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Lattice relaxation at a metal surface
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It is shown that all interatomic potentials of the classical type —Morse, Lennard-Jones, etc. ,—yield, by their very
nature, an expansion of the interlayer separation between the topmost surface layers. No such prediction can be
made a priori for the oscillatory-type potentials. Using a simple procedure to compute the relaxations, we also show
that Friedel's tight-binding model for transition metals yields contraction for the (100), (110), and (111)surfaces of a
face-centered'-cubic transition metal, a result in agreement with experiment.

I. INTRODUCTION

Over the last few years experimental data from
low-energy electron diffraction (LEED) experi-
ments on clean metal surfaces have shown the con-
traction of the interlayer separation of the first
few surface layers. " The contraction is the
largest for the topmost layer and decreases rather
fast for the inner layers. Among the three flat
surfaces (100), (110), and (111) in a face-center-
ed-cubic crystal the largest contraction occurs
for the (110) surface; the contractions at the (100)
and especially the (111)surfaces are small. Bond
breaking arguments also predict the largest relax-
ation for the (110) surface and smaller relaxations
for the (100) and (111)surfaces since, by creation
of a surface, an atom on the surface loses five
nearest neighbors for the (110) surface, four for
the (100) surface, and three for the (111) surface.
Furthermore, the interlayer separation is smal-
ler for the (110) surface than that for the (100) and
(111)surfaces. However, all the calculations to
date' ' based on pair potentials show an expansion
of the interlayer separation for all the three sur-
faces, this being 14.9/p, 8. 6%%u„and 4. 5%, of the
interlayer separation for the (110), (100), and

(111)surfaces, respectively, of Cu.
Interest in the study of the properties of atomic

defects at surfaces is rather high at present and
interatomic potentials provide a convenient tool
for simulation work. It is clearly desirable that
the interatomic potentials to be used in such simu-
lation work also yield the correct surface relaxa-
tion since, if this is not so, the calculated defect
properties could be seriously in error. In this
paper we neither propose an interatomic potential
which will yield the right relaxations at the sur-
face nor do we discuss the suitability or the valid-
ity of the concept of pair potentials for sur fac es;
pairwise potentials are already being used for de-
fect calculations, "and are also being constructed
from experimental data. ' Instead, we propose a
simplified scheme, assuming an interatomic po-
tential or a simple analytic model of the electron-

ic structure of a metal is available, for estima-
ting such relaxations which avoids the need for
performing elaborate relaxation calculations.
This, we believe, will facilitate the selection of a
pair potential for simulation work. Using this
scheme we show that the interatomic potentials of
the classical type, Morse, Lennard-Jones, etc. ,
yield quite generally, by their very nature, an
expansion of the interlayer separation and not the
contraction as observed experimentally. This
conclusion is independent of the number of near-
est neighbors included in the calculation, except
when the crystal is in equil. ibrium under the near-
est-neighbor interactions, only in which case
there is no relaxation at the surface. This result
is, of course, expected on physical grounds. The
minimum in the Morse or the Lennard-Jones po-
tential lies to the right of the nearest-neighbor
distance. The force exerted on an atom by its
neighbors is therefore repulsive, while the second
and distant neighbors exert an attractive force.
By the creation of a surface, an atom in a layer
just underneath the surface is left with a net at-
tractive force normal to the surface, the normal
pointing towards the crystal. The situation can
be corrected only by letting the atoms on the sur-
face move outwards, providing a corresponding
increase in the net repulsive force so that there
is no net force on the atom. This simple argu-
ment also shows that no such predictions can be
made for the case of oscillatory potentials about
the nature of relaxations since, unlike the case of
Lennard- Jones and Mors e potentials, the force
exerted on an atom by its neighbors could be at-
tractive or repulsive, depending upon the oscilla-
tions in the potential. The nature of the relaxa-
tions. obtained in this case is thus intricately de-
pendent upon the oscillations in the potential.

The relaxation calculation with pairwise poten-
tials is discussed in Sec. II. In Sec. III the meth-
od has been applied to calcul. ate the relaxations at
an fcc transition-metal surface using the tight-
binding model of Friedel. ' In contrast to the case
of Morse potential, we now obtain contractions
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for all three surfaces, as observed experimental-
ly. This result perhaps indicates the need for
using noncentral interatomic potentials for sur-
face simulation mork. Concluding remarks are
given ln Sec. IV.

v'(It; ) = v'(a, ) + 4 v'(R, }+v'(a, )

+ —v'(z, ) + —v'(z, ),

II. CALCULATION OF THE SURFACE RELAXATION
FOR AN fee CRYSTAL

%e assume for simplicity that the atomic re1.ax-
ation takes place at the top surface layer only and

that second and other internal layers are not much
affected. This approximation seems justified
from experimental observations and other theoret-
ic'al calculations. Our calculations show that the
error arising from this approximation is not more
than a fern percent in the ca1culated relaxation,
the most error occuring mhen the unrelaxed inter-
layer sepal ation ls sma11. .

Let V(R, ,) be the interatomic potential between
the two atoms situated at the sites 8& and R&, mith

H&&
—H, —Hz. The origin of the coordinate system

is placed at an atom on the surface and me mill
calculate its relaxed position. The surface is
represented by the (x, y) plane irrespective of its
orientation, and the Z axis is perpendicul. ar to the
surface. In the relaxed position the total force on
an atom on the surface vanishes, i.e. ,

~~ B~ dv(R~)

where 8& indicates the relaxed position of the jth
atom, and the prime on the summation indicates
that the self-interaction (j=0 term) has to be ex-
cluded. If me assume that there is no reconstruc-
tion of the surface, then it is easy to verify that
the x and y components in E(I. (1) vanish identical-
ly due to symmetry. The only relaxation then
arises normal to the surface due to the asymmet-
ry created by the surface. Thus

mhere Z& -denotes the'Z components of 8& and
V'(R,'.) = dV(1')/dr~ „z~ . If the relaxations are
small (-10%), then it is only the nearest-neighbor
distance mhich is significantly, changed and the
second- and higher-order separations are not
much affected. Setting, therefore, It,'. =It& (j &2),
mhere 8,. is. the unrelaxed distance, me find that
the folloming conditions shouM be satisfied for the
relaxed (100), (110), and (111)surfaces, respect-
ive1.y,

—q3/2 —, y', = V'R, + V', +V'R,

In Eqs. (3)-(5) the summation has been restricted
to the first six shells of neighbors; more neigh-
bors may, homever, be easily included. Z is the
separation betmeen the tmo topmost surface layers
and depends on the surface orientation. The sep-
aration in the unrelaxed case Z, is a/2 for the
(100) surface, a/2M for the (110) surface, and

a/M for the (111)surface, a being the lattice
constant. Thus the (110) surface layers have the
smallest separation among the three surfaces
considered here. Note that in E(I. (4) the Z coor-
dinate of the nearest neighbor that lies in the sec-
ond layer below the (110) surface layer has been
approximated by its unrela ed value.

Setting

Z=Z, +5Z,

one easily sees that

Eguation (7) ill(le sllows that 111 tllls 81mple picture
the fractional change in the interlayer separation
is inversely proportional to the square of the unre-
laxed separation. For a constant 5B one would
find the relaxation of the (111), (100), and (110)
surfaces to be in the ratio 3:4:8—a trend mhich is
roughly observed experimenta1ly and found in
most theoretical calculations. Homever, M mill,
in general, vary from surface to surface. Never-
theless, one can see that, in this case, the (110)
surface has the largest relaxation, essentially due
to the small interlayer separation.

In the bulk of the crystal, the crystal stability
condition should be satisfied. This requires that
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g& d V(R, )

dg
(8)

where a is the lattice constant. Again restricting
to the first six neighboring shells of atoms, this
could be rewritten as

1—V'(R, ) = V'(Ro)+ 2~3 V'(Ro)+ 2V'(R~)

+.2v 5 V'(R, ) + v'8/3 V'(R, ) . (9)

V(R) =D(e o«s-&&o& 2e-&'s-so&) . (10)

Since the relaxations are small, we assume Z =Zp
in Eqs. (3)-(5) in the factor multiplying V'(R,').
With the parameters chosen by Wynblatt and
Gjostein, ' o. =1.3588 A ', Rp=2. 8659 A, and D
=0.3429 eV, we find 5Z/Z, =0.185, 0.092, 0.048
for the (110), (100), (111) surfaces, respectively,
giving outward relaxation for all the three sur-
faces with the (110) having the largest. These are
to be compared with the fully relaxed cornputer-
generated values of 0.149, 0.086, 0.046 of Wyn-
blatt and Gjostein. ' Considering the fact that our
method is rather simple and straightforward the
agreement is quite gratifying, and it can be con-
cluded that quite reliable estimates can be obtain-
ed of the surface relaxation from this simple pro-
cedure. The largest discrepancy occurs for the
(110) surface which is expected since the adjacent

Some remarks can now be made for the I.ennard-
Jones and Morse-type classical interatomic po-
tentials. At second and higher interatomic dis-
tances, the gradients of these potentials are posi-
tive and vary monotonically. The crystal stability
condition, Eq. (9), then requires that V'(R, ) be
negative, which in turn implies that Ry(Rp' where
Qp indie ate s the position of the minimum in the
interatomic potential. Noting the fact that the fac-
tor in large parentheses multiplying V'(A,') in
Eqs. (3)-(5) is nearly unity (it is unity if Z =Z,),
one can see that the right-hand side of Eq, (9) is
always larger than its counterpart in Eqs. (3)-(5).
This implies that V'(R,') & V'(R, ), a condition
which is obeyed if R,'&8, . We thus see that the
interatomic potentials of the classical type are,
by their very nature, constrained to yield an ex-
pansion in the interlayer separation. In the par-
ticular ease when the crystal is in equilibrium
under nearest-neighbor interactions only [V'(Ri)
=0, j&2], one finds from Eqs. (3)-(5) that V'(R,')
= V'(R, ) ='0, so that R,' =R, and there is no surface
relaxation. For second-neighbor interactions one
expects only weak relaxation for the (111) surface.

In order to verify the accuracy of this method,
we have made quantitative estimates of relaxation
from Eqs. (3)-(5) and (7) for the Morse potential

planes are close together. However, if the relax-
ations obtained from our calculation are used to
calculate new atomic positions and used in Eq. (2)
to calculate relaxations, the values obtained are
5Z/Z, =0.18, 0.094, 0.048, which are in much bet-
ter agreement with the results of Wynblatt and
Gjostein. This later procedure has been used to
calculate the relaxation for several fcc metals
from the Morse-potential parameters given in
Ref. 4 and the results are given in Table I. In all
cases a positive outward relaxation is obtained
and further one finds (5Z/Zo)»o &(5Z/Zo), oo

&(5Z/Z, )„,.
Equations (2)-(5) are also valid for the oscilla-

tory potentials. However, precisely because
V'(R&) has oscillations, no prediction on the nature
of relaxation can be made which will now depend
upon the details of the potential itself. For Harri-
son' s' interatomic potential for Al obtained from
a pseudopotential calculation

V(R) =4(p/R)ocos(2KR+ P),
where g = 0.094 eV, p = 2.40 A, K = 1.46 A ', and

/ =3.9128 rad, we obtain 5Z/Z, ='0.01, 0.0, 0.014,
for (110), (100), (111) surfaces, respectively, if
the sum in Eq. (2) is restricted to 10 neighboring
shells of atoms. Extending the summation to 18
neighboring shells of atoms affects the results
only slightly and values of 0.012, 0.0, 0.022 are
obtained. Thus Harrison's interatomic potential
predicts small outward relaxation for the (110)
and (ill) surfaces and no relaxation for the (100)
surface. Low-energy electron diffraction (LEED)
experiments on Al (Ref. 1) seem also to indicate
no relaxation for the (100) surface and a very
small expansion (5Z/Zo(0. 02) for the (111) sur-
face. However, for the (110) surface a contrac-
tion (5Z/Z, --0.05 to -0.15) is observed, which
is in disagreement with this calculation. Consid-
ering the fact that Harrison's interatomic poten-
tial is obtained from the bulk crystal calculations,
this disagreement is not unexpected and indicates
perhaps the necessity of including the surface
screening effects and the three-body interactions.

III. BAND MODEL FOR TRANSITION METALS

The simple method used above to calculate re-
laxations with pairwise potentials may also be
used with a model of electronic structure if the
total energy can be expressed in an analytic form
as a function of interatomic separation. We will
demonstrate that the simple tight-binding model
of transition metals proposed by Friedel' yields
contraction of the distance between the topmost
surface layer and the layer just below it for all
the three surfaces. The density of states in this
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TABLE I. Morse~otential. constants and surface relaxation for fcc metals. Positive sign
indicates an increase in the interlayer separation.

Lattice constant D
(eV)

Bp Relaxation (6Z/Zp) xl00
(100) (110) (ill)

Cu

Ag
Au¹i
Pd
Pt
Ir
Rh
Pb

3.6147
4.0862
4.0785
3.5238
3.8907
3.9239
3.8389
3.8044
4.9502

0.3446
0.3294
0.4826
0.4279
0.4761
0.7102
0.8435
0.6674
0.2455

1.3921
1.3939
1.6166
1.3917
1.6189
1.6047
1.6260
1.5423
1.2624

2.838
3.096
3.004
2.793
2.890
2.897
2.864
2.875
3.667

8.2
5.2
3.0
9.0
3.8
2.6
4 4
5.4
3.4

13.4 4.0
8.2 2.2
4.4 1.0

14.8 4.4
5.8 1.4
3.8 1,0
6.8 2.0
8.6 2.6
5.2 1.0

model is represented by a rectangular step func-
tion of width Wand height 10jW. The Fermi ener-

gy Ez for a metal with Z electrons i:n the d shell
is related to the bandwidth W, and given by E~
= W(Z-5) j10, the zero of energy is at the center
of the band and coincides in this model with the
position of the atomic d levels. The cohesive en-
ergy E~, due to the d electrons, is given by

E =—Z(10-Z) .~ 20
(12)

p, = W'j12. (13)

We now make the approximation that the second
and high neighbor d-d overlap and transfer inte-
grals can be neglected in relation to the nearest-
neighbor ones. In this case p,, can be written' in

terms of the average intersite hopping or transfer
integrals, P(R&), between the atom at the origin
and another one situated at R& as

P'(R ), (14)

where the summation extends over the nearest
neighbors only and the prime indicates that the

H& =0 term is to be excluded. Combining Eqs.
(12)-(14) we have

(15)

with g =( V 3 /10)Z( l0 —Z) p„where p, is the value
of P(R) at R =R„ the equilibrium bulk interatomic

It may be noted here that the parabolic trend in
the cohesive energy across a transition-metal
series predicted by the model is generally observ-
ed experimentally. The bandwidth can be calcula-
ted from the second moment of the density of
states through the relation

separation. Following Friedel ' and Ducastelle '
we assume the transfer integrals to vary expon-
entially in the neighborhood of Ro, i.e. ,

P(R) =P e 00t Bp) (15)

although an R "dependence (n =4- 5) has also been
proposed. "

Equation (15) gives only the d-band bonding con-
tribution to the cohesive energy, which increases
as. the interatomic separation is decreased. In
transition metals this is by far the dominant term.
The s-d hybridization is more difficult to treat.
However, following Qelatt, Ehrenreich, and Wat-
son" (GEW), let us assume that it has qualita-
tively the same behavior as the d-band contribu-
tion; the hybridization matrix element increases
as the d-band width increases, and the hybridiza-
tion contribution to the cohesive energy is
largest near a half-filled d band (as is the d-band
contribution), except that it does not vanish for a
filled d band [the d-band contribution, in contrast,
vanishes for a filled d band, cf. Eq. (12)] and in-
stead tails with increasing valence. The detailed
information on the behavior of the s-d contribution
to the cohesive energy as a function of interatomic
separation is not easily obtained. So we assume
that this term can be included in Eq. (15) via a
suitable modification of the parameters. The at-
tractive interaction between the d shells on neigh-
boring sites results, as discussed by QEW, in a
reduction of the interatomic separation (compared
to the case if the d electrons were neglected) and
thus in the compression of the free-electron gas.

The stability of the lattice requires that there
be a countervailing short-range repulsive force.
This is provided by the compression of the free-
electron gas. As the atoms are brought together
to form the solid, the free-electron contribution
to the cohesive energy is at first attractive since
the valence charge density is pushed into a region
of more attractive potential [in a nearest-neigh-
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bor simple tight-binding picture this means that
I

the contribution from the intrasite hopping inte-
gral n, is attractive and greater than the intersite
hopping integral P,(R,&), which is repulsive].
However, as the interatomic separation is further
decreased, o,, passes through a minimum (at a
distance greater than the equilibrium interatomic
separation) and then begins to rise. In addition,
the kinetic-energy cost (contribution from P,) of
compressing the electron gas becomes dominant.

In this necessarily simplified picture, the re-
pulsive contribution to the cohesive energy E, in
transition metals thus arises from the s electrons
and is dominated by the term involving p, . In the
neighborhood of the equilibrium interatomic sep-
aration it is not unreasonable to assume that it
varies as e ~' "p' since P„being an interatomic
hopping integral, is expected to vary approxi-
mately in this fashion. We thus write

e-P (R)-Rp) (17)

where the constant j9 depends on P,. The argu-
ments leading to Eq. (17) are based on the tight-
binding model of s electrons which, seemingly
inappropriate in this case, has nevertheless been
fruitfully exploited by Ching and Callaway" and

others for the calculation of the electronic struc-
ture of both simple and transition metals. We
further note that the form given by Eq. (17) for the
repulsive term has also been suggested by Friedel
and co-workers. "' However, it should not be
construed to represent the core-core repulsion
which is negligible at separations of interest to
us.

The total cohesive energy is then

E,=E„+E„
and at equilibrium separation it has the minimum,
l.e. y

-«/2 ) Z~
~~e -2q(R' -R ) -2q(R'-R )0

Zl ' ~ ( )

We again calculate the relaxation of the topmost
surface layer from the layer just below it assum-
ing that the separation of all the other consecutive
layers below the surface layer does not change.
An atom on the (ill) surface has a total of nine
nearest neighbors, six on the surface and three
on the layer just below it. On the (100) surface
there are eight neighbors, four each on the sur-
face and the adjacent layer. In contrast, for the
(110) surface an atom has only seven nearest
neighbors. Apart from having two neighbors on
the first surface layer and four on the second,
there is one neighbor directly below it on the
third surface layer. Although the separation be-
tween the second and third layers may be assumed
unchanged, the separation between the first and
the third may not be because of the relaxation of
the first, and this has to be taken into considera-
tion while calculating the relaxation of the (110)
surface. Setting R«R«+ 6R and Z«Z«+ 5Z,
where R', is the distance of the nearest neighbors
situated on the plane just below the surface plane
in the relaxed configuration, and expanding the
exponentials to second order in 6R in Eq. (19),
the following equations for (ill), (100), and (110)
surfaces are obtained from which X= 5R/R, can
be determined,

(2o)
—

8
q' X — v'2/3 p' ——q' X- (1 —g2/3 ) = 0,

(21)

dE„
dR

With this one obtains

'e 2~'R) Rp) «/'2 — — 'e I'&R& Rp) 18Aq
~&V P

where N is the number of nearest neighbors.
Equation (18) now replaces the interaction energy,
p = g~ V(R;), of an atom obtained in Sec. II for
interatomic potentials. Note that in contrast to
the case with interatomic potentials, where the
interaction energy is the direct sum of bond ener-
gies, it now depends on the bond energies in a
rather complicated way. It is easily seen that
Eq. (2) is now replaced by the following equation
for a relaxed surface:

[&7/12 (3P"—8P' —7) —(ap. q" —loq' —7)]X'

—[v'7/I2 (4p' —7) —(~7 q' —7) ]X
—3(1—v'7/I'Z) =0, (22)

where p' =pPp and q' =qRp. On the basis of cohe-
sive energy, compressibility, and elastic-con-
stant data Ducastelle' has suggested the values
p'=9 and q'=3. This gives 5R/R, =-0.0364
-0.0458, and -0.0403 for the (111), (100), and
(110) surfaces, respectively. From Eq. (7) we
may calculate the fractional change in the inter-
layer separation 5Z/go, and one obtains contrac-
tions of 5.5% 9.2%, and 16.1% for the (111), (100),
and (110) surfaces, respectively. Thus the model
predicts the largest contraction for the (110) sur-
face. Note that in this model the relaxation is
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determined by the parameters p and q which de-
scribe essentially the short-range repulsive inter-
action and the hopping probability of the d elec-
trons to a neighboring site. It may be further
shown from Ec(s. (20)-(22) that this model pre-
dicts contraction of the interlayer separation for
all the three surfaces, not only for the values of

p and q chosen above but for all resonable choices
of p and q. Further, if it is assumed that p and q
vary slowly across a given transition-metal
series, one expects approximately the same sur-
face relaxation for all the face-centered-cubic
transition metals. LEED experiments' show very
small relaxation for the (100) surface (+ 2.5% Ni,
4% Co, -0.0 Hh) and (ill) surface (-1%Ni, 2.5%
Ir, -0.0 Pt, -4.1% Cu), but a significant contrac-
tion for the (110) surface (-5% Ni, -10% Cu, Ag).
The comparison with the experimental data for
Ni is somewhat complicated since interatomic
correlations have not been included. Neverthe-
less, considering the simplicity of the model em-
ployed, the results are encouraging. Further im-
provements, such as a better treatment of the
s-d hybridization and the s-electron contribution
to the cohesive energy, will be necessary before
one can expect better results. The noble metals
serve to further emphasize this need where
d-band contribution. to the cohesive energy is de-
rived essentially from the s-d hybridization.

The model presented above is not intended to
explain or to predict the contractions for all fcc
metal surfaces. The model obviously does not

apply to the case of Al where contractions are
also observed. However, in this simple tight-
binding picture the relaxations will be determined
bp a competition between the attractive intra-atom-
ic (o.,) and the repulsive interatomic (P,) s-band
contributions to the cohesive energy.

IV. CONCLUSION

We have shown that the atomic relaxations on
clean metal surfaces can be estimated quite ac-
curately in a simple manner without the need for
elaborate computations. Using this technique we
have also shown, by taking the example of the
face- centered-cubic metals, that the interatomic
potentials of the classical type, Morse, Lennard-
Jones, etc. , yield, by their very nature, an ex-
pansion in the distance separating the top two sur-
face layers because of the constraints built into
them. No such prediction can be made g priori
regarding potentials of the oscillating type. How-
ever, based on the oscillatory interatomic poten-
tial of Harrison, it is likely that the oscillatory
interatomic potentials obtained from the bulk
pseudopotential calculations may not yield the
correct surface relaxation and that charge-trans-
fer effects on the surface may have to be included.
Such effects have been treated in the literature
for simple metals. ""

It has been shown that Friedel's tight-binding
model for transition metals yields contraction in
the interlayer separation of the first two surface
layers as observed experimentally. This result
is independent of the parameters chosen in the
model and demonstrates the important role played
by d electrons in surface relaxation. For a
reasonable set of parameters the contraction pre-
dicted is somewhat larger than that observed ex-
perimentally.
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