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Numerical study of conductivity for the Anderson model in two and three dimensions
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The equation-of-motion method is applied to the calculation of the conductivity for the Anderson model in two
and three dimensions. The Kubo-Greenwood formula is evaluated by averaging suitable combinations of time-
dependent states and extrapolating to the limit of infinite time. In agreement with earlier work we have found the
critical value of the disorder parameter for a transition from localized to extended states to be W/V = 6 for the
square lattice and W/V = 15 for the simple cubic lattice. No conclusion about the critical behavior of the
conductivity near the Anderson transition was drawn because of rather large scatter in the data. The reasons for this
scatter are discussed, It is concluded that statistically satisfactory information about the critical behavior of the
conductivity can only be obtained from a numerical calculation for systems containing more than 10' sites in any
dimension.

I. INTRODUCTION

The electronic properties of strongly disordered
systems, such as amorphous solids, present a
great challenge both to analytica, l theory and to nu-
merical calculation. In particular, the problem
of Anderson localization' has been attacked by a
variety of analytical and numerical methods, ' yet
it remains controversial. Various criteria for lo-
calization have been used. ' The one which is most
closely related to experiment is the zero-tempera-
ture static electrical conductivity. ' This is sup-
posed to be finite if states at the Fermi level are
extended, and zero if they are localized.

Unfortunately the conductivity is a, comparatively
complicated quantity to calculate and most early
work concentrated on the localiza, tion length or the
participation ratio, in attempting to discriminate
between extended and localized states. ' For sim-
ple tight-binding Hamiltonians some degree of
consistency for the location of the. Anderson tran-
sition was achieved in both two and three dimen-
sions. ' Increased interest in the calculation of the
conductivity was generated by the continuing debate
on its critical behavior. According to Mott, ' there
should be a discontinuous drop of the conductivity
at the mobility edge (the energy which divides io-
calized from extended states). Mott's picture,
though not universally accepted, " has had much
success in the interpretation of transport data
from doped semiconductors, ' amorphous solids, '"
and inversion layers. "

Lieciardello and Thouless" were the first to
claim to have accurately and rigorously calcu-
lated the conductivity in the vicinity of the Ander-
son transition. Their early results, together with
some scaling arguments, led them to the conclu-
sion that the value of the conductivity at the mo-
bility edge (generally called the minimum metal-

lic conductivity, but this phrase has various
shades of meaning) is a. universal constant in two
dimensions. Further calculations" yielded some-
what different results and caused these authors to
largely withdraw from their former opinion, de-
spite apparent experimental confirmation. ' '

The method of Licciardello and Thouless starts
from the Kubo-Greenwood formula (see Sec. II).
With certa, in a.ssumptions, the conductivity is re-
lated to the change of individual eigenvalues when
the boundary conditions are altered on a finite
sample. Some of these assumptions have also
been incorporated in a sealing argument by Abra-
hams et al. ,

"which leads to the startling conclu-
sion that all states are localized in two dimensions
for any disorder (but only weakly so for low dis-
order). This is consistent with arguments by
Wegner, "starting from a disordered n-orbital
model, and by Gotze et al. ,

"using an approxi-
mate theory for the density response of particles
moving in a random potential. Nevertheless, this
conclusion is fa,r from being universally accepted,
and Lee," in particular, has presented both ana-
lytical criticisms and numerical counter evidence.

In three dimensions, the above theories"" "
do allow an Anderson transition but predict a zero
minimum metallic conductivity. Meanwhile, fur-
ther numerical methods for the calculation of con-
ductivity have been developed. Prelovsek' has
examined the diffusion of an electron released at
T = 0 near the origin, with a wave packet made up
of states close to a chosen energy. In this way he
calculates the diffusivity which is simply related
to the conductivity via the Einstein relation. His
results seem to be consistent with a.n Anderson
transition iri both two and three dimensions, with
a zero minimum metallic conductivity in both
cases. Stein and Krey" have made a direct nu-
merical evaluation of the Kubo-Greenwood formula
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using a technique based on the recursion method.
They conclude that their results are in favor of
Mott's original suggestion. Lee's renormaliza-
tion-group calculations, "already mentioned above,
also indicate a finite minimum metallic conductiv-
ity in two dimensions.

In every case, the interpretation of the numeri-
cal results has proved difficult because it is nec-
essary to make various extrapolations, of which
the most obvious is that which takes the system
size to infinity. Uncertainty arising from these
extrapolations is difficult to quantify but seems
enough in every case to obscure many of the deli-
cate points at issue. Our own method, presented
in this paper, is no exception. We shall try to be
scrupulous in presenting enough results so that
the difficulties regarding extrapolations can be
appreciated.

We use the equatj on-of -mot j on method ' to
evaluate the Kubo-Greenwood formula for the con-
ductivity. " The method can also be adapted to
calculate other transport quantities. The content
of the remaining sections is as follows.

In Sec. II the Hamiltonian is defined and the
problem of the evaluation of the Kubo-Greenwood
formula is stated. In Sec. III the equation-of-mo-
tion method is described and adapted to our pres-
ent purpose. Section IV contains some remarks on
the various extrapolations. Section V presents the
results for the square and simple cubic lattices.
Finally, Sec. VI contains a discussion of the re-
sults.

21Te
o, = ',„pl&ale plP&l'6(E E.)6(E E,). (3)

In our method, explained in the next section 00
is calculated by a similar limiting process to that
which leads from (2) to (3).

It remains to specify the matrix elements of the
momentum operator p, which are essential to the
evaluation of the Kubo-Greenwood formula. We
shall use

p= --mV z j jz (4)

as have others"" before us. Here g is the vector
from site j to neighboring site jp, that is

This is equivalent to the assumption that the posi-
tion operator x is diagonal in the site representa-
tion

x {f(E )[1—f(Ez)]5(E —Ez -he@)

+ f(E&)[1-f(E )]5(E&—E -hv)).
(2)

Here Q is the volume of the system, e is the di-
rection of the applied field, f is the Fermi-Dirac
occupation function, n and P label energy eigen-
states, and the other parameters have their con-
ventional meanings.

This gives in the zero temperature, dc limit

II. THE MODEL
&ilxl j&=6,r, , (6)

In studies of this kind, it has become conven-
tional to use the Anderson Hamiltonian with diag-
onal disorder. This is

N N Z

ff=g e,. I
j&&j

I
+ v

I
j&&j

j-1

where the basis states
l
j& are located on the sites

of a periodic structure. The elements qz are in-
dependent random variables, with a uniform dis-
tribution between + —,'O'. The off-diagonal term
couples each site j only to its Z nearest neighbors
jQ with constant matrix element V. The strength
of disorder, represented by 5', is usually scaled
by the half-bandwidth of the system at zero dis-
order, being expressed as 8'/ZV.

It is generally felt that results on the Anderson
transition for such a Hamiltonian should be quali-
tatively representative of a wide class of Hamil-
tonians. In the independent electron model, the
conductivity at frequency ~ is given by the Kubo-
Greenwood formula

as may be shown using the commutation relation

p= —' [e,x].

Substituting (4) into (3), we obtain for the Kubo-
Greenwood formula the following expression, the
evaluation of which is the object of our calculations

2r 2

o,(E)= V' Q (e g)(e g')
jj'hh'

x g &j l
~&&~

l
j'&&j'r '

l
P&&P

l
jn&

x 6(E E.)6(E E,) (8).
III. THE METHOD

Figure 1 summarizes the evolution of the equa-
tion-of-motion method to date. Originally devel-
oped by Alben et al. to calculate densities of
states of disordered systems, " it was adapted by
Weaire and Williams to calculate the average in-
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FIG. 1. Devejopment of the equation-of-motion method for the calculation of. properties of disordered systems.

vex'se partlclpatloIl rRtlo ln ox'der to study Andex'-
son localization. '-' Kramer and Weaire showed
Ilow lt could be further RdRpted to calculate the
conductivity, "and it is with the details and results
of this application that the present paper is con-
cerned. We hope to clarify certain points in the
other applications as well, particularly in the Ap-
pendix, which deals with statistical theorems
which lie at the heart of. this work.

In most applications of the method to date, we
begin by defining a xandom initial recto/ on R

finite sample of the lattice in question (usually
with periodic boundary conditions). This may be
written in terms of the basis functions of Sec. II
RS

~y&=Q a, j&,

&a, &,„=o,

&aJa,*.,).,=-

(10)

(11)

while the angle brackets here represents an en-

where the site amplitudes a,. are independent ran-
dom variables with a probability distribution in-
dependent of j.

We require that this distribution. have the prop-
erties

&a„&„=O,

&c af&„=N '& z.

(13)

(14)

For proof, see the Appendix.
We now operate upon the vector ~&f&& with a func-

tion of the Hamiltonian designed to filter out its

semble average for a single site. It is clear that
it can equally well be taken to mean an average
over sites in the limit of large ¹

For the purposes of the calculation of the den-
sity of states (by either of the two methods indi-
cated in Fig. 1) and the conductivity, the above
properties are all that is required. However, it
turns out that in the case of the calculation of the
inverse participation ratio, further properties are
needed (see the Appendix). These may be assured
by choosing the real and imaginary parts of a,. to
be normally distributed. In all of the work pre-
sented here we have made this choice;

The amplitudes of the vector (9) in the repre-
sentation defined by the normalized energy eigen-
states

~

o.),

a.= &o. ~y&, (12)

are also independent random variables with the
same mean Rnd mean square as the site ampli-
tudes a, That is,
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E
dx d,'„(x)= 1.

Using such an operator we may define and calcu-
late

I
4 & =- d,„(H)

I g & .

In the energy representation this is

(18)

l4&=Ed-«-)" I.&. (19)

We will write it in the site representation as

4&:=-g b, (0) Ii). (20)

We proceed to calculate its time dependence and
hence b, (i), using the time dependent Schrodinger
eq uat l.on

. dl4& f—f i~&--
6V

(21)

energy components in a narrow range around some
chosen energy Eo. In practice we use

d.(H) = C.[1 E.'(E-, -H)'] .
Here I „„„is chosen so that the density of states
lies entirely in the range E= E and the normal-
izati. on constant C is defined by

x e g e g' b, b&*,b&,~,b&*~ „
(22)

We shall now show that the above is related to
the Kubo-Greenwood formula (8) as follows. We
first observe that, using (19) and (20), the time
dependence of b,.(t) may be written explicitly as

h, (f) =Q d (E.) .&jl o&e "'""".
This may then be substituted in (22). The only
terms which survive are those in which the phase
factors cancel inside the averages. It is clear
that E = E, only if z= n', i.e. , the eigenstates
are nondegenerate for a disordered Hamiltonian.
The expression in square brackets in (22) can
thus be written

(23)

2 lo-I'lo I'&jl~&&~lj'&&j'~'i8&&f) Ij»C«.)C«).
(24)

The two factors la~ I' and
I
a~ I' are independent

random variables not correlated with any of the
other factors in (24) and may hence be replaced
by their mean values given by (14). We thus see
that (22) is equivalent to

In doing so, we calculate the following combination
of time averages (indicated by angle bra, ckets):

«( )
277e X V

n

o, "(E)=" Q (e i)(e 7')Q &jl~&&~lj'&&j'r'IP&&P i&&d'(E.)d'(E ).
SQ f)i gg

(25)

Finally, we see that

lim limo, "(E)= o,(E),m~~ N
(26)

To obtain meaningful results for the conductivity
it is desirable to have some guidelines as to how

where o, is defined by (8) since the d factors be-
come delta functions at energy E in this limit.
It is therefore necessary to perform calculations
for large values of m and, preferably, to make a
numerical extrapolation for m —~. We are there-
fore confxonted with three numerical extrapola-
tions, in principle. For a given sample, time av-
erages evaluated over a finite range of time must
be extrapolated to infinity. Secondly, calculations
must be performed for different sizes of the sam-
pJ.e and extrapolated to infinite sample size.
Thirdly (and only then), the above extrapolation
m —0 must also be made.

the quantity o, '«(E) behaves when f, N, and m be-
come very large. We shall discuss these in turn.

Substituting relation (23) into (22) we obtain for
co «(E) an expression of the form

o, "(E)- lim -Q A[r,E] df'e '~«'1
t t~E 0

= lim f(f), (27)

where gE are the differences between various
eigenenergies and A[gE] is a product of ampli-
tudes of the initial state and the eigenstates. In
the limit t- ~ only the terms with zE= 0 yield a
nonzero contribution to the sum.

We investigate now how f(t) behaves as a func-
tion of f. For very small t(f '» W+ ZV) almost
all eigenstates contribute. and the two terms in
Eq. (22) cancel. For large t [f ' «(W+ZV)IX] only
the smallest gE contribute. This gives
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f(t)= g A[0]+ gA[gE „] — —(1-sin~gE „~t)+
1 1

&Bao lzE „I (28)

mhere gE,.„denotes the smallest of the gE. Thus
for large t w e have

1 sinI HEI tf(t) = a, ' "+g +c——
I zF-I t

(29)

This suggests a plot of f(t) as a function of t ' In.
px'acti. ce the oscillRtlons give RQ ideR Rbout the
ex'x'ox' involved.

We were not able to derive any analytic rela-
tion for the behavior of the conductivity with the
size of the system, N Qual. itatively, we expect
in the localized regime a decrease in Oo

~ for in-
creasing ~ because more and more states, mhich
seem extended for small systems, appear as con-
fined to finite regions of space. In the extended
regime 0,""~ should stay roughly constant.

Finally me investigate the behavior mith m. Tak-
ing the matrix elements in the conductivity Rs iQ-
dependent of a and tl we have from Eq. (25)

V '. This should suffice for systems mith up to
5000 sites.

The steplength in the numerical integration
should be of the order of the inverse of the maxi-
mum energy difference occurring in Eg. (28), i.e. ,

ht &(2ZV+ W) '.
By virtue of the energy weighting function the ef-
fective bandwidth is decreased with increasing m.
In order to save computer time we therefore take

at=at, (4m+3) ""
as the steplength.

We have calculated 0, for the tmo-dimension-
al square lattice, and for the three-dimensional
simple cubic lattice with periodic boundary con-
ditions with finite m, N, and f. The Fermi energy
was in the middle of the (symmetric) band, i.e. ,
E= 0. The initial state mas specified by using the
probability distx'ibution

gm, S d2 (30)
P(a,.)=—X a,. e "~'~t'. (37)

In the. j.imit N- ~ we can replace the sum by an
1nte gx'Rl

a - dEyg E~d E (31)

Expanding the density of states in a Taylor ser-
ies at the Fermi energy we obtain for large m
[small width of d (E)]

(32)

This argument applies only to extended states. In
the regime of localized states the momentum ma-
trix elements are not independent of a and P. In

analogy to the one-dimensional case" me mould

expect

(33)

Homever, me found it difficult to derive this re-
sult along similar lines as for extended states.

V. NUMERICAL CALCULATIONS AND RESULTS

From the preceding discussion it appears nec-
essary to use time cutoffs mhich are considerably
larger than the inverse of the mean spacing be-
tween the energy levels of the system„

t o- tt/(2zv+ w).

In our actual calculations we used up to t= 1000

For the integration of the time-dependent Schro-
dinger equation a standard Hunge-Kutta subrou-
tine mas used.

An interesting test for our computer program
is the case m=0. From Eq. (25) we have

e' 4~
7 a'-' (2Z+ W/V)' (38)

Trends in the time-extrapolated data can be fol-
lowed more quantitatively if me try to trace the

W W
d (E )=——;—ZV+ —&E & ZV+-:

-=2ZV. W'- 2 2

(39)

Figures 2 and 3 show some results together with
the values obtained from the relation (38). Data
for m 40 and various system sizes are shown in
Fig. 4 for two dimensions, and in Fig. 5 for three
dimensions.

For t-0, cro'~ tends to zero as expected from
Eq. (22). With increasing t, o, "(t) becomes non-
zero and fluctuates. For W/V&6 in 2d (&15 in Sd)
the limiting values (for t-~) are ciuite insensitive
to m and tt, whereas for W/V& 6 in 2d (&15 in Sd)
we have a decreasing trend when m and N are in-
creased. .
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FIG. 2. Comparison of the. result for the conductivity
g, in units of 82/g, obtained by extrapolating the time
average of Eq. (22) with the analytical result for m = 0
from Eq. (38) (position of arrow) for a square lattice
with parameters N= 9X 11, and W/U 5.
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FIG. 3. Comparison of the result for the conductivity
g, in units of 82/Kg, obtained by extrapolating the time
average of Eq. (22) with the analytical result for ~ = 0
from Eq. (38) (position of arrow) for a simple cubic
lattice with N=4X GX 6 and 5'/U=12.
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fEef f X
g

e

24m
(41)

If we assume each state to contribute independent-

ly, the relative statistical accuracy of the conduc-
tivity is

Qg 1 2 -(m) ~ . (42
eff

For m = 256, for instance, we obtain an energy
resolution gE of roughly 2k of the total (Lifshitz)

results with increasing size of the systems
and the width of the weighting function, repre-
sented by m. Figures 6 and 7 show the dependence
on the system size and on nz.

Before attempting any interpretation a few gen-
eral remarks are necessary. The energetic half-
width of the weighting function is given by

2~m

for large m. Therefore, the number of states
contributing to the conductivity is approximately

bandwidth, which is in 2d about 0.5 V, and in 3d'

0.9 V, approximately. On the other hand. , the sta-
tistical accuracy for a system with 10' sites is
roughly 18/0.

It is clear that it would be of no use to increase
the value of the time cutoff still more (and thus in-
creasing the computer time) in order to reduce the
uncertainty stemming from the time extrapolation,
once a certain convergency stage has been reached.
It is seen from Figs. 6 and 7 that in most cases
the uncertainty from the time extrapolation is less
or of the same order as the statistical uncertainty
which we expect from Eg. (42). Bearing all this
in mind we observe a decreasing tendency of our
results with N and m for W/V2 6 and W/V~ 15 in

2d and 3d, respectively. The behavior of the con-
d ti 'tyasaf t' fthedi o de ave ag d

over the largest system size used, and extrapo-
lated with m (inserts), is shown in Figs. 8 and 9.
The indicated error bars are estimated from the
various extrapolations. 'Though we cannot conclude
anything about the critical behavior of the conduc-
tivity from the results, we might conclude that an
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FIG, 5. Time averages of Eq. (22) for the simple cubic lattice denoted by 0,. in units of e /~ as a function of the re-
ciprocal time cutoff 1/'t, in units of V/10, for N =7x Gx 5 (a), 7x 8 x9 (4), 11xlox9 (c), 14x12x 11 (d), and disorder
parameter W fV, and "width of delta function" m, as indicated in the figure. Fermi energy is in the center of the band.

Anderson transition takes place in both dimen-
sions, the critical values of the disorder being Wo/
v=6 and 8;/V=15 in 2d and 3d, respectively, in
agreement with' earlier numerical rvork" " '6 "
(see also Table l).

However, this result may be questioned by a
general argument. In order to dram& any reliable
conclusion regarding the Anderson transition it is
necessary to make sure that the n„, is such that
the localized states no longer overlap. Thus

(43)

where A. is the participation number of the states

at the FermI. level. Only under this condition is it
possible to observe the trend towards zero conduc-
tivity in the localized regime. In particular, near
the Anderson transition or in any other situation
where the states are localized but very large, it
ls essential to consider very large systems ln or'-
der 'to fulfill inequality (43) while maintaining an
acceptable statistical accuracy. If me require an
error of 10/~, then from Eci. (42) we need n, «
= 100. For a system of 104 sites me can then ob-
serve a zero conductivity where A. is much less
than 100. In two dimensions this implies a local-
1.zat&.on length of less than 10. Expel j.ence of one
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dimension"'" shows that this might be far too
small for any reliable conclusion about whether an
Anderson transition takes place.

The above considerations apply not only to our
method but to nearly all other current numerical
methods" since none consider system sizes sig-
nificantly greater than 10'. Critical behavior will
be observed in a plot of o. vs m near those values
of disorder where inequality (48) is no longer ful-
filled, i.e. , as an effect of the maximum accessi-
ble system size.

VII. CONCLUSION

Though we are not in the situation of drawing any
definite conclusion about the Anderson transition
and the critical behavior of the conductivity from
our data, we may deduce from Eqs. (40), (42),
and (43) some condition for the values which the
parameters m and N should take in order to make
such a behavior detectable. First consider the
question of the Anderson transition. If we want
states with localization length 100 to be detected
as localized, we need an energy resolution gE/
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FIG. 6. Extrapolated time average of Eq. (22) for the square lattice denoted by 0 in units of e /5 as a function of the
disorder W/V, for sizes of the system N= 19 &20 {0), 31x32 {5), 47 &41 {4), 70 x71 {i), and "width of delta function"
m =64 (a), 256 (b), 1024 (c). Fermi energy is.in the center of the band. The error bars indicated are estimated from
the oscillations with t in Fig. 4.

TABLE I. Comparison of the critical disorder for the Anderson transition obtained by various authors in two and
three dimensions.

critical disorder 8/ZV
Dimension Stein and %eaire and Yoshino and
structure This work Lee (Ref. 19) Krey (Ref. 21) Srivastava (Bef. 27) Prelovsek (Bef. 20) Okazaki (Bef. 28)

square
I.attice

'1.5 1.5 1.6

d —3
simple
cubic
lattice

2.5

d=3
diamond
lattice
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FIG. V. Extrapolated time averages of Eq. (22) for the simple cubic lattice denoted by 0. in units of e /Sz as a function
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of delta function" ~=64 (a), 256 (bj, 1024 (c). Fermi energy is in the center of the band. The error bars indicated
are estimated from the oscillations rvith t in Fig. 5.

2E,„=n, «/&= 10 ", where d is the dimensionality.
For a statistical accuracy of 10% we should have

n,«= 100 which would imply N= 10"""'. In order
to obtain reliable information about the critical
behavior of the conductivity we would need at least
N= 106 sites in two dimensions and &= 10' in three
dimensions. Even this may not be sufficient if the
localization length is greater than 100 but less
than infinity over a large range of disorder. The
situation is more encouraging if we knock of the
exi stenee of an Anderson transition, »d w»t to
detect the critical behavior of the conductivity:

If we require an energy resolution of 1k of the
bandwidth we obtain m = 2500. Thus, concerning
m our calculations are not far from being satis-
factory. For a statistical accuracy of 1% we
would need a systenl of += 10 sltesy keePlng the
energy resolution at 1k. In our opinion such ac-
curacy requirements are presumably lower limits
if we want to decide between a steplike and a
square-root behavior of the conductivity, for in-
stance. To our knowledge, none of the numerical
methods used up to now for the conductivity meet
even these latter (weaker) criteria, except in ld,
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FIG. 8. dc conductivity 0 as a function of the disorder
&/P for the square lattice as obtained by averaging the
values in Fig. 6 ovex' the three largest systems fox" each
value of m and extrapolating with m ~ as shown in the
insert, in which g is plotted against ng ~~2. The corres-
ponding values of- eg are shown in the brackets. The
error bars are rough estimates from the various extra-
polRtlons.

FIG. 9. dc conductivity 0 as a function of the disorder
for g /V for the simple cubic lattice as obtained from
the values shown in Fig. 7 by the same px'ocedure as for
the square lattice. The inset shows 0 as a function of

The values of m are shown in the brackets. The
error bRx's are I*ough Qstlmates from the various extra-
polations.

where very recently a numerical procedure has
been developed which allows for the treatment of
systems up to 10' sites. "

ACKNOKI. EDGMENT S

This work was partially supported by the
Deutsche Forschungsgemeinschaft and the Science
Research Council. Helpful discussions with Gerd
Czycholl, %'olfgang Woger, and Joseph Sak are
gratefully acknowledged.

APPENDIX

The jth element of y is

yJ=Q U,-,.x,

Taking the mean of both sides we have

(y,.),„=QU„.(x,.)„=o.

(y,. y, )„=+U;,U, , (x;x, )„

(Al)

(A2)

The statistical theorems which we require are
quite elementary, but it seems desirable to ex-
plain them fully to avoid misunderstanding. The
first is related to the familiar rule of the addition
of variances in statistics.

= &'Z Ui;U';

g2Q
(AS)

If X is a vector whose elements are independent
random complex variables, each of which is of
mean zero and variance o' (the mean of its squared
modulus), and U is a unitary matrix, the vector
y = UX is also composed of independent random
variables with mean zero and variance O'. This
may be simply proved as follows:

The new variables are therefore independent,
wl, th variance 0' .

These results a,re used in Sec. III to relate the
statistical properties of amplitudes of a random
vector in the site and energy representations.
The unitary matrix in question is that which is
made up of eigenvectors of the Hamiltonian a,nd

hence transforms any given vector from the site
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representation to the energy representation. The
properties of normal distributions include a much
stronger theorem related to the central limit
theorem.

Theorem 2

"JX.I /c2
2' 0'

(A4)

multiplying probabilities for its real and imagin-
ary parts. The probability distribution for the
entire vector is

p (x) e-Ix) /a
277g

(A5)

where N I.s the number of components in the vec-
tor.

Since the Jacobian of a unitary transformation
is everywhere unity, the probability distribution
of the vector y is

If X is a vector whose elements are independent
complex variables, each of which has independent
normally distributed real and imaginary parts
with mean zero and variance —,

' a', and U is a
unitary matrix, the elements of y= UX are simi-
larly distributed independent random variables,
(The factor of —,

' in the variance is included for
consistency with the notation in theor'em 1.)

The proof of this theorem is as elementary as
for the above. The probability distribution for
one element of X is

p (y)=p (x) =
27TO'

(A6)

since ~X
~

'=
~y ~, the transformation being uni-

tary.
This may be written as

p.(y) =II 1 . 22
2WO'

(A7)

Since the probability factorizes in this way, the
individual components y,. are seen to be indepen-
dent and to have the same distribution as each of
the original X,. variables.

In the derivation of formulas for the inverse
participation ratios (of which the lowest is the
mean fourth power of the site amplitudes of eigen-
functions) this theorem was invoked, since the
means of higher powers of the amplitudes in the
energy representation are required in that case.
If we begin with general site-amplitude distribu-
tion these are not known, but for the special case
of a normal distribution, Theorem 2 can be used.
For example,

x (Aa)

which was used in the evaluation of the inverse
participation ratio. " To avoid confusion in com-
parison with previous work it should be pointed
out that a complex variable with this distribution
may also be defined to have random phase and an
exponential distribution of squared modulus.
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