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Spin ~aves in triple-q structures. Application to USb
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(Received 22 December 1980)

The spin-wave spectrum in a system with triple-q magnetic structure is calculated. The spin

waves differ distinctly from those in the corresponding single-q structure, but agree with the ex-
citations observed by Lander and Stirling in uranium antimonide (USb), Their experiments
thus directly verify that the spins in USb are ordered in the triple-q structure.

A large number of magnetic systems exhibit
periodic magnetic structures, which can usually be
described by a single wave vector (single-q struc-
ture). Quite recently, however, it has been suggested
that the magnetization in some compounds is formed
as superpositions of structures with several symmetric
wave vectors (multi-q structures). ' ' Experimental-
ly, it is very difficult to distinguish between a multi-q
magnetic structure and a system made up of equiva-
lent single-q domains. Neutron-diffraction experi-
ments give identical patterns in the two cases. An at-
tempt has been made to remove this ambiguity by
considering the magnetoelastic effects. ' ' lf the lat-
tice is observed to be distorted in a way which is in-

compatible with a multi-q structure (or with a
single-q structure), the situation is clear. If the lat-
tice distortion is unobservable, as in UN, UAs, and
USb, 4 the ambiguity remains.

In this paper we present calculations of the spin-
wave spectrum in the "triple-q " structure which has
been suggested for USb on the basis of a uniaxial-
pressure experiment. ' %e find that the spectrum
differs distinctly from that of the corresponding
single-q structure, but agrees with inelastic neutron
scattering measurements by Lander and Stirling. ' To
be specific, the spectrum includes a longitudinal

branch not found in single-q structures, and a

higher-lying transverse branch. These branches be-
come nonaccidentally degenerate at certain recip-
rocal-lattice points. The spectrum and the stability of
the triple-q structure can be quantitatively explained
by means of a model including anisotropic bilinear
cou, plings and crystal fields only.

Figure 1 shows the triple-q and the corresponding
single-q (type-I) structure in an fcc magnet such as
USb. The wave vectors involved are q, = (2'/a)
(0,0,1), and the two symmetric ones along the x and

y directions. Figure 2 is an attempt to show the nor-
mal spin-wave modes in the two cases. The modes at
the zone boundary X [q = (2m/a)(0, 0,1)] are
shown. In the single-q case the spins in each (001)
layer are precessing in phase, but successive layers
are 180' out of phase. For other wave vectors along
the I'X direction [q = (2'/a) (0, 0,q) ] the phase

difference differs from 180'. This mode is transverse
since the polarization of the spin deviations from the
equilibrium positions are perpendicular to the wave
vector (and to the spins).

In the triple-q case the situation is more complicat-
ed. The spins precess around their equilibrium in a
similar way; so the local polarization is perpendicular
to the spins. The figure sho~s two different modes,
L and T, given by full vectors and dashed vectors
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FIG. 1. (a) Single-q and (b) triple-q magnetic structure
in an fcc magnet such as USb.
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FIG. 3. Spin-wave spectrum in USb. The full lines are

calculated as shown in text. Th|: experimental points are
taken from Lander and Stirling (Ref. 5). The black points
are our own interpretation of their data on the transverse
mode.

FIG. 2. Normal spin waves in USb. q Il z axis. Full lines

and vectors: longitudinal mode at X. Dashed lines:

transverse mode at X. For comparison, the transverse spin-

wave mode in the single-q structure is also shown.

(where they differ), respectively. The arrows along
the z axis show in a similar notation the projections
on the z axis of the precession of the single spins,
and the ellipses show the projections on the xy plane.
Again the phases between neighbor planes are 180'
out of phase. In the L mode the transverse corn-
ponents w'thin each layer pairwise cancel each other
and cannot be observed in a neutron-diffraction ex-
periment. The longitudinal (z) components, howev-

er, are all in phase within each layer. The mode is
thus longitudinal and will appear as such in a neutron
experiment. This is (as we shall see ) the low-lying
mode observed by Lander and Stirling (Fig. 3). The
second mode, given by the broken vectors, is quite
different. The transverse components within each

layer are in phase and the longitudinal components
are out of phase, and this mode thus appears as a
transverse mode. This is the higher-lying flat mode
observed by Lander and Stirling.

To support these general considerations, which are
in fact based solely on the symmetry of the structure,
we have performed a spin-wave calculation based on
a simple model with physically reasonable parameters.
This calculation explains quantitatively the experi-
mental spectrum, and the stability of the triple-q
structure. The Hamiltonian 18

0 =0;,+0,„+0„
H;, = —XJ(SI SJ

H,„= XJD ( S, i J) (S) 'rs)—
H„=a,'(00 +50,'),

where the spina are S =-, (or S -4) corresponding

to a 5f (or 5f ) configuration. H,„ is an anisotropic
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pseudodipolar interaction and H„ is a crystal-field
term with cubic symmetry. The 0"'s are fourth-
order Stevens operators. Classically, H,„—S„4

+S,4+S,4.

The bilinear terms give the same ground-state en-
ergy for the single-q as for the triple-q structure, but
the crystal-field term favors the triple-q structure for
pOSitive B4.

E(triple q) —E(single q) = ——, SS38f

E-', =A, —/8, ['

Introducing the parameters

(3)

based on neutron measurements of the rnagnetiza-
tion.

The spin-wave calculation is a standard one based
on the Holstein-Primakoff transformation of (1)
(S,= S —a+a, where z' is the local spin direction).

Generally, the spin-wave energies can be written

where S3=(S——,)(S —1)(S—
—, ). The triple-q

structure is thus stabilized simply by the crystal-field
term. This is intuitively clear since in the single-q
structure all the spins point in the unfavorable [100]
direction, whereas the spins in the triple-q structure
point along [111]. The sign (and size, as we shall
see) of 84p agree with estimates of Lander et ai. 6

AP =—S3B4
160

16 16
A1 =.

——SJ] ——SJD3 3

16 4B] 3 SJ] +
3

SJD

q
and B- take the following form for q along

symmetry directions:

(4)

q =(0, 0,q):

(Ap =Ap+At[1 —cos(qa/2)]
L mode

Bp =Bt [I —cos(qa/2)1
(Sa)

(Ar =Ap+2A tT mode,
8, = —8, [1+i43 cos(qa/2)]

1
q = (q, q, 0):

A~ =Ap+A I[ 4
—

4 cos(qa/K2) —cos(qa/2 J2)]
L mode

~8~ =Bt[
z

+
z cos(qa/J2) —cos(qa/2 J2) ]

(A&
=A p + 2A t [—+ cos(qa/v 2) ]

T mode
B~ = —Bt [ —, + —, cos(qa/J2) +i J3 cos(qa/2E2) ]

(sb)

Figure 3 shows the spin-wave energies calculated for
Ap=6. 6 meV, At =12.3 meV, and ~8~~ =5.4 meV.
The experimental points are taken from Ref. 5. Note
the following features:

(i) The dispersion of the longitudinal mode is iso-
tropic near X This is a consequence of the "cubic"
symmetry of the triple- q structure. For single- q
structures the dispersion is not isotropic and, of
course, the mode is transverse.

(ii) The two modes are degenerate at the I' point
and at q = (2w/a)( —, , z, 0). This is again a conse-
quence of the symmetry (nonaccidental).

The intensities of the neutron peaks can also be
calculated within the spin-wave theory. For example,
the intensities of the two modes are roughly the same
in a transverse scan ( Kzq), whereas in a longitudinal
scan the intensity of the longitudinal mode vanishes,
in agreement with Ref. 5, Fig. 7.

I

These conclusions do not depend crucially upon
the specific model chosen for USb. The spin-wave
approximation is adequate since the magnetization is
more than 85% of the saturation value and we can
neglect single-spin longitudinal response. The param-
eters deduced are effective ones.

However, the mean-field transition temperature
calculated on the basis of A] agrees with the actual
TN within a factor 2. The gap at X is a measure of
the stability of the triple-q structure. In our model,
both the gap and the stability [Eq. (2)] are given by
the crystal-field term. The crystal-field parameters
V4 and V6 deduced by Lander et a/. from form-
factor measurements yield Ap —10 meV. ~8~~ is not
well determined by the dispersion relations and the
sign is unknown. The anisotropic interaction —JD is at
least a factor of 2 larger than

~
Jt ~. If we choose

B] & 0, JD and J] are both negative and the structure
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is stable. Otherwise, next-nearest-neighbor interac-
tions are necessary to stabilize the structure with
respect to a single- q type-II antiferromagnet with
Sil q =(n/a)(1, 1, 1). The importance of Jo is also
indicated both by the absence of transverse scatter-
ing, ' and by the very anisotropic longitudinal spin
correlations just above T~.

We have also considered the effect of the Coqblin-
Schrieffer (CS) interaction deduced by Siemann and
Cooper. We find that their spin potential is
equivalent with the coupling

Jest (S,')'(&;)'+ (&;-)'(&;)'l-,
~,-„ij

plus a minor quadrupole-quadrupole interaction.

This does not lead to any qualitative changes of the
spin-wave model, except that Jcs would also be in-
volved in the stability criterion.

In conclusion, we have explained the excitations
measured by Lander and Stirling using a simple
phenomenological model. The spins in USb order in
the triple-q structure, and the excitations are spin
~aves in this structure.
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