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Method for calculating wave functions in a nonspherical potential
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A new method is described for the solution of the single-particle Schrodinger equation in which the potential is
nonspherical. This method is more e6icient than methods based on spherical-harmonic expansions, both in terms of
computer time and storage. The method is distinguished by the use of a "ray" representation in which {a) the
potential is diagonal, {b) the nondiagonal portion of the Laplacian is small, and {c)boundary conditions are easily
imposed. Illustrative applications to the orbital and total energies of free atoms are described.

INTRODUCTION METHOD

The effective single-particle potential "seen" by
the electrons in most atoms, and all, solids, is
nonspherical or angle dependent. In many methods
of solving Schrodinger's equation [e.g. , the cen-
tral-field method' for atoms, or the muffin-tin
augmented plane waves (APW) (Ref. 2) or Korrin-
ga-Kohn-Rostoker (KKR) (Ref. 3) methods for
solids], this nonsphericity is ignored, and the po-
tential is approximated by its spherical average.
This leads to a great simplification of the calcu-
lations, and is believed to be a good approxima-
tion both for atoms and for close-packed solids.

There is, however, a class of interesting prob-
lems in which these nonspherieal effects play an
important role. This class includes quantities
associated with the electron density near the nu-

cleus, such as hyperfine fields, quadrupole mo-
ments, spin-resonance amplitudes, and Hellmann-
Feynman forces, as well as quantities associated
with the electron density farther from the nucleus,
such as the contribution of the anisotropy of the
val. ence d shell to the structural stability of tran-
sition metals. This entire class of problems is
either impossible or very difficult to address using
pseudopotential theory. ' Even approaches such as
the bnear -combination-of -atomic -or bitals (LCAO)
method, ' which do not assume the atomic interior
to be spherical, may not allow sufficient varia-
tional flexibility to describe the subtle electron-
density rearrangements responsible, for example,
for the nonspherical contributions to the total-
energy difference between different structures.
It is important to note in this context that calcu-
lational procedures for polyatomic systems that
are based on augmentation, e.g. , (APW) (Ref. 6)
and augmented spherical waves (ASW), ' permit
the detailed description of the atomic interior to
be performed independently for each atom. The
procedure presented here for the description of
the atomic interior was developed in part for syn-
thesis with APW- and ASW-like procedures.

We consider here the solutions of a single-
particle Schrodinger equation

[-V'+ V(r)]y, (r) =e(q, (r) .

Equations of this type must be repeatedly solved,
for example, in self-consistent-field descriptions
of electronic structure, Many such calculations
employ the density-functional. description of ex-
change and correlation, in which case the single-
particle potential V(r) appearing in Eq. (l) is
given by

V(r)=V„„,(r)+ dr', + p, „,(r).p(r')
Ir —r'I

Here V„„,(r) is the nuclear potential, and p(r) is
the electronic charge density, to be obtained self-
consistently from the energetically lowest N solu-
tions of Eq. (1),

for an N-electron system.
The quantity p„,(r) is the exchange-correlation

potential; it is a universal (system-independent)
functional of the charge density. ' Its exact form is
unfortunately unknown, but there is a considerable
body of experience suggesting that the local-
density approximation", where LM„, is approxima-
ted by its dependence on the charge density for the
homogeneous el,ectron gas, is adequate fox' many
applications. " While the method of solving
Schrodinger's equation to be described does not
depend explicitly on the use of this approximation,
all the results discussed below were obtained us-
ing the local-dens ity approximation.

The spherical approximations that have been
used in the past for solving Eq. (1) consist of
surrounding each nucleus in the system by a
sphere, inside which the potential of Eq. (2) is
replaced by its spherical average. (One thinks of
an atom as being centered in a very large sphere
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in this context. ) We consider here the problem of
a nucleus and electronic charge density embedded
in a sphere within which the potential is nonspher-
ical (for an atom, the nonsphericity arises from
anisotropy in the charge density within the sphere;
in solids, there are additional nonspherical terms
arising from the charge density in other spheres,
and from the charge density between spheres).

One approach to this nonspherical problem con-
sists of expanding the potential and wave functions
in spherical harmonics, obta. ining a set of (I,„+1)
radial equations (one for each I and m)."" The
angular part of the Laplacian is diagonal in this
representation, but the potential is not, due to its
nonsphericity, so that these radial equations are
coupled.

Even the replacement of the l,„+1uncoupled
equations of the central-field model by the (I,„+1)'
coupled equations for a general potential does not
reveal the full magnitude of the problem. Addi-
tional complications enter when, for example,
the solutions corresponding to the discrete part
of the eigenenergy spectrum (the core states) are
constructed, because the angular behavior of such
solutions at large distances from the nucleus is
not known. That is, not only does a particular
solution of the coupled system of equations con-
sist of (I,„+1)' functions of the radius; the de-
sired wave function corresponding to a discrete
eigenenergy is, in general, a linear combination
of (I,„+1)'such particular solutions. (Each of
these (I,„+1)' solutions corresponds to different
boundary conditions on the surrounding sphere. )

So, where in the central-field case a particular
core state is constructed from a single function of
the radius, the general case requires the con-
struction of (I,„+1)4 functions. The approach de-
scribed here does not eliminate this information
explosion, but it reduces the problem consider-
ably.

A second disadvantage of the use of the angular-
momentum representation in this context is the
manner in which it describes the rapid radial var-
iation of orbitals in the core region. The non-
spherical potential causes small phase changes in
the core oscillations; that is, the peaks and nodes
of the wave function occur at slightly different ra-
dii in different directions. In the angular-momen-
tum representation, which focuses on the direction
dependence of the wave function at a single radius,
a small phase change in a rapid radial variation is
viewed as a rapid direction. variation. Such rapid
angular variations require high-order spherical
harmonic expansions for their description. An

l,„of 4, for example, will adequately describe
angular variations only on a scale of (roughly) 4v/
25 steradians, but will require the simultaneous

lim}I~ (r, e) = r' Y~ (r),
where F~(r) is a spherical harmonic. For the
construction of individual members in this set,
we decompose the total Hamiltonian into two l-
dependent terms:

(4)

H = —V + V(r) =Ho + 6H, ,

where H', is diagonal in the ray representation:

d'
( )

l(I+I)
(6)

and 5H, is the remainder of the Hamiltonian. The
operator 6H, is not diagonal in the ray represen-
tation, but the usual spherical-harmonic repre-
sentation of the angular-momentum operator L',

(i~ I,'
~

r'} = P I",.(r)I'(I'+ I)y, .(r"')
L'

(7a)

(7b)

provides a straightforward, and computationally
convenient, representation of 6H, :

6H =—.[(r I
I '

I
'& - l(I + I)6« -~')1 .

The function P, (r r )is a L"egendre polynomial.
We first find solutions of H', (Eq. 6) along each

ray, proceeding as if the rays were completely
independent of one another. (The solutions along
each ray can be constructed using standard meth-
ods for the spherical problem. ) Letting the single
index v specify the principal quantum number n,
as well as l and m, we construct a set of solutions
y„(r) = X„, (r, r), each characterized by its angular
behavior near the origin (Eq. 4) and possessing
n —1 radial nodes along each ray. Such functions
are not eigenfunctions of either H or H', , because
a different energy, e„(f), is required along each

solution of 25 sets of 25 coupled radial equations.
An alternative method which avoids these diffi-

culties can be constructed. In this method, the
potential and wave functions are computed on an
angular mesh of N; "rays". (The directions of
these rays can be chosen so as to exactly integrate
spherical harmonics with angular momentum l less
than some value I „.) In the ray representation,
the potential is diagonal, but the angular part of
the Laplacian is not. The ray representation is
thus complementary to the spherical-harmonic
representation, and one can think of these two
representations as a transform pair. We gener-
ate a set of solutions }I~(r,e), where e is the en-
ergy and L =—(I,m) indicates the angular behavior
of the solution near the origin:
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ray to satisfy the boundary conditions on the sur-
rounding sphere. Nonetheless, the functions
{)t„(r)}constitute an excellent basis set with which
to synthesize approximate eigensolutions. That
is, we expand the desired solutions g(r) as follows:

where

S„„.(i) fxrr='X„(r, r&x„(r,i). . (12)

v H —6 v c„=O. (IO)

The normalization integrals (v~ v') are given by

and determine the expansion coefficients c„by
minimizing (P~ (H -e)

~ P). The linear equations for
the c„are

The matrix elements of H'( (Eq. 6) in this basis in-
volve a single sum over rays:

(rl))l&. . I ) =f srx„.(r)s„„.(i) .

The matrix elements of 5H, (Eq. 8) require a
double sum over rays,

(rl HsI &=fs'r fsrf si x (r r)(i'li'Ir'&x„(, i') —)()+))f srf srx(r i)x„.(r r), (I4)

where (f
~

f.'
~

x') is given by Eq. (7).
This procedure, of initially setting up a basis

set as though the rays mere independent, has a
number of attractive features: The zero-value
boundary condition for core states on the sur-
rounding sphere is easily implemented [the angu-
lar behavior of the wave function at large x is
completely determined by continuity and the con-
dition that Eq. (4) is satisfied on all raysj, and
root-f inding and wave-function construction, a
substantial part of the overall calculation are
performed before the coupling between rays in-
duced by 5H, is introduced, leading to a consider-
able savings in computation time (as long as the
rays are uncoupled, the computation time is pro-
portional to N~ rather than N2).

In practice, more time is spent in constructing
(v~ 5H,

~
v') than is spent in setting up the basis

functions )I„(x,r), so that the iteration to a self-
consistent solution of Eq. (I) can be speeded up

considerably if a way is found to minimize the
number of times this quantity must be computed.
One approximation which suggests itself is to it-
erate to self-consistency neglecting 6H, , and. then,
once a self-consistent potential has been found,
to repeat the calculation including the effects of
5H, . In this way, approximate self-consistency
is achieved in a time proportional to N-„. Itis are-
markable fact that in a1.1 the calculations me have
performed, inclusion of 5H, after achieving ap-
proximate self-consistency has very little effect ~

RESULTS

Our method has been applied to ground-state cal-
culations for a number of atoms, and we now de-
scribe the results of these calculations. The an-

l

gular mesh used is described in Ref. 13; this
mesh has N„=42, and is capable of exactly inte-
grating spherical harmonics with I ~ 8. (For
atoms with d electrons, the charge density mill
have components with l = 4, and quantities entering
the total energy, such as the charge density times
the electrostatic potential, will have components
with I = 8.)

The results of the calculations for several atoms
are given in Table I. In this table, the total ener-
gies for both spherical and the full nonspherical
calculations are given for boron (both spin-polar-
ized and unpolarized), for the p configuration of
carbon (spin unpolarized), for the p„p configura-
tion of carbon (both spin-polarized and unpolar-
ized), for the d's configuration of manganese
(spin-polarized only), for the d's' and d's
(d 2 sad„2 „2) configurations of iron (both spin-pol-
arized and unpolarized), and for the d's' config-
uration of copper (spin-polarized only). The quan-
tity ~Z in this tabl. e is the nonspherical total en-
ergy minus the spherical total energy; the remain-
ing quantities in Table I are discussed below.

Perhaps the most interesting feature of these
results is that taking full account of the nonspher-
icity raises the total energy of most atoms,
whereas one expects the true ground state to be
nonspherical, so that the total energy should de-
crease. This nonintuitive result is an artifact of
the so-called self-interaction associated mith the
local-density approximation. Consider, for ex-
ample, the carbon atom. The (spherical) central-
field model implicitly puts ~ of an electron in
each 2p orbital (this makes the p orbitals degen-
erate, so that a self-consistent charge density
exists). In the p,

' configuration, on the other hand,
the Coulomb self-interaction will be larger than in
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TABLE I. Total atomic energies (Hy) for spherical and nonspherical calculations (NP=non-
spin-polarized; P= spin-polarized). bE is the nonspherical-spherical energy difference, b E&

is the first-order perturbation-theory estimate of this energy difference, and b, U and bE are
the Coulomb and exchange-correlation contributions to ~& (see text).

B (NP)

B (P)

C p„(NP)

C p„p, (NP)

C p„p (P)

Mn d6s (P)

Fe d6s2 (NP)

Fe d es' (P)

Fe d s {NP)

Fed s(P)
Cud s {P)

Spherical

-48.705

-48.726

-74.869

-74.869

-74.962

-2297.139

-2522.092

-2522.355

-2522.174

-2522.347

-3275.279

Nonspherical

-48.698

-48.729

-74.812

-74.857

-74.960

-2297.137

-2522.059

-2522.347

-2522.163

-2522.361

-3275.260

b.E

+ 0.007

-0.003

+ 0.057

+0.012

+ 0.002

+0.002

+0.033

+0.008

+ 0.011

-0.014

+0.019

+ 0.007

-0.004

+0.054

+ 0.012

+ 0.001

-0.003

+ 0.028

+ 0.003

+ 0.011

-0.018

+ 0.010

0.029

0.030

0.147

0.037

0.038

0.037

0.049

0.046

0.039

0.037

0.058

b,E

-0.022

-0.034

-0.093

-0.025

-0.037

-0.040

-0.021

-0.043

-0.028

-0.055

-0.048

the spherical case, because, when only the p„or-
bital is occupied, the charge density is more lo-
calized in angle (it has the form of a single p lobe,
rather than being the spherical average of three
spatially orthogonal p lobes). In an exact treat-
ment of exchange and correlation, this increase
in the Coulomb self-interaction is more than com-
pensated by the effects of exchange and correla-
tion, " leading to a lowering of the total energy.
In local-density theory, on the other hand, this
cancellation is incomplete, because of the approx-
imate treatment of exchange and correlation.

The inclusion of spin-polarization effects can
be regarded as an improvement in the exchange-
correlation approximation, and the fact (apparent
in Table I) that inclusion of spin-polarization ef-
fects reduces the value of &E in every case is
further evidence that a sufficiently accurate ap-
proximation for exchange and correlation would
lead to negative values of 4F. for all atoms. In
fact, the local-density approximation used in these
calculations is occasionally good enough to give
negative &F's, as for B and Fe d's, but this is
clearly accidental.

The contribution of the self-interaction to the
total-energy difference between spherical and
nonspherical atoms is exhibited in detail by the
variation of the orbital eigenenergies with occu-
pation. The relevance of the orbital eigenvat. ues
in this context is that they are the derivatives of
the total energy with respect to occupation, "and
also that the difference between spherical and non-
spherical atoms is simply a matter of occupation.
In Fig. 1, for example, we show the 2p, and 2p„

eigenvalues of spin-polarized carbon for the con-
figuration 2p' '~2p' '"2p,' ' '" as n varies between
zero and @. For n=0, this is the spherically-
averaged p' configuration, and for n = 7, it is the
fully nonspherical p„p configuration. The figure
thus shows how the 2p eigenvalues change as the
charge density is changed in a continuous way
from spherically averaged to fully nonspherical. .
Note that the spherically-averaged configuration
is itself an example of fractional occupation, ~~ of

-0.458

-0.460

—0.462

In

—0.464

—0.466

I I I I I I

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

FIG. l. Eigenvalues e„and e~ of the p„and p~ states
of spin-polarized C in the configuration 2p„~'"
2p„'"2p ". A spherically-averaged charge density
corresponds to n =0, and n =3 corresponds to the non-1

spherical configuration p„p„.
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an electron in each of the three p orbitals. Note
also that as the occupation of p„and p, is in-
creased, their eigenvalues rise, and as the occu-
pation of p, is decreased, its eigenvalue first falls
and then rises (for the same reasons as outlined
above' ). For most values of n in this figure, the
assumed configuration is not a ground-state
configuration, because the atom has unoccu-
pied states below the highest occupied state.
However, at both end points (n =0 and n= &), a
self-consistent ground-state charge density exists,
because at n =0 the degeneracy of the p levels is
consistent with fractional occupation. The p, level
crosses the p„and p levels for n slightly less than

~, and there are no holes below the highest occu-
pied state to the right of this crossover point. The
occurrence of this crossover is an accidental con-
sequence of the exchange-correlation approxima-
tion, and does not occur in most other atoms. In

fact, of all the calculations given in Table I, only
spin-polarized B and spin-polarized C p„p, are
true ground-state calculations; all the others have
either fractional occupations or unoccupied levels
below the highest occupied level (the spherically
symmetric Mn d's and Cu d' s configurations,
not presented in Table I, are the ground-state
configurations of these atoms).

Another important result of these calculations is
that it appears to be adequate, for purposes of es-
timating the total-energy difference between
spherical and nonspherical atoms, to treat the
nonspherical contributions by the use of perturba-
tion theory. Suppose that one forms an approxi-
mate nonspherical charge density by taking the
radial wave functions from a self-consistent
spherically-averaged calculation and multiplying

by the appropriate spherical harmonics. The total
energy corresponding to this approximate charge
density can be found as follows: There will be no

change in either the kinetic energy, or in the elec-
trostatic interaction energy between the electrons
and the nucleus, compared to the spherically-
averaged calculation. The only changes mill be in

the electron-electron interaction energy and in the
exchange-correlation energy. Denoting these en-
ergy changes by 4U and AE„„respectively, we
find a perturbation-theory estimate of the change
in the total energy, &E~, given by

&Ep = &U+ &Exc .

sense that both &U and &E„,are very different
from the changes in the electron-electron inter-
action energies, and exchange-correlation energies
that are found from the self-consistent nonspheri-
cal results. That is, both &U and &E„, are poor
estimates of the true values of these changes, but
their sum is a good estimate of the change in total
energy.

A further indication of the usefulness of pertur-
bation calculations is given in Table II, mhere we
show the configurational-energy differences
@(d""s)—Z(d "s') for several transition-metal
atoms. In this table, we compare values for this
energy difference as obtained from spherically
averaged calculations, from the full nonspherical
calculations, from perturbation-theory estimates
of the nonspherical corrections to the total energy,
and, for purposes of comparison, the perturba-
tion-theory results obtained earlier by Gunnarsson
and Jones." It is seen that the perturbation cal-
culations give an adequate representation of total-
energy changes, as well as total energies them-
selves. Since such perturbation calculations avoid
the time-consuming iteration to self-consistency
of the full nonspherical Hamiltonian, this repre-
sents a useful simplification of atomic total-energy
calculations.

Finally, me shorn in Table III the effects of ne-
glecting 5H, for a non-spin-polarized calculation
for Fe. The calculation mas first iterated to self-
consistency neglecting 5H, , and then was reiter-
ated to self-consistency including the effects of
5H, . The table shows the 3d and 4s eigenvalues,
the total energy, the negative of the total kinetic
energy (which, by the virial theorem, should equal
the total energy), and the electron-electron inter-
action energy (which is sensitive to small changes
in the charge density) for four cases: (1) when

TABLE II. Configurational energy differences E{d"'s)
—E{d"s ) {By) for a number of transition-metal atoms
(all calculations include the effects of spin polarization).
First column {SP): configurational energy difference
using spherically-averaged charge densities; second
column (NS): configurationa], energy difference using the
full nonspherical calculation; third column {PT): con-
figurational energy difference obtained through the use of
perturbation theory for the nonspherical corrections;
.fourth column {GJ):perturbation-theory results of Gun-
narsson and Jones {Ref.17). Full nonspherical calcula-
tions were not performed for Co and Ni.

The three quantities 4E~, 4U, and 4E„,are all
given in Table I, where it is seen that ~E~ is re-
markably close to &E, especially for the lighter
atoms (values for n, U arid &F„for C are in per-
fect agreement with those obtained earlier by
von Barth"). This is a rather striking illustration
of the variational nature of the total energy, in the

Mn
Fe
Co
Ni
CU

0.071
0.008

-0.055
-0.117
-0.179

0.073
0.014

-0.1g8

PT

0.068
-0.013
-0.070
-0.087
-0.189

GJ

0.08
-0.01
-0.06
-0.10
-0.20
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TABLE III. Effect of ~H, on selected eigenvalues,
total. energy, total. kinetic energy, and Coulomb self-
energy of non-spin-polarized Fe (des2) (energies in Ry).

Spherical 6H& off 6H& on
self- self- first

consistent consistent iteration

i5H) on
self-

consistent

~4s -0.4029 -0.4022 -0.4026
-0.5948 -0.5438 -0.5435

8tot 252 092 25 0 2 22 0 0
-T -2522.092 -2522.059 -2522.033
2U 2140.777 2140.545 2140.545

-0.4029
-0.5444

-2522.059
-2522.061

2140.488

self-consistency has been achieved in the spheri-
cal approximation; (2) when self-consistency has
been achieved neglecting 5H„(3) for the first (i.e. ,
non-self-consistent) iteration when 5H, is inclu-
ded; and (4) when self-consistency has been
achieved in the presence of 5H, . We identify dif-
ferences between the self-consistent results ob-
tained neglecting 5H, and those corresponding to
the first iteration including 5H, with a perturba-
tion-theory estimate of the importance of 5H, . We
note that, as we expect, the inclusion of 5H, has
significantly greater effect on the nonvariational
form (-T) of the total energy. We note also that,
when the computer programs responsible for the
resglts shown in Table III are applied to a spher-
ically symmetric problem, the amount by which
the virial theorem is not satisfied (E„,+ T) is
smaller by about an order of magnitude. We
therefore interpret the value of 0.002 Ry for E, ,
+T shown in Table III as a measure of the impor-

tance of the only approximation made in our pro-
cedure, the finiteness of the basis set of y„'s we
use to diagonalize the full Hamiltonian (Eq. 10).
We emphasize that the differences between the
second and third columns of Table III are not a
measure of the importance of nonspherical effects.
The contribution of nonspherical effects to the total
energy for the system considered in Table III is
seen to be about 15 times as large as the contri-
bution due to 5H, .

In summary, we have described a calculational
procedure for solving the single-particle Schro-
dinger equation when the potential is nonspherical.
There are two distinct aspects of our results.
The first is that our procedure appears to provide
an adequately accurate description of intra-atomic
contributions to the total energy, hyperfine fields,
etc ~, while reducing both the number of computa-
tions and the storage required with respect to pro-
cedures based on spherical-harmonic expansions.
The other aspect of this work to which we call at-
tention is the unexpected discovery of the relative
unimportance of the angular-momentum operator
in coupling the solutions along different rays ex-
tending from the nucleus. This unimportance
should be useful xn calculations in which the vol-
ume in which Schrodinger's equation must be
solved is not a sphere. For example, in the de-
scription of molecules, some rays extend from an
atomic nucleus to infinity, while others terminate
in bond regions. Knowledge that the coupling
among such rays could be safely neglected would
have significant practical benefits.
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