-
clear matter, the bare interparticle interactions
in LMH are long range and species dependent.
Long-range forces'will, as usual, require spe-
cial treatment and will qualitatively affect certain
properties as compared to the case with short-
range forces. In further contrast to the electron-
hole plasma of semiconductors there are no

anisotropy (e.g. , band-structure-related) effects
in LMH. Thus the high density liquid metallic
phase of hydrogen appears to correspond to an as
yet relatively uninvestigated class of two-com-
ponent interacting Fermi fluids.

At this stage it should be pointed out that in
assuming the existence of a liquid phase, the
very interesting question still remains of whether
or not it exhibits some form of magnetic, mo-
mental, or even spatial (e.g. , liquid crystal" )
ordering. It was pointed out by Ashcroft" that a
BCS-type argument leads to a relatively high
superconducting transition temperature 7", for
solid hydrogen. The origin of this can be traced
to a high Debye frequency (i.e. , low ionic mass)
and high electron-'phonon coupling. It was sub-
sequently realized" that a similar argument
could be applied to a liquid phase as well, the
point being that the BCS argument (in its simplest
form) essentially presupposes only a uniform
elastic medium within which long-lived phonons
can exist for a wide range of wave vectors. The
"long-lived" requirement breaks down in the
liquid for smaller wave vectors than in the solid,
but the line of reasoning is nevertheless sug-
gestive. Recently, a more sophisticated strong-
coupling calculation by Jaffe and Ashcroft" con-
firms the promise of a high T, in the liquid,
though it is as usual difficult to assess the ac-
curacy of such an "ab initio" calculation at pre-
sent. Further speculation might turn to possible
low-temperature superfluid behavior of the "scre-
ened» protons or ferromagnetic ordering among
the protons. ""

We do not attempt at this time to resolve the
important questions of the existence or properties
of possible "ordered" liquid metallic phases of
hydrogen. Rather, we address in this paper the
somewhat parallel issue of the general low-tem-
perature equilibrium properties of a "normal»
(i.e. , nonordered) liquid phase of metallic hydro-
gen. To this end we utilize a generalization of
the phenomenological Landau-Fermi-liquid

theory to the case of two very different com-
ponents. The basic formalism is discussed in
Sec. II, and general equilibrium results are given
in Sec. III. In Sec. IV estimates of the relevant
"Landau parameters" for LMH are given, and
these are applied to the general equiLibrium re-
sults. Equilibrium behavior of solid and liquid
phases is then contrasted. We conclude in Sec. V
with an overview and outlook for further effort.

II. THE TWO&OMPONENT FERMI LIQUID

We generalize the phenomenological Landau
theory of Fermi liquids" to the case of a uniform
system of two spin-2 fermion components (la-
beled 1 and 2)." The masses ~, and m, of the two

components are, in general, different; the bare
interactions are taken to be long-range Coulomb
with the charges e, of the species satisfying
e, = —e, ." Requiring overall charge neutrality,
the average number densities n, of the two species
are then equal. This in turn implies that for the
corresponding noninteracting system, the Fermi
momenta pz of the two species (i.e. , the momenta
of the most energetic particle of each species at
temperature T =0) are equal: Pz

———Pz = (Sr'pg, )' '
However, the Fermi energies Ez Pz/2m, and
Fermi temperatures Tz —=Ez /k~, (with ke
Boltzmann's constant) will be different on a.ccount
of the difference in mass. For the case of the

noninteracting system corresponding to LMH with
the masses differing by a factor of -10' and at a
typical density corresponding to Wigner-Seitz
radius of 1.6, the electron and proton Fermi
temperatures are -10' and -10' K, respectively.
One thus expects characteristic degenerate Fermi-
gas behavior of both components to be evident at
g-10 K. When the intera. ctions are restored we
would expect in analogy with liquid 'He (Ref. 1V) a
lowering by a factor of -10-10' of the maximum
temperature at which degenerate Fermi-liquid
behavior will be apparant.

Following the usual assumptions of Landau-
Fermi-liquid theory, the entropy of the inter-
acting system at low temperature S is given as a
functional of the quasiparticle distribution func-
tions n, &„which is of the same form as that for
the entropy of a noninteracting system expressed
in terms of the bare particle distribution func-
tions. Thus,

S =Sf~.;., ~&. l

= —ks P [n,.- inn;, (1 -n,.-,)ln(1 -n;,)],
i pa

where the n,.-, give the distribution of quasi-
particles (qp) of type i, momentum p, and z
component of spin & o (g = s 1).



'f%0-COMPONENT FERMI-LIQUID THEORY: K EQUILIBRIUM. . .

The equilibrium qp distribution functions n';„
are determined as those maximizing the entropy
subject to the constraint of fixed total particle
number of each species X,. =Z;,n,.;„and fixed
total energy E =E [nl-„,n2-„], in general, an
unknown functional to be treated phenomenologi-
cally:

1
n 2=1, 2

exp[p(e.-, —(1()]+1 '

where P =1/ksT, p, is the chemical potential of
the 2th species in the interacting system, and

af12 af21 0

For low-temperature properties we only need the
z,.;.andf-,".-, ... evaluated for Ip I, Ip I =p~. Paral-
lebng the one-component case we introduce the
following parametrization. A qp effective mass
m~ and in turn a qp velocity at the Fermi surface
v~. are defined via

(8

The qp energies in the vicinity of the Fermi sur-
face are then

5E
[I';,:;,, n ';2„,„], i =1,2. (3)

)pc
~6.=&(+ a (& &I )

m,* (P=u„).

The e,.-, as well as the p& are each functional'
of both equilibrium qp distribution functions and
as such Eq. (2) represents a set of two coupled
lmpllelt functional equations for 6i and 'pl

2 . The
quasipartiele energies for each species thus in-
corporate effects due to the interactions with

particles of the other species as well as with the
same. %'e assume the c,",are spin independent
and smooth as functions of p."

For the low-temperature equilibrium properties
we need to consider the four second variational
derivatives of the total energy with respect to the
distribution functions:

0 0(g~ e &noypI +i ] & 2&g 'j &2

f '~ may be iIlterpl'eted as tile llltel'action ellel'gy
between qp of types i and j We a.ssume the f 'I' s
are smooth as functions of p and p'. Note, in
general, f.";,.;«f -.; though -f&',-,.a. =f.. .

Since the system is invariant under time re-
versal (no magnetic field present), f&,;~ ~

=f';, , ;. Furthermore, the Fermi surfaces
are spherical and are invariant under reflection
p ——p. Thus

fj ijf p
' aafay -a, a'-a' i

Note that ng)~y 0.~'

since the system is isotropic f;;;; for Ip I, Ip I

=p& can only depend on the angle 8 between p and
p'. Then the f' 's may be expanded in the usual
Legendre polynomial series:

S(ajf CI Q 2( )f (1+ { sg)
ga0

( Ip I, Ip' I =p. ; f,j = 1,»

We note that since f; -, f;,f,.; when Ip I
= Ip' I,

8&a) g j.2 - s&tf) g2j.Jg Jg
As in the one-component ease, a consequence of

Galilean invariance is the existence of a simple
relationship between the effective mass and the
"f functions". " Starting with the system at rest
and in the equilibrium configuration, we first add
a single quasipartiele po of type 2 at the Fermi
surface. By Galilean invariance, the energy
change &',.-, as viewed from a frame (primed)
moving with velocity u is related to the resulting
energy change c,.;, as viewed from the lab frame
(unprimed) by (to order s)

fflg —Pl)
cIpa = ~(pa+

mt

where we have used p' =p -ng,.u, replaced p-p
+m,.u, and expanded a,.;, -„,using Eq. (8). But
then, to order u,

We then define in the usual way the two indepen-
dent'components off 'I, namely, the spin-sym-
metric and spin-antisymmetric parts, 'f'I and I

08 a ~ fpg~u l(f a&& g a. ct aa ~~ ~It Ia

~ ~ ~ ~

fa"'; —= 2 (f;(", ( + f ( I&)I, i,j =1,2. (6)(-)

Since the f (I's incorporate the {spin-independent)
equilibrium qp distribution functions, the spin-
antisymmetric interspecies f 's must vanish iden-
tically:

0+PI(au + V e II 2 is a ]p 3 e (12)

Expanding the right-hand side of Eq. {12)in a
functional Taylor series about n, ,-- -, using Eqs.
(2), (4), and (5), then substituting into Eq. (11),
we find, equating terms linear in u, the desired
relation:
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m)+ 1

m& 1 —( VP+/3v'}2 )('f "m +'f,"m&) '

(13)

with V the volume.
The requirement of thermodynamic stability,

i.e. , that E —p, N, —p, N, be a minimum for the
equilibrium distribution functions, leads (at T 0)—
to bounds on the possible values of the Landau f
parameters. " The change in &-p, Ny p'2+2 pro-
duced by arbitrary distortions 5n,.;, is given to
second order by [Eqs. (3), and (4)]

6(E V, , N, V, 2—N,)= g (a,.;, V,—)6n,;,

dering (see below).
We have so far ignored the implications of the

long-range Coulomb nature of the bare interactions
in the problem. We consider first the interaction
Hamiltonian of a two-component system (having
equal numbers of each species), where the bare
interactions are Yukawa: U» = U22 = —U» =e ""/r
—= U„(r). The original Coulomb system is re-
covered in the limit N, -~, V "-~, with N, /V
= const, and p - 0 such that V' 'p» 1. The in-
teraction Hamiltonian Hi may be written as

[P,(q)&2(-q) -N, +P".(q) p.(-q) -N,
a

—2p, (q) P,(-q)] U„(q), (17)

2
ijufyu fy

(14)

m+
6P,.„(8,o) = * P„,P, (cos8) .

PJ.

In order that the resulting quadratic form in the
P„,'s be positive definite we finally obtain

a f('ii
1+ i l 0

2l +1
(15a)

p ~gii
1+ ' '')0, i=12

2l +1 (15b)

(
» S+.22 V V+ 1+ 2 J l & 2 (sf12)2 0 (15 )2l +1 2l +1 (2l +1)'

where v, , the density of states at the Fermi sur-
face is given by

~e choose 6n, , =n&-, -n, (T =.-0) such that n,
is of the form n, ;,=e(.p, r(8, o) -p) where p,.z(8, o)
is an arbitrary distortion of the Fermi surface.
Here e(x) =1 for x& 0 and vanishes otherwise,
and 8 is the polar angle of p. We expand 6n,.-,
in Eq. (14) to second order in 6P,.r —=P,.z(8, o) -P»
and expand

where p,. (g) is the Fourier transform of the
density operator of the &th species, where

U„(q) is the Fourier transform of U„(r): U„(q)
=4m/(q'+ p'), and where N,. is the number operator
of the ith species.

Noting that p, (0) =N,. and that N, =N, for the
state under consideration we see that the q =0
term in the interaction energy vanishes identically
when the above Coulomb limit is taken. Thus we
may just as well take for Hi for the original Cou-
lomb problem the above expression with the re-
placement of U„(q) (together with the taking of
the Coulomb limit) by U'(q) defined as 1/q2 for
qe0, and 0 for q =0.

Actually, we point out that it is formally pos-
sible to use the original U„(q) with p =0 in Kl
directly. This leads to the f"'s having a divergent
part as well as a well-behaved "short-range»
part. However, in any formal expression for a
thermodynamic property, the combinations of the
f'~'s which appear must be of such a form that
these divergent parts cancel identically leaving
a physically meaningful result (see the discussion
of the compressibility below). Nonetheless, in
what follows we generally view the e,. 's and f '&'s

as appropriate to the choice U'(q).

m~P~ V

III. EQUILIBRIUM PROPERTIES —GENERAL

These inequalities can be viewed as statements
that there can be neither too much interspecies
repulsion [Eq. (15c)] nor too much inter- or intra-
species attraction [Eqs. (15c) or (15b) and (15a)) in
order that the system remain normal. The result
of the former is phase separation(when interac-
tions are short range) while the result of the latter
includes the possibilities of, for example, forma-
tion of atomiclike or more complex "bound" enti-
ties (including a crystal) or occurrence of spin or-

We consider first the specific heat at constant
volume

This is obtained using the entropy equation (1)
evaluated at the equilibrium qp distribution func-
tions equation (2) together with expression (9) for
the qp energy near the Fermi surface:
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A'

C„= ~
g (m(~+n(,*)T, T«min(Tr, Tr ) (18)

1 aV, aj,
K~ —-—-——= n~

V ~P 'Bn,
Bp,

&+nn- 1

2 ny, Z', P

2Bp2'
+ n]n2

, z', y ~n2

i.e. , as expected, the specific heat is linear in
temperature with coefficient proportional to the
sum of the effective masses.

Next, for a general two-component system, the
isothermal compressibility K~ may be written as:

s(((( ks T (N(, N(. )'('S(... (0')
N, N, [S„(O')S„(O')—S'„(0 )] ' (26)

where i' denotes the index complementary to i.
For the case of a neutral two- (charged) compo-
nent system (with n, =n„e,= e,) th-e require-
ment of electroneutrality then leads to the follow-
ing relations, valid'4 for small k:

the mean-square fluctuations in number density":

S(((k- 0+) = (N(N( —N(N()/(N(N, .)'(, i,j =1,2

(25)
where the bar denotes thermal. average. One can
then show that

(19) S(((k) = S(0')+a,,k', i,j =1,2 (2V)

To make contact with Landau theory we use Eq.
(2) to relate variations in n(& about the equilibrium
val. ue to variations in the ec&, and pc:

where S(0') = S»(0') = S»(0')= S»(0') and where
the ac& cannot be determined solely on the basis of
the neutrality requirement.

Substituting Eq. (27) into Eq. (26) we arrive at

(2o)

ee„.=2g ('f,'r 5n„, + f„.5n„.)
P

(21)

Noting that inc& is nonzero only for p -pg as
T- 0 [Eqs. (20) and (2)], we can evaluate this
sum, substitute the result into Eq. (20), and then
sum over p and o, leading to

But the changes 5~c&, associated with hydrostati-
cally compressing the system are self-consistent-
ly related to changes in 5n;z, (in this case spin in-
dependent) via [see Eqs. (3), (4), and (6)]

C}P, c =hm
(((, v, r a-o k (a((+a» 2a(2)

+ ac
s(s')( „+a„—sa„))

(28)

We then see explicitly the divergences in the indi-
vidual 8(((/8N, 's but we also note the direct can-
cellation of these divergent parts in the expression
for the compressibility. From Eqs. (22) and (28)
and the discussion after Eqs. (15) we can relate
the well-behaved ("screened" ) 'f,"'s to the a, , 's

and S(0'):

5((( =—[(1+v, 'f,")5n, +'fo((v(6n, ], jr i (22)
1

~c

from which we are able to identify the derivatives
in Eq. (19). Thus,

Er = n'Vj —(1+v, 'f,")+2'f,"+ (1+v, 'f,")—
T«min(Tr s Tr )

sgc jJo S(0+)( ~ 2 ) ((

The isobaric thermal expansion coefficient

(29)

BV0 ~~& PN N

for a general two-component system can be ex-
pressed most conveniently asK~ is thus temperature independent for low T.

The bounds for the 'f t~, Eqs. (15), are readily
shown to correspond to the statement of positivity
of the formal result for E~.

It is interesting to relate the partial structure
factors S„(k) to Landau parameters. The S„(k)
are defined by

S(((k) =5((+ (n(n, )'('f d're'""[g„(r) —11, (24)

where the g ( )((terre the pair distribution functions.
For k- 0+, the structure factors are related to

n, = ~ S+X, '"~ +X, '"2

Now (L(( =(}Ej&n()r „, where E=E —TS. Then
5F=-S5T, so using S=C„for low T and Eq. (18)
we find for a general two-component Fermi liquid
at low temperature:
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2
I" =F, ——A~T' ' +

where I', is the ground state free energy and
where

T"„.=(9 v')"'n, "'/(2k, m*,.[n„n, j) .

The chemical potentials are then given by

p; (n„n„T)= ij, , (n„n„T=0)

1 n; 1 ~m]*

1 8m*,.

j

j 4i, T«min(T, T ) . (31)

For a system with charged components (e, =-e,),
Eq. (31) is meaningful only when n, =n, Usi.ng

Eq. (31) in Eq. (30) we then have

~m,* + ~m*
m*+m* an an2

(32)

a&.~= h.,o+ 2 ~ ~ On, ,
F

where h, = ,'ky, H Using —a—gain 5.n, & 5(c;~ —pq-),

we perform the sum in Eq. (33), substitute into
Eq. (20), and then sum over p, &r This lead. s to

(34)

where expressions (23) and (18) for Kr and C
must be used. We note that n

&
varies linearly

with T at low T, as expected.
Finally we obtain the phenomenological expres-

sion for the low-temperature weak-field static
spin susceptibility X = BM/8H, where M is the
magnetization density in the presence of the field
H, [M = ,'hy, (n, —i n, ~)+-—,'ky, (n, i -n, ~), where y,
-=g, p,» is the gyromagnetic ratio with g, the Lande

g factor and ps; = eh/2m;e is the appropriate Bohr
magneton. ] We again start with Eq. (20) where
now 6n, &, corresponds to the change upon addition
of the small magnetic field. It can be shown that
5 p, -H' in this case and we may neglect it to low-
est order. The change in qp energy arises from
both the direct "Zeeman" interaction and from the
self-consistent change in the qp distribution func-
tions due to the presence of the fields. Noting
that in this case 5n,.&,

——e'en;& and using the fact
that the spin-antisymmetric interspecies f func-
tions vanish [Eq. (7)] we have

which is T independent. The bounds for the
'f,"'s, Eq. (15a), are equivalent to the statement
that the formal result for X for the normal Fermi-
liquid Eq. (34) be positive. As 1 + v f," ap-
proaches zero from above, increasingly large
long-wavelength fluctuations of the magnetic mo-
ment occur and X diverges, signifying a transition
to a magnetically ordered state.

Among the above expressions for C~, K~, e~,
and X appear a total of nine Landau parameters
(including the 8m&/8n). Unlike the case for one

component, however, a complete empirical deter-
mination of these parameters is not possible.
This is because that "partial" compressibility,
spin susceptibility, and thermal expansion or
specific heat measurements cannot be performed
owing to, respectively, the requirement of
charge neutra1. ity, the nonexistence of "selective"
magnetic fields coupling to only one species, and

the inability to selectively heat one of the species.
In any case the phenomenological description for
the two component case is still. fruitful: 'The "ex-
act" temperature dependence of equilibrium prop-
erties as T —0 is given and these properties are
related in a common framework. Moreover, for
the case of LMH it will be possible to effectively
reduce the number of relevant parameters by ex-
ploiting the large mass ratio of the two species.

IV. EQUILIBRiUM PROPERTIES OF NORMAL
LIQUID METALLIC HYDROGEN

We now examine the above results when applied to
the case of normal liquid metallic hydrogen, i.e.,
when the two species are protons (p) and electrons
(e). As noted earlier, we have in mind a density
corresponding to ~,= 1.6 and temperatures T
«Tgp -10 K.

We first estimate the order of magnitudes of the
relevant Fermi-liquid parameters. Starting with
the electrons, it is at once plausible that the re-
placement of the uniform positive background of
the jellium model by a liquid of protons will not
affect the electron qp-qp interaction energy by
more than a factor of order unity. Thus we esti-
mate f"-f or perhaps more accurately, f"—j
where f is the electron f function in the jellium
approximation and where" f (r, ) =f ((m/m)xP is
the f function for a rescaled jellium model. Here
the bare mass m is replaced by a rescaled "bare"
mass m chosen to include the effect of the
electron-proton interaction in the original prob-
lem. We expect m -m.

Calculations of the f, in the range of metallic
densities have been carried out by a number of
workers. Exemplary results are those of Rice, "
who carried out the calculation in the Hubbard ap-
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proximation. These results are in fact more just-
ifiably applied to a high electron density metal like
metallic hydrogen (r, =1.6) than to most other me-
tals (to which they are regularly and with some ac-
curacy applied). Defining the usual dimensionless
parameters F", -=v,f we expect from Rice's re-

ee tfPpp ]0 1 P8e 10- 10 x for va]
ues of the parameter mx, in the range -0.5--5.

Considering the protons next, we observe that
we may take the point of view that LMH is an ef-
fective "one-component" liquid of appropriately
dressed protons interacting with screened short-
range forces. Effective proton pseudopotentials
have been calculated and found to be for our pur-
poses adequately modeled by a Yukawa form. '
They may also be crudely fitted to a Lennard-
Jones-type interaction with a choice of a hard core
diameter approximately half the interprotonic sep-
aration, as in the case of liquid 'He. In 'He the
interparticle separation is over twice that in LMH,
but of course the atomic mass is 3 times larger;
thus relative to 3He the higher zero-point motion
of the proton in LMH will, in fact, tend to "com-
pensate" for the higher confinement. In fact, it
has been estimated that the proton liquid in LMH
has a deBoer quantum parameter about -', that of
'He. '

It thus appears that the ratio of mean potential
energy to mean kinetic energy (of which, crudely
speaking, the f's are a measure) for the protons
in LMH is comparable to (though probably higher
than) that for the atoms of 'He. We therefore
expect, in view of the values of the Landau param-
eters for He taken from experiment, '7 that the
dimensionless parameters Ff' =—

v~ f~~ would be of
the order of 1-10 (for I =0 and 1).

It remains to consider the interspecies f'~,
which corresponds to the interaction energy of
an electron qp and a proton qp at the Fermi sur-
face. Given the equal magnitudes of the bare in-
teractions among all the particles, the similarity
of the screening of these interactions and the sim-
ilarity of the relative kinetic energies of a proton-
electron pair and an electron-electron pair, we
would expect the full f'& to be comparable to the
full f«. However, it is highly unlikely that this
comparability can hold order by order in the re-
spective Legendre expansions, for if we were to
assume, e.g. , 'f,'~ -'f -(0.01 —0. 1)/v in Eq.
(13) (f» I =e), we would be forced to conclude
that the electron effective mass would be absurdly
small, on the order of -(0.01 —0. 1) m, /m . This
problem is resolved, however, when it is realized
that since m~*/m, * is so large, the energy of in-
teraction of an electron qp of momentum p, (I p, l

=p~) and a proton qp of momentum p& (I p&l = p~)
cannot significantly depend upon the angle 6) be-

tween p, and p&, i.e. , regardless of 8, the proton
is still essentially "fixed. " Thus if one expandsf" in a Legendre series in cose, clearly only the
I=0 (i. e. , isotropic) term is significant. In fact,
using the relationship between Landau parameters
and qy forward scattering amplitudes, one can
show" that f", -(m /m )'. Thus we have f'&-fP
-f -(0.1)/v, while f -(m, /m )f -(m, /m~)
(0.01 —0.1)/v, . Note that this correct reduced
magnitude of 'f;~ guarantees that both m*/m and

mg, /m, will be of order unity.
We now use these order-of-magnitude estimates

of the Landau parameters in expressions (18),
(23), (32), and (34) to discuss the low-tempera-
ture equilibrium properties of normal LMH. Us-
ing m,"»an*, we find for the specific heat

*k2
CLMH g Bpf y Z(( yv 3@3

' FP (36)

(36)

Thus we tentatively conclude that the electrons
"dominate" the compressibility, not unlike the
case with solid metals. The main formal differ-
ence between the expression for the liquid Eq.
(36) and the Fermi-liquid theoretic expression

We thus note that very interestingly the specific
heat of the normal liquid metallic phase would be
strikingly larger than that in the corresponding
solid metallic phase of comparable density: In the
solid at low temperatures C~ is dominated by an
electronic contribution C&„mT (wi-th m, m, ),
the protons giving a negligible phonon contribu-
tion 8 T~ Thus C"M&/Cs "-m+/m* -]03(SMHV' V e
denotes solid metallic hydrogen. )

This difference is understood by noting that at a
given temperature well below both T„and T~ the

P
proton qy distribution function as function of mo-
mentum p is more "smeared" out at p -p~ than the
electron qp distribution function, i.e. , the pro-
tons are less degenerate. Thus the protons have
(in the ratio m,*/m", ) more available phase space
than the electrons and hence contribute more so to
the entropy. We observe that in the liquid the
phonons in the "proton fluid" give rise, as in the
solid, to a -T' contribution to C~. But the proton
quasiparticle excitations (which do not occur in the
solid) have much more available phase space (in
the ratio T') than the collective phonon excitations.

For the compressibility we use v» v, f -f;&,
and f» -10'(m" /m") f -10 'f . " Though we can-
not be totally sure of this last estimate within a
factor of -10, it might appear that we can neglect
'fo» in Eq. (27) for K, leaving
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for jellium as a model of a solid is the appearance
of the explicit electron-proton term f'~ in Eq. (36)
In any case we expect no striking difference in the
magnitudes of the compressibilities of the normal
solid and normal liquid phases of hydrogen at
comparable densities.

Turning to the expansion coefficient equation
(32) we have

~LMH ffLMH gLMH P) T(( T (37)
3 g (inn)

For the corresponding solid phase at low temper-
ature, the electronic contribution (-T) again dom-
inates the phonon contribution (-T ): nsM"

= —,'E~""C . But using the above conclusion Z~ "
-K~~M", we see that the expansion coefficient of
the liquid is again enormously greater than in the
sot yd: n "M"/ns"" - m+/m*

Just as noteworthy as the size of n is the pos-
sibility that it may actually be negative. From
Eq. (37) we see that this occurs when the logarith-
mic derivative of the proton effective mass with
respect to density is sufficiently positive. In the
expression for n for normal liquid He, corres-
ponding to the parenthetic factor in Eq. (37) is the
factor —,

' —8(lnm~z, )/B(inn) which, in fact, is nega-
tive at typical. densities. " Thus, to the extent
that we have argued the screened protons in LMH
are "comparable" to the He atoms in liquid 'He,
the possibility that normal LMH may similarly
exhibit a negative expansion coefficient at low T
cannot be dismissed. A "physical" explanation
for the negative n of strongly interacting Fermi
fluids at low T was offered by Breuckner and At-
kins. " Roughly, they argue that as T is lowered,
the dominating tendency is for the particles to
want to order in momentum space in accordance
with the ideal Fermi-Dirac distribution. The
particles "facilitate" this by moving further apart
on average in order to reduce the interaction,
thereby becoming more free-particle-1. ike.

Finally, for the spin susceptibility we use
v, /v - y /y, =m, /m «1 and v, 'f0~~--1, v, 'f
--0.1 (Ref. 26) in Eq. (34) to obtain

(36)

i.e. , the electrons completely dominate. This is
comparable in magnitude to what we expect in the
solid provided that we are above the ordering tem-
perature (probably well below T~ ) of the proton
spins in the crystal. . Let us note, however, that
if v,' f,"~ —1, a value within the range of our

rough estimate, the denominator of the proton
contribution to y changes sign, signaling the on-
set of a ferromagnetic instability in the protons
(i.e. , the system would no longer be normal).

V. CONCLUSION

By making use of a generalization of Landau-
Fermi liquid theory to the case of two charged,
unequal mass, spin- —,

' components, we have seen
that certain l.ow temperature equilibrium proper-
ties of apossible normal liquid metallic phase of hy-
drogen will differ appreciably from the correspond-
ing properties of a possible normal solid metallic
phase. In particular, the specific heat and therm-
al expansion coefficient are vastly larger (by
-m, /m, ) in the liquid (both quantities varying as
-T in either phase) because of the presence in the
liquid of proton quasiparticle excitations. More-
over, the possibility of a negative thermal expan-
sion coefficient in the liquid makes an interesting
and sharp contrast with the behavior of the solid.
The spin susceptibility and compressibility are
comparable in both phases though.

The two-component formalism discussed here
is extended to the calculation of transport proper-
ties in a later paper. There, as here, our goals
are to understand the qualitative low-temperature
behavior of the normal liquid, and to contrast the
corresponding properties of the assumed solid
and liquid phases in order to provide experiment-
ers with bases for discrimination between the two
phases. "

Again, at this juncture the existence of a liquid
phase under the conditions discussed is still only
a possibility. Furthermore, assuming the exis-
tence of the liquid, its character, e.g. , whether
sgperconducting, normal, ferromagnetic, etc. , is
also not yet clear. The present work is however
a starting point for an examination of this last
issue: For example, first-principles microscopic
calculations of the Fermi-liquid parameters as
functions of x, may reveal the existence of mag-
netic or spatial. order at the actual observed den-
sities. " Moreover, if the calculated parameters
at the actual density are compatible with "normal"
behavior one would have a fairly complete quanti-
tative description of the equilibrium properties of
the normal liquid phase.
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