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We have numerically simulated a Ginzburg-Landau model for a lattice of coupled supercon-

ducting grains in a nonsuperconducting matrix. The results unambiguously show the onset of a

double superconducting transition when the intergrain normal-state resistance increases above
-f/e2-4000 0: the specific heat changes from Bardeen-Cooper-Schrieffer-like to broadened,

and the temperature T, at which the resistivity vanishes becomes well separated from the

single-grain transition temperature T,o.

Composite materials such as granular Al or
(Nb3Sn)„Cu~ „, made up of a superconducting (S)
constituent and a nonsuperconductor (N), behave
radically differently from ordinary bulk superconduc-
tors. ' For example, the specific heat Ci is usually
more rounded than the BCS behavior, "and the
resistivity transition is also broadened over a substan-
tial temperature width. This behavior is now widely
believed to result, at least in some samples, from a
double superconducting transition. The first, at a
temperature T,o, results from the superconducting
transition in individual S grains, and the second (the
only true phase transition), at T, ( T,.o, corresponds
to the onset of long-range phase coherence and zero
resistivity in the composite. Not all superconducting
composites are consistent with this picture: There is
sometimes evidence' of percolation effects, resulting
from the formation of infinite connected clusters of S
grains extending throughout the composite, and, in
very thin films, a vortex-antivortex unbinding transi-
tion' may play a role.

This paper presents a Monte Carlo solution of a
widely discussed thermodynamic model for inhomo-
geneous superconductors. The model describes small
S grains coupled together by Josephson tunneling or
the proximity effect and embedded in an N host. For
sufficiently weak coupling, the calculation confirms
the picture of a double transition, with T, and T,o
well separated with long-range phase order setting in
only at the lower temperature. Each transition has its
own specific-heat signature, but that at T, is usually
very faint in comparison with the single-grain transi-

tion. The lower transition closely resembles the
phase transition in a ferromagnetic three-dimensional
(3D) XY model. For stronger coupling, the two tran-
sitions merge, the Ci anomaly sharpens, phase and
amplitude degrees of freedom in the superconducting
order parameter become correlated, and the XF
model becomes inappropriate. The transition from
weak to strong coupling occurs when the intergrain
normal-state resistance is of order t/e2 —4000 O.

According to the model, the Helmholtz free ener-

gy F of- a granular superconducting composite of NG

grains (in units such that ks = 1 ) is

iVG

F = —Tln O'P; exp
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Here p; = lP;l exp(iQ;) is the complex gap for the ith
5 grain; Ro=g/e; R,& is the normal-state tunneling
resistance between grains i and j; i = T/T, o, where T
is the absolute temperature; 5 is a dimensionless size
parameter defined by 5= [N(0) vT, O] ', where N(0)
is the electronic density of states per unit volume at
the Fermi energy and v is the volume of the ith
grain (all grains are assumed to have the same
volume in our calculations); and T,a is the single-
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grain transition temperature. The integrals run over
all possible values of the variables P, . Equation (1)
applies to an array (not necessarily ordered) of S
grains in an N host, with coefficients numerically ap-
propriate to describe Josephsqn tunneling between
grains in an insulating host. "

The physics underlying (1) is quite simple. The
single-grain part of (1) causes the mean value of the
amplitude l fll to become nonzero beiow T,o (with
rounding due to single-particle fluctuations). The last
term causes the phases $, to couple "ferromagnetical-
ly" with a consequent phase transition and onset of
long-range phase order at a lo~er temperature T,.
The. model implicitly assumes grains small enough to
have a spatially uniform order parameter, yet large
enough to be treated by a Ginzburg-Landau free-
energy functional. Although (1) is applicable in prin-

ciple only sufficiently near T,o, it can be extended to
lo~er temperatures by quantitatively modifying the
functional to include higher powers of Q, . Since this
is not expected to change the results qualitatively, we
have studied the Ginzburg-Landau form for the sake
of simplicity.

We have simulated the thermodynamics of (1) by
standard Monte Carlo techniques, '2 treating 5 as an
effective temperature-dependent classical Hamilton-
ian for the system. Thus, equilibrium thermodynam-
ic averages (denoted (tt)) are equivalent to
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where Z is the argument of the logarithm in (1).
C~ —= —T(8'F/8T') ~ can then be found by numeri-
cally differentiating the energy, Cq = (8E/8T) v,
where
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Alternatively, Cy can be calculated from Cy =
+ T '( (Fo ) —($0) ), which is the analog, for a
temperature-dependent Hamiltonian, of the usual
fluctuation expression for the specific heat. We have
calculated Ct both ways. Calculations were carried
out for S & S x S and 10 & 10 & 10 simple cubic arrays
of grains with nearest-neighbor coupling only, assum-
ing periodic boundary conditions, and with 4000 to
10000 Monte Carlo passes through the entire lattice.
The results-thus are specified by two parameters:
and the nearest-neighbor resistance which we denote
R.

Figures 1(a) and 1(b) show Cy for 8=0.01 and
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FIG. 1. (a), (b} Specific heat Cq (in units of k~lgrain}
for 8=0.01 and 0.5, and R/Ho =10 (4 and k), 1 (0 and

), and 0.1 (Q and ). Open symbols are from energy
fluctuations and closed symbols, from energy differences.
All calculations are for a 5 x 5 x 5 lattice except at
8/R0=10, in (a), which are for a 10 &&10X10, Symbol +
refers to 8/Ro =0.1, energy difference, and 10 x 10 & 10 lat-

tice. Triangular curves in (a) and (b) are the bulk limit
(8 0); the other solid curves are the single-particle limit
(R c ). (c) Phase order parameter q for 5-0.01, and
8/R0=0. 1 (0), 1 ( and +), and 10 (k and x). All sym-

bols refer to 5 & 5 & 5 samples except + and &, vrhich are
for a 10 & 10 & 10. The step function is the bulk limit (8 0).
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0.5. Also plotted are the infinite coupiing (bulk) and
zero-coupling (isolated-gfatn) limits. The former
rises linearly with T and is discontinuous at T,o,
differing from BCS because of the Ginzburg-Landau
assumption. The latter is the limit first treated by
Muhlschlcgel et al. '3 In the case 8=0.01, the curves
for the various R/Ro differ little from one another,
except for a slight reduction in C] above T,o with in-

creasing R/Ro, due to decreased amplitude fluctua-
tions in that regime. For the weak-coupling case
R/Ra=10, in particular, there is no detectable ano-
maly at the phase-ordering temperature T, . By con-
trast, in the plots for 8=0.5, corresponding to very
small particles (e.g. , 50 A in Al), Cj depends strong-
ly on R/Ro. It becomes bulklike for R/Ro (1;C~
for R/Ra =0.1 (not shown) is even more similar to
the bulk limit. For R/Ro =10, C& resolves itself into
a single-grain part plus an anomaly near T, associated
with the onset of phase ordering. The phase-ordering
peak might thus be seen experimentally in ordered ar-
rays of very smal1 particles. 8=0.5 is, ho~ever, near
thc limit at which a continuum model is likely to be
reliable.

Figure 1(c) shows the phase order parameter

for 8=0.01 and several values of R/Ro (results for .

other g's are similar). In the limit R 0 (bulk lim-

it), g becomes a step function as shown, but for fin-

ite coupling it becomes rounded, like the magnetiza-
tion in a ferromagnct, to which it is analogous. The
arrows denote the numerically determined values of
T„at which 71 0. (There is some remnant tail in rt

above T„because of finite-size effects in the simula-

tions, which decrease with larger Monte Carlo sam-

ple size. ) As expected, T, is much smaller than T,o
for 8 & Ro, and merges with T,o in the opposite lim-

it. The ratio T,/T, o roughly satisfies T,/T, 0= 1/[I
+R /(zR0) ], where z = 6 is the number of nearest
neighbors, as predicted by the molecular-field approx-
imation for T, suggested by several ~orkers. ""

We have obtained curves corresponding to Fig. 1

for site-diluted lattices of 5 grains in an N host. The
results for C~ are quite similar to the ordered case,
except that the phase-ordering peaks are somewhat
reduced in height. The effects of this type of disor-
der are thus probably such as to make the unambigu-
ous detection of a phase-ordering peak in Ct even
less likely than in the ordered case.

We turn next to a qualitative comparison of these
results with experiment. Our central result is that
there is a qualitative change in the behavior of granu-
lar superconductors when the intergrain normal-state
resistance increases above -4000 0: The sharp
transition with a BCS-like specific heat changes to a
much broadened one with a specific heat similar to
that observed for isolated grains, and with phase or-
dering occurring at a temperature well below the
single-grain transition temperature. A transition
from BCS-like specific heat to broadened behavior
has been observed by Worthington et al. in granular
Al, 2 at a resistivity of order 4 x 10 ' 0 crn. For an
intergrain separation d =100 A, our theory gives a
change in behavior at p = td/e' —4 & 10 ' I) cm,
similar to experiment. Since the experiment is for a

highly disordered system, it cannot be directly com-
pared with theory; nonetheless, the qualitative corre-
lation is suggestive. The ratio T,/T, o is observed to
decrease considerably from unity in several compos-
itea' when the intergrain resistance is of order lr/e',
and to decrease with increasing p, in agreement with
our results. Once again, a detailed comparison
between theory and experiment is not feasible, be-
cause of the disorder in the experimental samples.
Nonetheless, our calculations demonstrate unarnbigu-
ously the onset of a double transition in an idealized
model, in which the fiction of no disorder can be
maintained.

To summarize, we have presented a numerically
exact solution of a model describing a superconduct-
ing phase transition in a composite material. Many
of the predictions, in particular the single-grain to
bulk transition in the specific heat, and the emer-
gence of a double transition with increasing intergrain
normal-state resistance, have experimental counter-
parts. Furthermore, our results establish a clear basis
for systematically considering terms neglected by our
model, most importantly the effects of disorder, but
also thc influence of charging energies, "on the onset
of superconductivity in granular materials. They also
suggest potential applications to other materials, such
as granular ferromagnets, '6 which may be described
by similar Ginzburg-Landau models.
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