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The influence of relativistic-interaction corrections to the energy density functional in the density functional
formalism is examined using explicit calculations for Pd and Pt. We present and compare three separate self-
consistent density-functional calculations which included (1) exchange only, (2) exchange and correlation, and (3)
exchange and correlation plus relativistic-interaction corrections. Since they are of comparable or larger size, we
have included and examined the effects of relativistic kinematics and non-muffin-tin potential shapes. Because the
relativistic interaction corrections are significant only very near the nucleus, we report separately results for the core
levels and for the valence states. The corrections obtained were negligible for Pd and small but significant for Pt.

I. INTRODUCTION

In this paper we report on self-consistent band-
structure calculations for palladium and platinum.
Pd and Pt are, respectively, 4d and 5d transition
metals with nearly filled d bands. They are of
interest because of their large paramagnetic sus-
ceptibilities and associated magnetic properties,
their interesting alloying properties, and their
importance in catalysis. As a result, they have
received a great deal of dttention and there is a
wealth of experimental data on well-characterized
samples of exceptional quality. Similarly, there
have been many theoretical calculations on these
two materials and numerous hypotheses proposed
concerning them.! We have examined only a sub-
set of these properties, namely those directly re-
lated to the band structure, more or less rigor-
ously within the framework of density functional
theory.? A major objective of this study was to
examine the result of including the relativistic
contributions to the interparticle forces in the
theory and to compare their effects to the corre-
lation effects. (This is, of course, in addition to
the standard inclusion of relativistic kinematics.)

Density functional theory is a remarkable tool
within many -body theory. By solving a set of sin-
gle-particle equations for auxiliary particles self-
consistently, one is able to determine the distri-
bution of electrons in the metal, i.e., the electron
charge and spin density, as well as the total en-
ergy of the metal and quantities related to the en-
ergy such as the magnetic susceptibility, equilib-
rium lattice constant, and bulk modulus.® For the
properties mentioned above, the only quantity

which needs to be approximated is the exchange-
correlation (xc) energy functional E, [n] which
appears in the formalism, and there is a good
deal of evidence that even the simplest approxi-
mation for E, [n], the local density approxima-
tion (LDA), is adequate in most cases.® Of equal
importance, however, is the effective-indepen-
dent-particle model of the metal provided by the
energies and wave functions which are the solu-
tions of the single-particle equations. This model
is, in fact, the basis of much of our understanding
of the properties of individual metals. While this
model is on less firm theoretical footing, it pro-
vides, in most cases, the best available descrip-
tion of the ground state and excited states of
transition metals. Moreover, noting the sensitiv-
ity of electronic properties to details of the band
structure, we believe that any more sophisticated
description of these metals must be built around
and contain the very substantial physical content
of this level of description.

The relativistic effects on the interaction forces
are relatively minor corrections compared to the
relativistic kinematic corrections, but inserted
directly they pose serious problems to the self-
consistency process. Thus it is appealing to in-
clude them in the same manner as the exchange-
correlation effects by including their contribution
to the energy functional in a local approximation.
This extension of density functional theory, de-
scribed previously* and briefly reviewed in Sec.
II, can be expected to facilitate the study of the
systems at the upper end of the Periodic Table.
Here we examine the effect of these relativistic
corrections. In order to do so, we have per-
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formed calculations which avoid many of the ap-
proximations commonly used since these could
influence our results. The methods used are out-
lined in Sec. III to establish the level of precision
maintained. In Sec. IV, the resulting crystal po-
tentials, electron densities, single-particle en-
ergies, and magnetic susceptibilities are pre-
sented, each of these quantities having been cal-
culated using several different approximations to
the xc potential with the aim of examining their
sensitivity in this respect. Finally, Sec. V con-
tains some concluding remarks.

II. RELATIVISTIC SINGLE-PARTICLE EQUATIONS

The equations which we wish to solve are the
relativistic generalizations®* of the Kohn-Sham
single-particle equations®:

(=ihc aP+Bmc+ Vopn; T])9(F) = ,9,(T), (1a)

n(E) =Y WIE,He | ~¢,), (1b)

Q=-e) 0@ -¢,), (1c)
i

Veff[n;—f] = V(f)*’ V}l[n;.f] + ch[n;_f] ’ (ld)

where @ is the total electronic charge of the met-

(¢} 0.02 0.04
T T

al, V(¥) is the potential from the atomic nuclei,
Vuln; T] is the classical electrostatic potential,
V,ln; ¥] is the xc potential (discussed below), and
the sums over i are over positive energy states
only (our notation is standard®). Note that these
equations must be solved self-consistently since
the effective potential is a functional of the elec-
tron density which is in turn expressed in terms
of the eigenspinors of the Dirac-type single-par-
ticle equations. The LDA for V, [n;F] (Ref. 4)
may be expressed in units of Ry in the form

VoAl v] = ( Slff))m a(n(F)), (2)

where n(¥) is in atomic units and the dimensionless
function a(xn) is dependent on the approximation
for the uniform electron gas energy. In the non-
relativistic case correlations increase a from

the Hartree-Fock (HF) value, a(x)=% which is
correct in the high-density limit, to o~ 0.9 at the
lowest occurring metallic densities.” In the rela-
tivistic case, corrections occur at very high den-
sities corresponding to current-current interac-
tions and other quantum electrodynamical contri-
butions to the energy so that the high-density limit
becomes lim,_, ,a(#)=~-%. The variationsof o with
n are illustrated in Fig. 1.

0.06 0.08 0.1
T T

/
/
" Pt Pd
-04 N | | 1
0 2 4 6 8 10

FIG. 1. Exchange-correlation potentials expressed in terms of the parameter a [Eq. (2)] as a function of density in
terms of the parameter v, = (3mna 3)1 /3, The curves are labeled as in Eq. (3). The solid curves refer to the lower axis

s

scale and the dashed curves refer to the upper 7, scale which expands the high-density region. Minimum (upper
scale) and maximum (lower scale) 7 values for Pd and Pt are indicated.
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In this work we have performed calculations us-
ing three separate approximations for the xc po-
tential:

aF(n) =%, (3a)
o™®(n) =% [1+0.05457, In(1+11.4/7,)],  (3b)
o**(n)=%{1 -3 [(Bn - 1n0)/p*]?

+0.05457 In(1+ 11.4/7,)}, (3c)

where 7,=(§7nad)!/® is the usual conduction-elec-
tron density parameter, B=Xkp(n)=(971/4)*/%a/
7,, @=1/131 is the fine-structure constant (and
will not be used further to avoid confusion), 7
=(1+8%'2, and 6=B+7n. o incorporates corre-
lation corrections to a¥(x) in the approximation
of Gunnarsson et al.® while a**(») includes, in
addition, relativistic corrections to the exchange
part of the energy.* By comparing results from
oNB(y) and of'¥(x) we can identify the role played
by correlation corrections within this scheme.
Similarly, comparing results from o™%(») and
oR¥(y) will reveal the influence of the intrinsically
relativistic contribution to the xc potential.

III. METHOD OF CALCULATION

For a given crystal potential Eq. (1a) was solved
using a relativistic generalization of the linearized
augmented plane-wave (APW) method.’*® The
method, which is described in more detail else-
where,'! allows spin-orbit interactions to be sep-
arated and treated more efficiently than in the
standard relativistic APW method. We will refer
to the above as a spin-orbit-linearized augmented
plane-wave (SO-LAPW) method. In the course of
iterating Eqs. (1) to self-consistency the spin-or-
bit interactions were not included in solving Eq.
(1a). This point is discussed later. The charge
density is constructed from eigenspinors in a
manner similar to that discussed by Elyashar and
Koelling.'? For the valence states the sum over
“i” of Eq. (1b) becomes a sum over bands and an
integral over the Brillouin zone (BZ). This inte-
gral can be reduced to the irreducible region (IR)
of the BZ by summing only the cubic symmetric
components. To evaluate the integral, we have
used a mesh derived from the centers of tetra-
hedra with roughly a 7/8a edge size which yields
128 distinct points in the IR. To test convergence,
calculations have also been performed using anoth-
er mesh with 24 points in the IR.

The charge density is obtained as a Kubic har-
monic expansion inside the muffin-tin spheres,

417*n(T) = [04(7) + (MK () + o)K7+ ]  (4a)

and a plane-wave expansion in the interstitial re-
gion

n(®)=)_ n, Y, exp(iGr¥). (4b)
m E

In Eq. (4a), 7 is the distance from the center of
the muffin-tin sphere while K,(#) and K4#) are
the leading order Kubic harmonics,

K%)= (T%)l/an_o(?)
+ (%)1/2[Y4'4(1‘f) + Y, (7] (5a)

k9= (3) 1o

1/2
~(3) 1+ Vo). (5b)

The convergence of this expansion is discussed
later. In Eq. (4Db) 6}" is the jth member of the mth
star of reciprocal-lattice vectors. A similar rep-
resentation has been used for V,,,[n;¥]; the tech-
niques used to construct the potential in this dual
representation from the corresponding represen-
tation for the charge density have been discussed.
previously.!®

In iterating to self-consistency, input and output
charge densities for one iteration were mixed to
form the input charge densities for the next itera-
tion. Self-consistency was considered to have been
achieved when no energy on the IR integration
mesh changed by more than 0.2 mRy, the maxi-
mum relative change in o,(») was less than 0.1%,
and the maximum relative changes in o,(») and
04(7) were less than 0.2%. With reasonable start-
ing densities, e.g., overlapping atomic, and judi-
cious choices for the charge-density mixing pa-
rameter at each step,'? ~20 iterations were re-
quired to reach self-consistency.

Once a self-consistent effective potential has
been found, a number of properties can be ex-
pressed in terms of the solutions of Eq. (1a). In
the following paragraphs we mention those proper-
ties which we have calculated and discuss the tech-
niques used for their evaluation. The physical
significance of these properties and of our results
will be discussed in more detail in Sec. IV.

Several derivative properties can be expressed
as integrals over the BZ of combinations of the
eigenvalues and eigenspinors of Eq. (1a):

N()=22_6(1 = €,.)s (6)

De)=N'"()=22_ e —¢,,), )
nk

(g%e)=8 (”)_“;A [ 120804

Xe(e - €,.,1)>/D(€) » (8)
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(V2(e)= 2(25(6 - &, (Vi€ vie,,,,;))/D(e),
' (9)

y(¥)= 2(2 o - e,,,i)w;,;(mn,;(f)) / D(e).
' (10)

N(€) and D(¢) are, respectively, the number of
states below energy ¢ and the density of states at
energy ¢. (V%)) is the average of the square of
the electron group velocity over the surface of
constant energy ¢ and is a useful quantity in trans-
port theory. (g%€)) is the square of an effective
g factor averaged over the surface of constant en-
ergy €. This spin-only g factor!* reflects the split-
ting of the time-reversed degenerate states dis-
tinguished by the index A in Eq. (8) in a magnetic
field which couples only to their spin magnetic mo-
ment, The reduction of this g factor from 2 may
be interpreted as representing the inability of the
electrons to line their moments up with the field
because of the partial mixing of spins in the spin-
ors. y(¥) gives the shape of the charge density
from the electrons at the Fermi surface and is
expected!® to be nearly proportional to the mag-
netization induced in these metals by an applied
magnetic field. All of these quantities have been
evaluated using the tetrahedron method.*®'” Sin-
gle-particle eigenvalues and spin-only g factors
were determined at 933 distinct K points at the
vertices of 4096 tetrahedra in the IR. Using the
hybrid tetrahedron method,'® N(¢), D(¢), (V¥¢)),
and (g% €)) and y(T) then evaluated using 32768
tetrahedra. In evaluating (V¥€)) the usual tetra-
hedron method assumption of constant v;e,; was
adopted. On the other hand, the variation of spin-
only g factor across a tetrahedron was included
for {(g*€)) and ¥(¥) using methods described else-
where.!®!® Note that in contrast to the other four
quantities y(¥) is determined solely in terms of
the eigenspinors at the Fermi surface.

The Fermi-surface properties most directly ac-
cessible to experiment are the extremal orbits
and the cyclotron masses for these orbits. We
have calculated these quantities using a direct or-
bit tracing technique similar to that discussed by
Shaw et al.*® The approaches differ in that here
the derivative of the Fermi radius with respect
to azimuthal angle, which is known in terms of the
electron velocity, is used to improve the efficiency
of the numerical integration. The electron veloci-
ties, V"';= ;;e,,i, were calculated using a Hell-
man-Feynman technique.® It should be noted that
in obtaining extremal areas and cyclotron masses
the electron energies were calculated using the
full relativistic APW method to calculate eigenval-

ues, but using the self-consistent potentials ob-
tained as described above. This point is discussed
further in Sec. IV.

The Fourier components of the magnetization in-
duced in a metal by a magnetic field can be mea-
sured by neutron scattering. For Pd, Pt the mag-
netic response is dominated by the spin compo-
nent; in this case ¥(F) should be nearly proportion-
al to the induced magnetization.?*2* After inte-
grating over the Fermi surface y(T) is expressed
in the same form as »(¥):

417Ny (F) = [y (1) + v (MK, (P) + Yo(1)K(P)] 7<R
(11a)

Ny(B)=Y vn2_ exp(iGTF) 7>R. (11b)
m J

N is the number of atoms in the metal. It follows
that

Y&)= [ at exp(~iG- y(®)
- [ vigen+ k6 [rviden
_k(0) [y iden

+ QYY) U(|GP -G |). (12)
m J

U(G) is the Fourier transform of the step function
which is zero inside the muffin-tin spheres:

0(6)= (85, - EALCH), (13)

2, is the unit-cell volume and j, is a spherical
Bessel function.

Another quantity of interest is the spin suscep-
tibility x,, which can be expressed in terms of
D(up), y(¥), and n(r) by?*

Xp=2.3768D(p)[1 - D(p)I]™* (14a)
expressed in units of 10 emu/mole

_ 9r\1/3 d?[N ('I’.)]z .
= (?) fno LIRS (14b)

wherelis inunits of Ry, D(u) is in electrons per Ry
atom, and »(¥) is in atomic units. J(x)=y,(r)/
Xx(n) =1, where X(n) and x,(n) are the susceptibil-
ities of the homogeneous noninteracting and homo-
geneous interacting electron gases, respectively.
We have taken J(x) from the electron-gas calcu-
lation of Keiser and Wu,?* as parametrized by
Wilk ef al.® [ is the density-functional analog of
the Stoner parameter. The significance of x, when
relativistic effects are important has been dis-
cussed previously'® (see also Sec. IV). In evaluat-
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ing I, we note that the integrand of Eq. (14b) is
strongly dependent on ¥(¥) but is not particularly
sensitive to n(¥) [the integrand varies roughly as
n(F) "/ %y(T)?]. We therefore feel justified in adopt-
]

ing the muffin-tin approximation for #(¥) [but not
¥(¥)] in this expression. This results in a much
simpler calculational form:

(5 UL R (-

IV. RESULTS AND DISCUSSION

A. Charge densities

Table I indicates how some representative fea-
tures of the self-consistent charge densities de-
pend on the IR integration mesh and the xc poten-
tial. First of all, we note that in going from the
24-point IR integration mesh to the 128-point mesh
the change in n(T) is at most ~1% at any point,
with a tendency for the largest changes to occur
in the non-muffin-tin parts of n(¥). This is con-
sistent with the greater sensitivity of the non-muf-
fin-tin components observed previously,? espe-
cially in light of the fact that the 24-point mesh
was not quite uniform in sampling the Brillouin
zone. As a result we consider the 128-point re-
sults to be well converged. Changes in other
properties are similarly small.

Comparing HF and NR xc potential results we
see that including correlation increases the den-
sity inside the muffin-tin sphere. The correlation
contribution to the xc potential is attractive and
larger in magnitude in the higher-density core re-
gion and, as a result, both lowers and narrows
the d bands relative to the sp bands. (This is like
increasing « in an Xa calculation.) Both the in-
creased localization of the d-wave functions and
the increased occupancy of the atomiclike d-band
states contribute to the decrease in interstitial
charge. The relativistic corrections to the xc

1/3 :
0'4075:)2> + ‘i(gjos) zm:.ym; 'ymjzﬂ: U( iG;."+ G;” I)] . (15)

r
potential make a repulsive contribution, the mag-
nitude of which drops much more rapidly than the
correlation contribution with increasing #; (de-
creasing density) (see Fig. 1). The relativistic
corrections have their largest influence on n(¥)
near the nuclear sites where they produce a de-
crease of ~1%.

Figures 2 and 3 show the self-consistent g,(7),
0,(7), and oi(7) for Pd and Pt, respectively. For
both Pd and Pt inside a radius of ~1.5 a.u. the con-
tribution to o,(») comes from the incomplete filling
of the d band; in each case the local maxima of
o,(7) correlate with the peaks of the corresponding
d radial wave function. Since similar contributions
to o4(7) would require the presence of f-like states,
o47) is essentially zero inside this radius. As the
muffin-tin radius (R=2.555 a.u. for both Pd and
Pt) is approached, the contributions to o,(7) and
0g(7) increasingly reflect the re-expansion about
one lattice site of the d-wave-function tails from
neighboring lattice sites. We note that higher !/
components in the Kubic harmonic expansion of
o(T) would be essentially zero over even larger
volumes and hence would have little impact on cal-
culated energies. The main difference between the
0,(r) and o(r) obtained in a self-consistent calcu-
lation and the o,(») and o4(») obtained by overlap-
ping atomic charge densities is the absence, in
the latter case, of any contribution from the non-
spherical character of the incomplete d band.

TABLE I. Features of self-consistent charge densities. All quantities are given in atomic
units. The column labeled xc indicates the xc potential [Eq. (3)] and the number of points in
the IR integration mesh. oy(R), 04(R), and oz(R) give the charge density on the muffin-tin
sphere and are indicative of the charge density in the interstitial region. »(0) is the charge
density at the nucleus. a is the lattice constant used in this calculation. @, is the number of
interstitial electrons.

Metal Xc a oy (R) Q) 0y(R) 0g(R) n(0)
Pd HF-128 7.340 3.202 0.9318 -0.664 -0.747 1.294 x 10°
Pd NR-128 7.340 3.162 0.9007 -0.660 —0.744 1.277 x 10°
Pd NR-24 7.340 3.161 0.9131 -0.667 -0.732 1.279 x 10°
Pd RX-128 7.340 3.159 0.9066 —0.658 -0.742 1.267 x 10°
Pt HF-128 7.398 4.016 1.295 -0.844 -1.004 1.981 x 10°
Pt NR-128 7.398 3.959 1.210 -0.831 -0.997 1.954 x 10°
Pt NR-24 7.398 3.969 1.229 -0.825 -0.995 1.954 x 10°

Pt RX-128 7.398 3.956 1.209 -0.828 -0.993 1.931 x 10°
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FIG. 2, Self-consistent charge density for Pd. The
upper scale and right-hand scale refer to the gy (7)
curve while the lower and left-hand scales refer to the
oy(7) and og(7) curves. Self-consistent densities from
different xc potentials are indistinguishable on these
scales.

This difference is even more dramatic for metals
near the middle of a transition series.'?

B. Crystal potentials

The self-consistent crystal potentials obtained
are illustrated for Pd and Pt in Figs. 4 and 5, re-
spectively. The size of the non-muffin-tin terms
is seen to be roughly the same in the two metals.
Like o,(7) and o4(7»), V() and V(») become rapid-
ly larger as 7 approaches the muffin-tin radius.
This indicates that most of the non-muffin-tin
character in the potentials comes from the tails
of potentials associated with neighboring sites

i (a.u.)

0 0.25 .50, 75 100 1.25 1.50

1.75 Z.O?

.60 50
.30 125
~ o AL 100
s -
° 3
- o
© =30 —475 <«
b =
" o
® .60 450 ®
-.90] 125
-1.20 n L L L 1 L 0
(o} 50 1.00 1.50 2.0(0 2)50 300 350 400
r(a.u.

FIG. 3. Self-consistent charge density for Pt. The
upper scale and right-hand scale refer to the oy (7)
curve while the lower and left-hand scales refer to the
04(7) and og(7) curves., Self-consistent densities from
densities from different xc potentials are indistinguish-
able on these scales.

00.00! L I L L 0
-925 -800 -675 -550 -425 -300 -1.75 -050 0.75
Inr (au.)

FIG. 4. Self-consistent crystal potential for Pd. The
lower scale and left-hand scale refer to the V()
curve while the upper and right-hand scales refer to the
V4(7) and Vg(7) curves. Self-consistent potentials cor-
responding to different xc approximations are indisting-
uishable on these scales.

rather than from the asphericity of the potential
associated with a given lattice site.

Comparing Figs. 4 and 5 with Figs. 2 and 3 we
see that the Kubic harmonic expansion for the po-
tential is not as rapidly convergent as the Kubic
harmonic expansion of the charge density. In fact,
while the charge density varies by 40% over the

In(r)(a.u.)
-9.25 -8.00 -6.75 -550 -425 -3.00 -1.75 -0.50 O.75
20.00 T T T T T T T 0.45
Vi
0.00 s 0.40
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3 -60.00 Ho25 3
C] L
) >
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-140.00 -H0.08
-160.00 — T 1 1 1 0.00
000 040 0.80 1.20 1.60 200 240 2.80 3.20

r(a.u.)

FIG. 5. Self-consistent crystal potential for Pt, The
lower scale and left-hand scale refer to the 7V (7)
curve while the upper and right-hand scales refer to the
Vi (7) and Vg(7) curves. Self-consistent potentials cor-
responding to different xc approximations are indisting-
uishable on these scales.
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FIG. 6. Influence of correlation on the self-consistent
crystal potential of Pd.

muffin-tin sphere surface, the crystal potential
varies by ~0.2 Ry, an energy comparable to the
d-band width. Nevertheless, as we shall see,
non-muffin-tin terms do not produce large changes
in single-particle energies. The reason for this
may be traced to the fact that the 5d-wave angular
wave functions are well mixed in most metal wave
functions so that most of the above-mentioned an-
isotropy in the potential is nearly averaged out
state by state.

The influence of correlation on the crystal po-
tential is shown in Figs. 6 and 7 for Pd and Pt, re-
spectively, by plotting » [ VY®(#) - VE¥(#)] inside

-.0081

r(Vux-Vue) Ry
A 5 .
®
T

=024

-.028}-

o 2 1 1
9.25 800 675 550 -425 -3A<')o 775 <050 0.75
Inr (a.u.)
FIG. 7. Influence of correlation on the self-consistent
crystal potential of Pt,

-0.01
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-0.17

-0.20
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-9.25 -8.00 -6.75 -550 -4.25 -3.00 -1.76 -050 0.75

Anr
FIG. 8. Influence of the relativistic exchange correc-
tion on the self-consistent crystal potential of Pd.

the muffin-tin sphere. In studying these figures it
should be noted that for each potential, energies
are measured relative to the average potential in
the interstitial region. The correlation contribu-
tion to the crystal potential is negative and in-
creases in magnitude with increasing density, be-
ing roughly proportional to In[n(¥)] inside the muf-
fin-tin-sphere [see Eq. (3a)]. Comparing with
Figs. 2 and 3, structure in Figs. 6 and 7 can be
seen to correlate with structure in the radial de-
pendence of the self-consistent charge densities.

It is also clear from Figs. 6 and 7 that we would
expect the NR potential to place d-like valence
states, which have much of their weight inside the
muffin-tin spheres, lower in energy relative to the

0.05 T T T T T T T

0.00

-0.10

-0.25

F(Vyx - Vax) (au)

-040

-0.55 L ! L L I | L
-925 -800 -6.75 -550 -425 -300 -175 -050 075
Inr(a.u.)
FIG. 9. Influence of the relativistic exchange correc-
tion on the self-consistent crystal potential of Pt,
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s-p-like valence states than the HF potentials.

The influence of the relativistic exchange cor-
rection on the self-consistent crystal potentials
for Pd and Pt is shown in Figs. 8 and 9. As ex-
pected, this correction is less important than the
correlation correction for the lower-density re-
gion near the outer edge of the muffin-tin sphere
but becomes more important as the extremely
high-density region near the nucleus is ap-
proached. As a result we would expect the corre-
lation contribution to have a larger impact on va-
lence levels while the relativistic exchange cor-
rection should have a larger impact on the inner
core levels.

C. Single-particle energies

Wefirst discuss our results for the core-level
single-particle energies tabulated in Table II. As
expectedfrom Figs. Tand 9 the correlation correc-
tion lowers (increases the magnitude of) the core
energies while the relativistic exchange correction
usually raises them (decreases the magnitudes).
Also, as would be anticipated by comparing Figs. 6
and 7Twith Figs. 8and 9, the influence of the relativis-
tic exchange correctionis much larger thanthe influ-
ence of correlationfor the innermost core levels. In
fact, evenfor the outer core levels the two influences
on the core energies are comparable. Everything
else being constant, the relativistic exchange cor-
rection shows a tendency to decrease in magnitude
with increasing principal quantum number (n), or-
bital angular momentum (I), and total angular mo-
mentum (j). The correlation correction is much
less sensitive to the I and j character of the core
levels since it changes less rapidly with density.

A particularly dramatic example of this sensitivity
occurs for Pt where the signs of the relativistic
exchange corrections in the 4f and 5s, 5p levels
differ. In fact, at first sight, the sign of the rel-
ativistic exchange correction for the 4f level is
surprising. The direct effect of this correction is
to make a repulsive contribution to the potential
which increases sharply in magnitude near the nu-
cleus. This in turn leads to a decrease in electron
density near the nucleus and thus to a decreased
screening to the nuclear charge at any given radi-
us. The indirect attractive contribution dominates
at some radii (see Figs. 7 and 8). Because of their
high I character the f wave functions do not sample
the direct repulsive relativistic exchange correc-
tion, and as a result, become more strongly

bound when relativistic exchange is included. In
contrast the binding of the 4s, p, and d orbitals is
reduced, because, although these orbitals have
their principal maxima in the same region, they
penetrate further into the core region. From these
comparisons we see that the relativistic exchange

TABLE II. Core-level single-particle energies for Pd
and Pt. The column headed by — Exg gives the energy
obtained with the NR exchange approximation while those
headed by Ery — Exx and Eyx — Exy give the shifts due to
relativistic exchange corrections and correlation, re-
spectively. All energies are in Ry.

Pd
(n,1,5) —Exgr Epx —Exg Eyr - Exx
(1,0,%) 1772.0 7.9 0.0
2,0,3) 258.3 0.86 0.08
2,1,%) 239.7 0.56 0.08
2,1, 228.0 0.47 0.08
(3,0,%) 46.03 0.141 0.054
3,1,3) 38.68 0.075 0.054
3,1,%) 36.64 0.061 0.054
3,2,3) 23.57 0.009 0.057
3,2,3) 23.16 0.007 0.054
(4,0,3) 5.635 0.024 0.029
4,1,3%) 3.351 0.010 0.028
4,1,9) 3.017 0.008 0.028

Pt
(n,1,7) —Exp Egx —Exp Eyr — Enx
(1,0,3) 5750.0 38.6 0.2
(2,0,3) 1009.0 5.5 0.1
2,1,3) 967.0 4.72 0.11
2,1,3) 840.1 3.08 0.10
(3,0,3) 236.2 1.14 0.07
3,1,3) 217 .4 0.84 0.07
3,1, 189.6 0.58 0.07
3,2,3) 158.2 0.26 0.07
3,2,3) 152.2 0.23 0.07
(4,0,3) 50.01 0.261 0.055
(4,1,3) 42.05 0.186 0.055
4,1,%) 35.39 0.111 0.055
4,2,9 22.34 0.028 0.053
(4,2,%) 21.10 0.021 0.052
4,3,3) 4.414 —0.024 0.049
4,3,1 4.159 —0.025 0.049
(5,0,%) 6.589 0.045 0.033
(65,1,3) 4,038 0.026 0.031
(5,1,3) 2.923 0.014 0.029

correction can have a greater influence on physi-
cal properties than the correlation potential. This
should be especially true for crystals or molecules
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TABLE III. Bottom, center, and top of s, p, and d bands (E,, E,, E,) for Pd and Pt,.
Results are given for the NX potential and for correlation and relativistic corrections.

Pd Pt

Band NX RX-NX HF-NX NX RX-NX HF-NX
B, 0.013 0.003 0.008 —0.090 0.007 0.007
S1/2 E, 0.385 0.004 0.007 0.257 0.008 0.008
E, 2.057 0.004 0.015 1.791 0.008 0.016
E, 0.556 0.003 0.006 0.474 0.006 0.007
Pis E, 1.296 0.004 0.008 1.184 0.008 0.009
E, 3.003 0.005 0.014 2.817 0.010 0.015
E, 0.614 -0.002 0.006 0.667 —0.004 0.007
s/ E, 1.369 0.002 0.008 1.434 0.007 0.009
E, 3.150 0.003 0.014 3.317 0.009 0.015
E, 0.146 0.000 0.017 0.126 0.000 0.016
dy s E, 0.359 0.000 0.019 0.381 -0.001 0.019
E, 0.527 0.000 0.023 0.599 -0.001 0.024
E, 0.173 0.000 0.016 0.199 0.001 0.016
ds/a E, 0.396 0.000 0.020 0.487 -0.001 0.020
E, 0.571 0.000 0.023 0.735 —0.002 0.023
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containing rare earths since spd-f shifts frequent-
ly have a large impact.

We now turn to a discussion of the results for
the valence levels. The first question one asks
about the results is a very crude one: How are
the relative band positions and bandwidths
changed? To examine this, we consider only the
muffin-tin part of the potential in a spherical Wig-
ner-Seitz treatment.?” The approximate bottom
of the band occurs where the radial solution has
zero derivative at the Wigner-Seitz radius, Ryg,
the approximate top where the radial solution has
zero value, and the approximate middle where the
logarithmic derivative has the value —(l+1)/Rys.
We have tabulated these energies for Pd and Pt in
Table III. Before comparing the results for the
different xc potentials we make two general ob-
servations concerning the information presented.
First, in using these indices we are, for the mo-
ment, ignoring the hybridization effects that have
been so laboriously included in the calculation,
except as they affect the muffin-tin component of
the potential through energy shifts. These are only
important when one is looking at a finer gauge.
Secondly, we have solved the radial Dirac equa-
tion to obtain these indices so that we have sep-
arate results for j=1+%. The separation of these
energies for j=[+3 is roughly the spin-orbit
splitting.

From Table III we see that the spin-orbit split-
ting is larger for the p band than for the d band
and larger for Pt than for Pd. These results are
expected since Pt has a larger nuclear charge and
since the p orbitals penetrate closer to the nucle-
us. Further, the splitting increases in size as
one goes from the bottom to the top of the band,

again because the wave functions at the top of the
band penetrate closer to the nucleus. For Pt we
note that the spin-orbit splitting at the top of the
d band is a significant fraction of the full d-band
width. This larger splitting is responsible for the
partial separation of d;,, and d;,, bands in Pt
noted previously by Christensen.?® It also has the
potential to cause inaccuracies in single-particle
energies calculated using the method of Ref. 11.
This point is discussed later.

The correlation correction lowers the d band
relative to the s band for both Pd and Pt. This is
because the attractive correlation contribution to
the xc potential is larger in magnitude in the
higher~density core region and is consistent with

TABLE IV. Influence of xc potential on some repre-
sentative valence-level eigenvalues. For the HF and RX
potentials the eigenvalues are given relative to the cor-
responding NR potential eigenvalues. The energies are
given in mRy.

NR HF RX

Pd Pt Pd Pt Pd Pt
') 13 =90 7 8 3 6
X(5) 575 743 24 28 0 0
X(1) 141 134 16 17 0 0
T3(2,3) 318 344 21 23 (] 0
T7(4) 341 415 20 22 0 0
T3(5,6) 451 552 23 26 0 0
L(3) 337 407 21 22 0 0
L(4) 532 634 24 27 0 0
L (5) 546 646 24 28 0 0
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FIG, 10. Energy bands along high-symmetry lines for Pd with spin-orbit interactions included. The linearized APW
energy parameter €; was set to 0.2 Ry for this calculation,

Figs. 6 and 7. The bands are also narrowed by
the correlation correction since the lowering is
larger for the more localized orbitals near the
top of the bands. The relativistic exchange cor-
rection raises the d band relative to s and p for
both Pd and Pt. The s and p valence bands are
raised due to the penetration of their core-ortho-

gonalization components near the nucleus. The
corrections tend to be larger for Pt as expected.
The near-zero change for the d bands is due, in
part, to a cancellation between the positive and
negative regions shown in Figs. 8 and 9. For Pd
the relativistic exchange correction lowers the d
band by 3 mRy relative to the s bands, and the

n o

3
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FIG. 11. Energy bands along high-symmetry lines for Pt with spin-orbit interactions neglected. The linearized APW
energy parameter €; was set to 0.4 Ry for this calculation.
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FIG. 12. Energy bands along high-symmetry lines for Pt with spin-orbit interactions included. The linearized APW
energy parameter €, was set to 0.2 Ry for this calculation,

correlation contribution lowers them by a further correlation contributions, respectively. It is per-
12 mRy. For Pt the relative energy changes are haps surprising that even for the valence levels of
8 mRy and 12 mRy for relativistic exchanges and heavy metals the relativistic exchange correc-

TABLE V. Some representative eigenvalues for Pd and Pt, obtained with and without spin-
orbit interaction corrections. For Pt, eigenvalues obtained using the full RAPW method are
also listed. All results are for the HF potential., The LAPW energy parameters were €;=0.4
for Pt and €;=0.2 for Pd.

Metal 3 Approx. Band 1 Band 2 Band 3 Band 4 Band 5 Band 6
Pd T -S0 20 348 348 348 471 471
Pd r + S0 20 339 339 361 474 474
Pd X -~-SO 157 181 562 586 586 797
Pd X + 80O 157 180 5568 578 599 796
Pd w -SO 238 307 307 463 585 1219
Pd w + S0 237 302 310 464 586 1205
Pd L -S0 162 346 346 562 562 625
Pd L + 8O 162 333 358 556 570 625
Pd K -SO 207 250 413 492 551 1086
Pd K + SO 206 249 412 492 552 1085
Pt r ~-SO -82 339 399 399 565 565
Pt r + S0 -82 367 367 437 578 578
Pt r RAPW -82 364 364 435 575 575
Pt X ~-S0 154 190 693 729 729 808
Pt X + 80 151 186 681 705 771 799
Pt X RAPW 150 184 671 693 762 789
Pt w -SO 260 343 343 534 727 1206
Pt w + SO 255 328 346 541 730 1206
Pt w RAPW 254 325 344 540 721 1193
Pt L -SO 134 396 396 641 694 694
Pt L +80 132 357 429 641 674 719
Pt L RAPW 131 3563 427 633 663 715
Pt L +8S0 215 275 470 589 675 1100
Pt K + S0 211 269 463 589 684 1098
Pt K RAPW 209 268 459 584 678 1091
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TABLE VI. Influence of relativistic and non-muffin-tin
corrections on the relative position of s and d bands and
on the d-band width in Pd (~SO), (-R), and (-NMT) in-
dicate results obtained with the omission of spin-orbit
effects, all relativistic effects, and non-muffin-tin plus
spin-orbit effects, respectively. X+ —Xy+ is a measure
of the d-band widths while X+ —I's and X, — I+ are the
energies to the bottom of the s band, respectively,
These results were obtained with the NX potential.

Approx. Xpp — Xev X =T Xor— Tige
+ SO 432 557 125
-S0 419 545 126
-R 436 514 78
—~NMT 431 546 115

tions, which represent quantum-electrodynamical
corrections to the Coulomb interaction, are com-
parable with the correlation corrections to the
band separations.

These qualitative observations are consistent
with the detailed eigenvalue calculations. Some
representative eigenvalues are listed in Table IV.
The energy bands along high-symmetry lines in
the crystal are shown in Figs. 10-12 for Pd
with spin-orbit interactions, Pt without spin-or-
bit interactions, and Pt with spin-orbit interac-
tions, respectively. The influence of the spin-or-
bit interaction on some representative eigenvalues
is shown in Table V by presenting eigenvalues ob-
tained with and without the spin-orbit interaction.

(The eigenvalues without spin-orbit interaction
corrections are readily available since they appear
as an intermediate quantity in the method of Ref.
11.) For Pt we also present eigenvalues obtained
with the full RAPW method. For Pd we note that
the spin-orbit interaction has little influence on
eigenvalues except for those cases in which it
lifts a degeneracy. In contrast, even nondegen-
erate eigenvalues are significantly shifted in Pt.
This extra feature is due to the aforementioned
d;; ,-dg, , separation in Pt. The d;;,-dsy, , Separa-
tion also is partly responsible for the eigenvalue
differences between the RAPW method and the
method of Ref. 11 as shown in Table V. The re-
maining discrepancy can be attributed to the lin-
earization. It should be noted that these differ-
ences are not large for eigenvalues with a value
near the energy parameter. (As was pointed out
in Ref. 11, the corresponding differences are ~1
mRy in Pd over the entire d band.) Despite the
significant d/2-d°/? separation we would not ex-
pect the inclusion of spin-orbit interactions at
the self-consistency iteration stage to greatly in-
fluence the self-consistent potential for Pt. This
is because the Fermi level lies above both the
more-d3/ 2-like and the more-d®/ 2-like parts of
the d band. The semirelativistic d-wave function
should therefore be an appropriate average for
the occupied portion of the d bands. For metals
nearer the middle of the 5d series, inclusion of

TABLE VII, Symmetry-point eigenvalues for the NX potential for Pd and Pt. Energies are
given relative to the Fermi level. For Pd the energies at I" and L are compared with experi-
ment, All energies are given in mRy. Ep=541 for Pd and Ezx=667 for Pt (see Sec. IVD),

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6
T —-528 -223 —-223 —200 - 90 - 90
Toxpt® -188+ 11 -188+11 -188+ 11 - 857 - 857
X —400 -379 -7 13 34 247
K -352 -309 -148 -7 - 12 531
L —395 -229 —204 -9 5 78
L oypt® ~176+ 15 -176+ 15 - 29+15 - 77
w -321 257 249 - 99 21 652
r 757 -323 -323 —252 -115 -115
Toxpt® —299 —299 —206 -105 -103
X —533 -500 - 14 9 76 124
K —475 -416 —-223 -103 - 10 417
L -551 —333 --260 - 33 - 21 24
w —430 -360 -340 —148 34 522

2Experimental values from Ref, 30.
bExperimental values from Ref. 31.



23

spin-orbit interactions could be more important
in determining the self-consistent crystal poten-
tial.

It is interesting to isolate the influences of other
relativistic and non-muffin-tin corrections which
would not be included in more simplified band-
structure calculations. In addition to spin-orbit
interactions, relativistic corrections come from
mass-velocity and Darwin terms.?® Both these
terms introduce a negative shift in the single-
particle eigenvalues; the Darwin term shifts s
levels only while the mass-velocity term is larger
for the higher kinetic energy d bands than for the
sp bands. The total effect of both terms is a shift
of the sp band downward relative to the d band,
and a narrowing of the d band. Detailed results
for Pd are given in Table VI. Note that the d-band
narrowing mentioned above, 17 mRy for Pd, is
compensated for by a broadening due to spin-orbit
splitting of some levels near the top of the d band.
Also indicated in Table VI is the size of correc-
tions due to non-muffin-tin terms in the crystal
potential. These changes are less systematic than
the relativistic changes, and for both Pd and Pt
are fairly small, typically ~5 mRy.

Finally, in Table VII we compare our calculated
eigenvalues with those obtained by Himpsel and
Eastman® for Pd and Mills et al.* for Pt using
angle-resolved photoemission. The theoretical
eigenvalues are sometimes outside experimental

INFLUENCE OF RELATIVISTIC CONTRIBUTIONS TO THE...
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error bars by as much as 30 mRy and the size of
discrepancy is larger in magnitude than correc-
tions introduced by non-muffin-tin corrections ov
the choice of xc potential. The discrepancy gives
the appearance that the “experimental d bands”
are narrower than the calculated ones. This is
precisely the same situation as found for nickel®?
where it has received considerable attention (in-
cluding questioning of the effect®®). However, as
this is really an excitation property which raises
questions of relaxation and lifetime effects, we
shall not attempt to resolve this discrepancy.
Should the lifetime and relaxation effects be re-
solved, the interesting fundamental question of
the accuracy of the single-particle equations as
used here for eigenvalues away from the Fermi
energy could be addressed.** Even so, we note
one other anomaly which can be related to the L -
level disparity observed in Ni. In Pd, the fifth-
band L -centered hole pocket observed in de Haas—
van Alphen measurements is inconsistent with
placing the fifth band below the Fermi surface at
L. Thus we see a discrepancy in the interpreta-
tion of two experimental measurements. As the
calculations concur with the de Haas-van Alphen
measurements®® (which, after all, involve the
more weakly interacting probe), the problem is
most likely in the interpretation of the photoemis-
sion experiment,
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FIG. 13. Density of states and number of occupied states below energy € for Pd with spin-orbit interaction.
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D. Energy-derived properties lence-level eigenvalues. Extremal areas and cy-
clotron masses, which can be compared in detail
In this section we discuss our results for a num- with de Haas—van Alphen experiments, will be
ber of properties calculated directly from the va- discussed separately. The number of occupied
20.00 T T T T T T T 8.00
17.50 -7.00
15.00 |- -16.00
n —
'E 12.50 l A 5.00 L.
S §
. s
& 10.00} 44.00 ~
~ \]
™ =
7.50 -3.00
K
5.00 -2.00
2.50 |- -11.00
0.00 L 1 1 1 1 0.00
-0.10 0.00 0.10 0.20 030 040 050 060 0.70

€(Ry)
FIG. 15. Density of states and number of occupied states below energy € for Pt with spin-orbit interaction.
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TABLE VIII. Partial occupations and densities of states from 4th, 5th, and 6th bands of Pd
and Pt. Ny(Ep) is given in units of electrons per (atomic spin) while Dy(E ) is given in units of

electrons per (Ry atom spin),

Metal Potential Ep  N(Ep Nj(Ep) Dy(Ep) Dy(Ep) Dg(Ep) DgEp D(Ep)
Pd HF 564  0.997 0.811 0.192  0.38 15,53  1.76  17.67
Pd  NR 540.1 0.997  0.815 0,187  0.38 1537  1.69 17.45
Pd  RX 540.1 0.997  0.816 0.187  0.39 15,30  1.67 17.36
Pt HF 689.8 0.9997 0.790  0.210  0.08 9.73 207 11.88
Pt NR 663.7 0.9998 0.792  0.208  0.07 10.28  2.02  12.37
Pt RX-SO  659.2 0.997  0.773  0.230  0.26 11,77 1.93 13.96

RX+SO  663.3 0.9998 0.792  0.208  0.07 020 204 1231

states and the density of states, N(e) and D(¢)
[Eqgs. (6) and (7)], are given as a function of en-
ergy in Figs. 13-15 for Pd, Pt without spin-or-
bit interactions, and Pt with spin-orbit interac-
tions. The width of the d band of Pd, as seen from
the D(¢) curve, is 0.46 Ry compared to 0.60 Ry

in Pt. Correspondingly, the d-band density of
states in Pd is typically higher than in Pt. For

Pt we note that the inclusion of the spin-orbit
interaction introduces considerable extra struc-
ture in the density-of-states curve. The densities
of states and partial occupations for the 4th, 5th,
and 6th bands at the Fermi level for Pd and Pt are
given in Table VIII. For Pd, the lowering of the

d band when correlation is included, moves the
Fermi level farther from the sharp peak in D(¢)
and thereby reduces D(€z) even though the d band
is slightly narrowed. For Pt the corresponding
peak in D(E) is not as sharp and correlation in-

creases D(ez). We note that if we had neglected
the spin-orbit interaction, the Fermi-level den-
sity of states would have been about 1% larger.

In fact, as discussed later, the Fermi surface of
Pt is significantly altered by the spin-orbit inter -
action.

In Fig. 16 we show (V¥¢)) [Eq. (9)], as a func-
tion of E for Pt. In atomic units (V3(e)) =4¢
for a free-electron system and we see, in the
curve, free-electron-like regions both below
the bottom of the d band and above the top of
the d band. In the middle of the d band, energies
of low average velocity are seen to correspond to
peaks in the density-of -states curve while regions
of high average velocity correspond to valleys.
The information is presented in Fig. 16 and is
useful in interpreting transport properties of these
metals.?® A similar correspondence between D(¢)
and (V¥ )) curves was obtained for Pd.
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FIG. 16, (V2(¢)) as a function of energy for Pt. Local minima in this curve correspond approximately to local maxi-
ma in the D (€) curve for Pt (Fig. 15). Vi = Vei was calculated using energies in Ry and wave vectors in units of (r/a).
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FIG. 17, Induced magnetization density distribution for Pd. The upper scale and right-hand scale refer to the v,(r)
curve while the lower and right-hand scales refer to the y,(7) and y,(7) curves.
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E. Magnetic properties

The Fermi-surface charge densities ¥(T) [Eq.

(10)], for Pd and Pt are shown in Figs. 17 and 18.

As mentioned previously, the magnetization in-
duced in Pd or Pt by a constant magnetic field is
expected to be nearly proportional to y(¥). The
qualitative features of y(7), v4(7), and y(7) are
similar to those of the radial functions appearing
in the expansion of the charge density, o4(7),
a,(7), and o4(7). Much of the discussion given for
that case applies here as well, but one important
difference should be noted. On the average, y(7)
is more anisotropic inside the muffin-tin sphere

CONTRIBUTIONS TO THE... 6393

than n(#). This feature has two causes. Firstly
at smaller values of 7, n(7) is dominated by the
spherically symmetric contribution from the core
electrons. Secondly, even at larger values of v,
the anisotropy of the total contribution to the den-
sity from one energy tends to be larger than the
anisotropy of the total contribution from all occu-
pied energies. We shall see that this anisotropy
of the induced magnetization of Pd and Pt makes
a contribution to the magnetic susceptibility of
these materials.

The form factors of the induced magnetization
(Eq. (12)] are presented and compared with experi-
ment.%"*® We note that the magnitude of the form

TABLE IX. Comparison of theoretical and experimental magnetic form factors for Pd and
Pt. The subscript “MT” is used to denote results obtained using the muffin-tin approximation
for the induced magnetization. Differences in form factors for electrons corresponding to
reciprocal-lattice vectors of the same magnitude reflect primarily the anisotropy of the in-
duced magnetization inside the muffin-tin sphere. We compare results here with previous

calculations.
Y(G)/v(0) Theory vY(G)/v(0) Experiment

(hkl) Pdyr Pd Pty Pt Pde pt®
(000) 1.000 1.000 1.000 1.000 1.000 1.000
(111) 0.484 0.488 0.404 0.408 0.536+ 0.015 0.444 + 0.036
(200) 0.382 0.373 0.295 0.288 0.433+0.015 0.360+ 0.036
(220) 0.133 0.138 0.051 0.055 0.178+ 0,015 0.084+ 0,027
(311) 0.047 0.041 -0.015 -0.019 0.035+ 0,018 0.077 £ 0.042
(222) 0.030 0.048 -0.026 -0.012 0.070+ 0.018 0.000 + 0.057
(400) -0.009 -0.047 -0.038 -0.068 -0.077+0.015 —0.109 + 0.054
(331) -0.018 -0.026 -0.033 -0.021 0.006+ 0.018
(420) -0.019 -0.027 -0.030 -0.035 -0.045+ 0.025
(422) -0.019 -0.011 -0.018 -0.014 0.035+ 0.015
(511) -0.017 -0.040 -0.010 -0.026 ~0.043+ 0.015
(333) -0.017 0.005 -0.010 0.002 0.020+ 0.015
(440) -0.010 -0.001 -0.002 0.007
(531) -~0.005 -0.003 0.007 0.008
(600) -0.003 -0.034 0.009 -0.009
(442) -0.003 0.011 0.009 0.018
(620) 0.003 -0.012 0.015 0.007
(533) 0.007 0.018 0.018 0.025
(622) 0.008 0.003 0.01 0.017
(444) 0.013 0.028 0.023 0.030
(711) 0.017 0.000 0.024 0.017
(511) 0.017 0.023 0.024 0.027
(640) 0.018 0.019 0.025 0.026

(624) 0.021 0.025 0.026 0.027
(731) 0.023 0.018 0.026 0.024
(553) 0.023 0.031 0.026 0.028

Pdy® Here Pty? Here

(611)-(333) -0.018 —-0.045 -0.134 -0.028 -0.063

(600)-(442) -0.077 -0.045 -0.124 -0.027
(711)-(551) -0.023 -0.010

(731)-(553) -0.013 -0.004

3Reference 37,

b Reference 38.

®Theoretical results in Ref. 39,

dTheoretical results in Ref. 40.
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factor decreases less rapidly with increasing re-
ciprocal-lattice vector magnitude for Pd than for
Pt. This reflects the more localized nature of the
4d induced magnetization in Pd compared to the 5d
induced magnetization in Pt and is consistent with
Figs. 17 and 18. Some pairs of reflection planes
correspond to reciprocal-lattice vectors of dif-
ferent symmetry but the same magnitude. In the
muffin-tin approximation the form factors would
be the same for each member of such a pair so
that any calculated differences are a direct re-
flection of the non-muffin-tin components of y(7).
The calculated form factors indicate that the non-
muffin components have similar shapes for Pd and
Pt with the magnitude being larger for Pd. This'is
again consistent with Figs. 17 and 18. In compar-
ing theoretical and experimental form factors, it
should be remembered that differences can be due
to valence- and core-polarization contributions to
the spin-induced magnetization density or orbital
contributions to the induced magnetization. In ad-
dition, we have not included g shifts in this calcu-
lation, and to be consistent have not included the
spin-orbit interaction in calculating y(7). (This
point is discussed in more detail below.) As a re-
sult, it is not possible to assign the differences
between theory and experiment seen in Table IX
to a single source. However, from the level of
agreement we can conclude that the spin-induced
magnetization dominates for both metals. The
comparison of the theoretical and experimental
predictions of the size of non-muffin-tin compo-
nents of the induced magnetization is also inter-
esting. For Pd the experimental result is midway
between our result and the non-self-consistent
field warped muffin-tin (WMT) results,?® with
both theoretical predictions lying within experi-
mental error bounds. As mentioned previously,
and in contradiction with earlier results (see Table
IX), our calculation shows a decrease in the non-
muffin-tin component in going from Pd to Pt. Be-
cause Maglic et al., have not measured form fac-
tors for the (511) and (333) reflection planes, we
make contact with experimental measurements of

the magnetization anisotropy via the crystal-field
model of Weiss and Freeman.*' In this model the
symmetry is due to the difference of the fractional
e, population for the magnetic electrons, y, from
the value 2 required for spherical symmetry. By
fitting to their experimental results using this
model, Maglic et al. obtain ¥y=0.30+0.17. From
the differences listed in Table IX, we obtain y
=0.30. This result is in excellent agreement with
experiment, in contrast with the theoretical result
v=0.07 obtained previously by Watson-Yang et
al.®® This discrepancy can be understood in terms
of the instability of the self-consistency process:
one expects a non-self-consistent calculation to
overshoot in the process of achieving self-con-
sistency. The calculation of Watson-Yang et al.
was an overlapping atomic-density calculation in
the warped muffin-tin approximation that neglects
the nonspherical terms inside the muffin-tin (MT)
spheres. Clearly an overshoot in going from
spherical symmetry would be expected to result in
too much anisotropy.

Finally, in Table X, we present our results for
the density -functional Stoner parameter, I, and
the spin susceptibility. We note that including non-
muffin-tin components in the charge density in-
creases the Stoner parameter. The calculated re-
sults for the spin susceptibility support the usual
assumption that this component dominates the total
magnetic susceptibility for both Pd and Pt. In
comparing with experiment, however, it must be
remembered that we have not included g shifts in
calculating our spin susceptibility. This point has
been touched on previously in discussing the tem-
perature dependence of X, for Pd and Pt.** In fact,
as has been emphasized by Misra and Kleinman,*?
the spin-orbit interaction influences the total mag-
netic susceptibility in several ways. The Pauli
susceptibility term is modified by a factor, (g%
4), where the average is over the Fermi surface.
The local g factors are related to matrix elements
of the total magnetic-moment operator among the
single-particle states at that point.*> We have cal-
culated {g?/4) as a function of energy for Pd and

TABLE X. Spin susceptibilities and density-functional Stoner parameters for Pd and Pt, I
is given in units of mRy and D(Ep) in electrons per (Ry atom). Iy is the result obtained for
I when the muffin-tin approximation for y(7) is used. The calculated spin susceptibility and
the experimental total susceptibility are given in units of 10~%(emu/mole).

Metal Potential D(Ep) Iy I Xp X oxpt
Pd HF 35.3 25.9 26.7 14.60
Pd NR 34.9 25.9 26.7 12.20
Pd RX 34.7 25.9 26.7 11.20 720
Pt HF 23.8 23.5 24.3 130
Pt NR 24.7 23.5 24.3 150
Pt RX 24.6 23.5 24.3 150 210
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FIG. 19. (g%(€)/4) as a function of energy for Pd and Pt (see text). The lower curve corresponds to Pt which has

larger relativistic effects.

Pt, but using only the spin part of the magnetic-
moment operator. The results are shown in Fig.
19. It can be shown!®'** that these “spin-only” g
shifts are related to the magnetic susceptibility
for a fictional magnetic field which couples only
to the spin magnetic moment of the electrons.

The strong shifts in the middle of both Pd and Pt
d bands demonstrate that “up-spins” and “down
spins” are thoroughly mixed by the spin-orbit
interaction in these metals. A proper calculation
of the Pauli susceptibility in these metals ought to
include a treatment of the full g shift. From Fig.
19 we see that this requirement is stronger for
heavier metals and stronger in the middle of a
given transition series. However, a formal treat-
ment of the xc enhancement of the Pauli suscep-
tibility in this case is, as yet, unavailable.

F. Fermi surface

To investigate the Fermi-surface properties
we utilize an orbit-tracing package based on the
standard relativistic APW method which evalu-
ated dE/dk by a Hellman-Feynman technique.?
Because of the large masses found in Pd and Pt,
it is important to reduce the numerical errors
which can occur in the more approximate scheme
used in the SCF and density-of-states calcula-
tions. This introduces the necessity that the Fer-
mi energy be recalculated for the RAPW results.
Rather than recalculate the density of states, we
calculated the RAPW and the SO-LAPW eigenval-
ues at a number of representative K points. For
Pd, the correction was very small. The value of
E ; used for the Pd-NX calculation presented in
Table XI was 0.5408 Ry versus 0.5401 Ry from
Table VIII. For Pt, RAPW vs SO-LAPW energy,

the shifts were larger and in addition there was
about a 2-mRy variation in the shift to be applied.
This indicates that the SO-LAPW would give a
slightly different Fermi surface than the RAPW.
Table XI compares the areas obtained from the
Pd-NX potential with experimental areas.** The
Pd-R potential results are very nearly identical

TABLE XI, Pd Fermi-surface areas are compared
for the NX potential with the experimental results given
in Ref, 35. Units are a.u.™.

T'-centered electron surface

H A (Theor.,) A (Expt.)
{100y 0.739 0.731
a10) 0.839 0.827
111) 0.653 0.648

Open surface holes
{100y 0.058 0.072
a00)e 2.038 1.969%
a10)8 0.314 0.308%
8498 0.238 0.285
638 0.197 0.218
L-centered holes
(100) 0.0063 0.0061
{110) LKT 0.0090 0.0088
{10 0.0063 0.0058
A11) LKW 0.0053 0.0051
@11)LwWT 0.0087 0.0087
X-centered holes
{L00)XWI 0.021 0.024
{10y 0.021 0.024
a11) 0.018 0.020

2Inferred from KKR fit,
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with those of Pd-NX, indicating that the relativis-
tic interactions have very little effect on the Fer-
mi surface. Correlation, on the other hand, has
a more dramatic effect. Because of the close
proximity of two van Hove singularities in the d
bands to the Fermi energy** (giving rise to the
peaks in the density of states mentioned above),
the Fermi energy is very tightly pinned in the d
bands. Removing the correlations has the effect
of raising the d bands relative to the sp bands
(the same as decreasing @), and therefore raises
the Fermi level in the sp bands. Thus the band 6
I'-centered electron surface which is already too
large is further increased in size by the neglect
of correlation. The implication is that the results
would be improved by a stronger exchange-corre-
lation (perhaps self-interaction correction) term.
This is the same as found for copper.*

The astute observer will note a feature of some
concern in Table XI: The theoretical electron
surface is too large and most orbits on the open-
hole surface show it to be too small. Parentheti-
cally we might remark that all band-structure
calculations find too small a value for the « or-
bit. Has the Fermi energy been properly eval-
uated? The L-centered and X-centered ellipsoids
are really too small to account for the apparent
discrepancy. Its resolution appears to be re-
vealed by the calculated (110) 8 orbit being too
large. Apparently, the calculated results give
too large fins on the open-hole surface which is
compensated by the electron surface bulging in
the (100) direction and the arms of the open-hole
surface (jungle gym) being too small. A more
detailed discussion of the Fermi surface is given
in Ref. 35.

The case of Pt is more interesting for our pur-
poses since, as can be seen from Table XII, the
relativistic interactions are significant. In fact,
the correlation effects and the relativistic inter-
actions are nearly equal and opposite in sign, so

TABLE XII. Pt Fermi-surface areas are compared
for the exchange only (HF), exchange-correlation (NX),
and exchange-correlation plus relativistic interaction

(RX) calculations with the experimental results (Ref. 46).

Units are a.u."2.

I'-centered electron surface

H A (HF) A (NX) A (RX) A (Expt.)
{Loo) 0.765 0.743 0.761 0.770
10 0.851 0.824 0.846 0.857
a11) 0.684 0.665 0.678 0.678

Open-hole surface
qo0ye 1.931 1.883 1.922 1.890
100y 0.069 0.078 0.069 0.074

the RX results are very close to the HF results
and both are generally closer to experiment than
the NX (correlation only) results.

V. SUMMARY AND CONCLUSIONS

We have solved the relativistic Kohn-Sham sin-
gle-particle equations for Pd and Pt using xc po-
tentials including exchange only (HF), exchange
and correlation (NX), and exchange-correlation
plus a relativistic exchange correction (RX). The
solution of these band equations was elaborate in
that many commonly adopted approximations were
not used. A number of electron properties were
calculated from the self-consistent eigenvalues
and eigenspinors and these were examined for
their sensitivity to the choice of xc potential and
for their sensitivity to approximations made in
solving the equations.

Of the quantities we have calculated, the elec-
tron-number density and magnetization density in
an applied magnetic field would be given exactly if
the exact xc energy functional were known. The
results obtained for these functions were not very
sensitive to the choice of xc potential (see Table
I). However, for the anisotropy of the induced
magnetization density, a large difference between
our results and those of an earlier calculation
based on the overlapping charge-density model
was noted. In this case, we were able to compare
with magnetic form factors deduced from neutron
scattering and conclude that the self-consistent
inclusion of nonmuffin terms in the effective po-
tential resulted in a better description of the ex-
periment.

The relationship of the Fermi surface obtained
from Kohn-Sham eigenvalues to the experimental
Fermi surface is formally only an approximation.®
However, the Fermi surfaces obtained here were
found to be very similar to the experimental sur-
faces (see Tables XI and XII). The inclusion of
relativistic kinematids is essential to obtaining
the qualitative features of the Fermi surface cor-
rectly, especially for Pt, but the non-muffin-tin
terms included here with much effort are less im-
portant. On a quantitative level the relativistic
exchange correction does improve the Fermi sur-
face obtained for Pt but has little effect for Pd.

In both cases, however, quantitative discrepancies
exist between the RX Fermi surface and experi-
ment.

For energies away from the Fermi surface, and
the associated excitation energies of the solid, the
limits of single-particle theory are well recog-
nized. In fact, the situation noted for the photo-
emission is very reminiscent of that found in
atomic structure: the photoemission results agree
rather well with the calculations obtained using

4
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the overlapping charge-density model and the full
Slater exchange term, whereas our results yield
wider d bands. This is precisely what was found
for the atomic-structure calculations where the
use of the full Slater exchange term mocked up
relaxation effects in the eigenvalue differences.
(On the other hand, Hartree-Fock energies cal-
culated using orbitals obtained from a=% SCF
calculations also did quite well.) This effect per-
sisted into the semiconductor SCF calculations
where those using the full Slater exchange often
gave a better representation of the optical spec-
trum.*” On the other hand, we have focused on a
comparison of the influences of correlation and
relativistic-exchange contributions to the local
potential on the eigenvalues (see Tables II, III,
and IV), assuming that any conclusions drawn

here will carry over to more complete calculations
of excitation energies. The relativistic exchange
contribution was found to have a much larger im-
pact than the correlation contribution for the core
levels, the contributions of relativistic exchange
and correlation are comparable even for the va-
lence levels and in the case of Pt.

A good deal of effort has been spent on obtaining
accurate forms for the correlation contribution to
the effective potential.® (For example, see the re-
cent analysis of Vosko et al.*®) We suggest that
the relativistic exchange correction, which is often
equally important, should therefore be included
when solving the relativistic Kohn-Sham equations,
especially for systems containing atoms at the
upper end of the Periodic Table.

*Present address: Physics Department, McMaster Uni-
versity, Hamilton, L8S 4M1 Canada.
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