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Measurement of the temperature dependence of the order-parameter relaxation time
of a superconducting aluminum film
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By measuring the critical dc current value of a superconducting aluminum film with a super-

posed ac current as a function of the frequency and amplitude of the ac current, it is shown that

the order-parameter variations can be described with a time-dependent Ginzburg-Landau equa-

tion with the longitudinal relaxation time 7~ as the relevant time constant.

In a recent experiment' on the response of a super-
conducting aluminum strip to a current step to above
the critical current it was found that there is a time
delay between the beginning of the current and the
onset of the voltage along the strip. These results
were explained by the finite time it takes before the
order parameter becomes zero as described by a
time-dependent Ginzburg-Landau (TDGL) equation.
In these experiments the time constant for the
order-parameter variation showed no temperature
dependence within measuring accuracy for the tem-
perature range 0.76 ( T/T, (0.92. Theoretical work

by Tinkham' showed that the expected time constant
in the TDGL equation is the temperature-dependent
longitudinal relaxation time' vq. More-recent pulse
experiments with higher accuracy and made closer to
T, affirmed that the time constant is temperature
dependent. 4

This Communication presents results of a method
that can be used to investigate the validity of the
TDGL equation for describing a time-varying order
parameter. The method essentially consists in deter-
mining the critical dc current of a superconducting
strip as a function of the amplitude and frequency of
a small superposed ac current. The use of a com-
bination of dc and ac currents to investigate time-
dependent phenomena in superconductors was al-

ready suggested by Schmid5 and was used in a dif-
ferent experiment by Peters and Meissner.

The TDGL equation which we use for the interpre-
tation of our measurements is given by

side was given by Tinkham. ' It originates from an
extra term in the GL equation, the gap-control func-
tion introduced by Schmid. ' This form is caused by
the nonequilibrium distribution of the quasiparticles.
If the relaxation of this distribution to equilibrium is
described by a Boltzmann equation with a relaxation
time constant TE, the inelastic electron scattering
time, Eq. (1) can be derived for variations of fon a

time scale long compared to vE and with 7q given by

rg =1.2rs(1 —T/T, ) '/' (2)

When the total normalized current through the strip
is given by a superposition of a dc and ac component

J =Jo jl cos~

we want to calculate the maximum value j0 of j0
which still allows a periodic nonzero solution of Eq.
(1) for f

We therefore multipiy Eq. (1) by f3 and introduce
a new variable u =f . Under the condition j1
((j0, j0 will be close to I, and we approximate the
function u ' —u '

by its Taylor expansion to second
order around its maximum
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Equation (1) then becomes of the Riccati type, and
introducing the new variables

cot = 2X,

~r/, —lny =—[u —(—)
d 5/2

dx 3

we obtain

in which f is the order-parameter amplitude normal-
ized to its equilibrium value and j the current density
normalized to the critical current density both at the
existing temperature T ( T, . The right-hand side of
Eq. (1) is the normal form of the Ginzburg-Landau
equation for a strip with a width small compared to
the coherence length and a uniform value of f along
the strip. ' The time-derivative term on the left-hand

d2y
+

dx'
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cos2x y =0
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(6)

With a = —2(1 —jo2)/o&2r2q and q =2j o/t/co2r2o this is

the Mathieu equation in its standard form, which in
general has two independent solutions of the Floquet
form' exp(i vx) P(x) where P(x) is a periodic func-
tion of x with period m. The characteristic exponent
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v is real in the stability regions, while it can be
chosen to be purely imaginary in the instability re-
gions. The general solution in the stability regions al-
ways has zero points. In the instability regions the
general solution becomes asymptotically equal to the
exponentially growing solution of the Floquet form
for large x. Because of Eq. (5), only those solutions
y lead to periodic and bounded solutions of u which
do not have zero points. Therefore only the first ins-
tability region, where P(x) has no zeros, is accept-
able. It can be sho~n that also the boundary of this
region leads to acceptable solutions for u, so we have
the condition'.

supplied by means of a 50-0 coaxial circuit and it is
checked that its amplitude is constant when the fre-
quency is changed.

Results of measurements of 1 —jp as a function
of the frequency are given in Fig. 1 for three dif-
ferent values of the ac current amplitude; These
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For small values of q the function ap can be ex-
panded ass

ao(q) = —q'/2 + 7q'/128 +

and for large q we have the asymptotic expansion

ao(q) = —2q+2~q ——+1
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condition (7) leads to
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For intermediate values of co~~ we use tabulated
values of Eq. (7).9 The value of the normalized criti-
cal current jp is given by the equality signs in Eqs.
(7), (10), and (11).

The purpose of the measurements is to deter-
mine the difference in critical currents I,p

—I,
= I 0(1 —jo ) without and with a superposed ac
current of amplitude j~I,p as a function of the fre-
quency of this current. It has to be checked whether
this measured function fulfills relation (7) and if this
is the case the time constant rq can be determined.

The actual measurements we will describe were
made with a sample consisting of a 0.1-p,m-thick, 2-

p,m-wide, and 40-p, m-long aluminum film, evaporat-
ed on an oxidized silicon slice. ' The sample was im-
mersed in a temperature-regulated helium bath. The
critical current was determined with a circuit which
measures at a repetition rate of 100 Hz the value of a
linearly increasing current through the sample at the
moment when the strip switches to the normal state.
A measurement of I,p as a function of T showed that
I,'p' depends linearly on T with an extrapolated criti-
cal temperature T, =1.30 K. By alternatively measur-
ing the critical currents I, and I,p with and without a
superposed ac current the difference I,p

—I, can be
determined with a synchronous detector in much the
same way as previously described. " The ac current is
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FIG. 1. Measured values of (I,p
—I,)/l, p=1 —jp~ as a

function of the frequency of the ac current component for
three different normalized ac current amplitude values jl.
(a) As measured on a linear scale and (b) as plotted on a
double logarithmic scale. The dashed curves are the curves
given by Eq. (7) with v& = 17.4 nsec.
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measurements are at T =1.146 K where 1,0=0.52
mA.

The dashed curves are the curves calculated with

Eq. (7) with only one adjustable parameter ra = 17.4
nsec. There is very good'ttgreement between experi-
ments and the calculated curves. Figure 1(a) clearly
illustrates the linear decrease of 1 —jo for small co

starting at jl for ru 0 as given by Eq. (10), whereas
the logarithmic plot of Fig. 1(b) shows the 1/ru~ fall-

off at high frequencies as given by Eq. (11).
These measurements were repeated at various tem-

peratures, and the parameter v ~ was determined as a
function of T. The resulting values of Tq are plotted
in Fig. 2 versus 1 —T/T, The fu. ll line is the depen-
dence predicted by Eq. (5) with rE =4.4 nsec. This
value for the inelastic scattering time agrees with
values in the literature. ""

For values 1 —T/T, & 0.1 there is a tendency for
~~ to become less temperature dependent and this
may be the reason that the previous pulse measure-
ments' did not show a temperature= dependent delay
time. The more-recent pulse measurements4 show a
(1 —T/T, ) ' ' temperature dependence of the delay
time for current pulses just above the critical current
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FIG. 2. Measured values of 7& as a function of 1 —T'/T, .
The straight. line is given by Eq. (2) with v&=4.4 nsec.

value, in agreement with the results of this paper.
In conclusion we propose that these measurements

confirm in detail that the TDGL equation (1)
describes correctly the time variations of the order
parameter with the longitudinal relaxation time 7q as
the relevant time constant. The temperature depen-
dence of ~~ agrees with the theoretical expectation.
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