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Superconductivity in liquid metallic hydrogen
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By solving the Eliashberg equations for the gap function, the superconducting transition tern-
perature of a proposed low-temperature liquid state of metallic hydrogen is found to be compar-
able to that obtained, with similar approximations, for the solid. This indicates that metallic hy-
drogen may be a superconducting liquid in the density range 1.6 ~ f, ~1.3, where the melting
point is expected to be fairly low.

It has been predicted that hydrogen becomes me-
tallic at high density, ' the requisite pressures being
in the range 1—3 Mbar. At high temperatures the
system wi11 be a liquid metal, the protons forming an
almost classical liquid2 but the electrons remaining
highly degenerate. At low temperatures thc-metal is
assumed to form a monatomic crystai [possibly fcc
(Ref. 3)) and in this state it is also predicted to be a
superconductor with transition temperatures T, calcu-
lated4 5 to be as high as 300 K for densities near the
insulator-metal phase transition (r,

' =1.6).
Recently, Mon eI aI.6 determined the internal ener-

gy difference between postulated ground-state liquid
and crystalline phases of metallic hydrogen over a
wide range of densities. These differences, which arc
smail, are given (per proton) in Table I; it seems
reasonable to suggest that they will be a direct mea-
sure of the melting temperature T of the system,
and we may therefore infer that T is near zero for
r, = 1.6 and is likely to be only a few hundred de-
grees at-r, =1.2.

Should these estimates of T, and T be valid, then
the possibility arises that solid metallic hydrogen may
be a superconductor up to its melting point, at least

TABLE I. Energy difference per particle between liquid
and solid metallic hydrogen [according to Mon et Q/. (Ref.
6)] and the superconducting transition temperatures of
liquid metallic hydrogen.

E, -E, (K)

in a certain range of densities. If we continue this
linc of argument and assume that superconductivity
is nott greatly inhibited by melting, we must then con-
clude that metallic hydrogen can become a new state
of rnatter: a superconducting liquid.

A liquid differs from a dynamic solid principally in
its atomic disorder and lack of static shear strength.
From the existence of good amorphous superconduc-
tors we know that disorder and superconductivity are
not mutally incompatible. Furthermore, we also
know that the compressibility of ordinary metals
changes little when they melt; so that the longitudinal
"phonons, "which are very important for supercon-
ductivity, may be taken to have roughly the same
spectrum in the liquid as in the solid. Thus a super-
conducting metallic liquid is in principle quite possi-
ble, and we need a method for calculating its transi-
tion temperature.

%'c shall compute T, by solving the Eliashberg
equations for the gap function d (co) and by finding
the temperature at which the gap is suppressed by a
vanishingly smal1 pair-breaking fieM. . The input re-
quired for. this method is the Eliashberg function'
n F(cv), which in solids is obtained from the spectral
~eight of the phonon Green's function, In turn this
is obtained ffon1 fncthods such as the self-consistent
harmonic approximation'9 (SCHA). In a highly ex-
cited quantum liquid, there does not exist a we11-
defined phonon spectrum except at very long
waveiengths; so a'F(co) must be extracted from a
more general description of the ionic-density fluctua-
tions which can be achieved as follows.

Lct the exact imaginary-time-ordered propagator of
ionic-density fluctuations be denoted by
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II( r, 7) = i ( T,[ bn ( r, r ) Sn (0, 0) ] )

~here T, orders imaginary times, '0 the angle brackets
denote an equilibrium ensemble average, and b~ is
the ionic number density-fluctuation operator. %e
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define the Fourier transform
I

II(qi,cu„) =J dr Jl d r II(r, r)

"exp[ i—(q r —co„r)], (2)

where cd„ is the Bose-type Matsubara frequency
2mn/Pf Th. is function is related to the imaginary
part of the real-time density-density response func-
tion by'

II( . ) "dcdX(qco)
N

77 Cd
—I OJ&

t" d" 2"X"(q,~)
n«')2 —(iCd„) 2

where we have used the fact that X" is odd in fre-
quency. For a crystalline solid, the density fluctua-
tion propagator can be expressed in terms of the
phonon Green's function D&(q, ice„)

r C

II(q, io&„) =X(q e „) ', D&(q, /cu„), (4)2M;cd-„„
C

q

2(uB'(q, «))
Di, (q, i«i„)=J~ des

0 CO IC« n

(5)

where B„:(q,cu) is proportional to 5(co —co-„) for a

purely harmonic lattice. The Eliashberg function is
then related to B~(q, ru) by

where A. labels polarizations, e-, „and cd „are the
polarization vector and frequency of the mode q A. ,
and n; and M; are the number density and mass of
the ions (protons in this case). For wave vectors q
outside the first Brillouin zone, e-, „and cd-, „are
found by subtracting a reciprocal-lattice vector from
q to obtain a vector in the first zone. The Green's
function D, (q, i'„) is expressed in terms of a spec-
tral density B„(q,m) via

2kF
~'F(~)=N(0) gJ 'dq '2 Ivei(q)l '~ (q'eqg) Ba(q

2kF2 2M;cd2 (6)

where N(0) is the density of states per spin at the
Fermi energy and v„(q) is the effective interaction
between electrons and ions, including screening, ver-
tex corrections, and nonlinear effects. For simplicity
we have performed an average over a spherical Fermi
surface, as would be appropriate for a disordered su-
perconductor. If we substitute (5) into (4), take the
frequency integral outside the sum on polarizations,
and compare with (3) we obtain an expression for
X"(q, ru) in terms of B„(q,cu). This can be substi-
tuted in (6) after taking the polarization sum inside
the momentum-transfer integral:

r

F( )=N(0) Jl 'dq
2kF

(7)
Expressions equivalent to (7) have been derived for
amorphous metals"; since the response function X is
well defined for both amorphous and liquid metals,
we propose that (7) is valid for liquid metals [even
though (4) and (5) above are not]. To justify this
extension of (7) to a low-temperature liquid metal we
give an argument based on diagrammatic perturbation
theory in which both electrons and protons are treated
as interacting Fermi systems. Let us consider the full
interaction between two electrons, including all possi-
ble polarization insertions involving either protons or
electrons. A typical term in the expansion for this
interaction involves a polarization insertion which can
be divided into proper polarization parts, each of
which begins and ends with either an electronic- or

an ionic- (proton-) density fluctuation. Those terms
in which only electronic proper polarization insertions
appear can be summed to give the screened Coulomb
repulsion. Now consider the set of all diagrams with
a given set of ionic proper polarization insertions and
a fixed set of electronic polarizations between ionic
ones. The electronic polarizations occurring to the
left or the right of all the ionic polarizations can be
summed to give once again, screened Coulomb in-
teractions at each end of the diagram. In this way
the effective interaction between electrons may be di-
agrammatically expressed as shown in Fig. 1, and the
Eliashberg function is obtained from this interaction
by averaging over the Fermi surface.

bV are—

Vscreened + CS + ~ ~-+"

V«f

FIG. 1. Structure of screened interactions and the total
effective interaction between electrons. II, is the set of all
bubblt; diagrams beginning and ending with an electron den-
sity fluctuation which cannot be separated by cutting one
bare-interaction line. Hz is the set of all diagrams beginning
and ending with a proton density fluctuation, separable or
not. The second term in jeff gives rise to the expression
for 0. F(0)).
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We now give an approximation for the ion
density-density response function whose imaginary
part appears in (7). A first-principles calculation is
likely to be intractable, so we use a phenomenological
approach and some results of previous microscopic
treatments of solid metallic hydrogen, "the latter
being more amenable than the liquid to an ab initio
theory. We write the response function for the
screened interacting protons in terms of a random-
phase-approximation- (RPA) like expression involv-

ing the noninteracting response function' and an ef-
fective proton-proton interaction f(q, co):

2.5—

2.0-

xto'(q. ~)x(q, cu) =
1 f (q, ~) x—"'(q, ~)

(8)
0.0 O. I 0.2 0.3

~/np)
0.4

Theories of this form have been proposed' for 'He,
classical fluids, ' and the interacting electron gas. ' '7
Our own approximation to this function is based on
the requirement that the liquid have the same long-
wavelength sound velocity as solid metallic hydrogen
at the same density, a quantity calculated by Straus,
Mon et al. , and others. ' We also make the ansatz
that the effective interaction between protons is in-

dependent of frequency and temperature, and that its
Fourier transform f(r) has the form of a screened
Coulomb interaction for r greater than some r„and
is constant for r ( r, . We then fix r, by the require-
ment that f(q) must give the desired sound velocity
as q 0. This construction is in the same spirit as
the polarization potential approach' used in He, but
for liquid metallic hydrogen it is less constrained for
lack of experimental information.

When X"(q, cu) is computed from (8) using this

f(q), we obtain a density-fluctuation spectrum in the
(q, c«) plane that is typical of a neutral Fermi liquid. "
This is to be expected since the screening of the ions
gives an acoustic spectrum instead of an ionic
plasmon of frequency (4rrne'/M;)'~' There i.s, of
course, an electronic plasmon at high frequencies
which is not treated explicitly. Its effect is contained
in the usual parameter p, '.

To compute a'F(cu) from X"(q, cu) we need to
know the effective interaction v, ;(q) between the
electrons and protons. The absence of core electrons
removes uncertainties encountered in ordinary metals
in the choice of a pseudopotential, but a new difficul-
ty appears because linear-response theory for the
electron gas begins to break down. This problem is
often treated by replacing the screened Coulomb in-
teraction of linear response by an effective electron-
ion interaction which incorporates nonlinear effects in
some approximation. Carbotte e( a/. ' have obtained
this interaction by a density-functional technique; we
approximate their results for the function v„.(q)
[called by them w (q) ] by a rescaling of the linear-
response result, and then fit the scale factors to a
polynomial function of r, in order to extrapolate their
results into the density range treated here. The func-

FIG. 2. Eliashberg function a F{co). The frequency is
expressed as a fraction of the ionic plasmon frequency
Op~= (4mn;e /M;) . The dashed curve indicates the
results expected if there were only a longitudinal sound
mode, and no single-ion excitations present.

tion a'F(rv) which results from this procedure is re-
markably similar to that found for a crystalline solid.
In both cases there is a peak at high frequency com-
ing from the longitudinal phonons. In addition the
liquid shows a broad background at lower frequency
which comes from the diffusive particle-hole spec-
trum of the screened protons. This background
might be regarded as a remnant of the low-frequency
peak which arises in crystals from umklapp processes
and is related to transverse phonons.

In computing T, as a functional of a2F(co), we en-
counter an interesting self-consistency problem which
is not present for solid superconductors. In the liquid
case n'F(cu) is itself dependent on temperature
(which is not the case in a harmonic solid). It fol-
lows that T,(a 2F(ca)) also depends on the assumed
temperature of the system. That is, we must com-
pute a function T, (T) and the true transition tem-
perature is then given by the quantity T,

"
which satis-

fies

(9)

We have obtained a2F(cu) at several densities us-
ing reasonable initial guesses for the temperature,
and then computed T, using an Eliashberg equation
computer subroutine. '9 This T, is used to find a new
a'F(co), and the procedure is iterated until (9) is sa-
tisfied to high accuracy. In practice, about five itera-
tions are found to be sufficient, and the results are
given in Table I. The transition temperatures are
comparable to those found for solid metallic hydro-
gen by other authors, and are likely to exceed the
melting point in some density range (although at very
high densities the system becomes normal again).
The assumption of a liquid superconducting state is
thus justified (see Table I).
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