
PHYSICAL REVIEW 8 VOLUME 23, NUMBER 11 1 JUNE 1981

Comments

Comments are short papers which comment on papers of other authors previously published in the Physical aevi'. Each Convnent

ticles is followed, and page proofs are sent to authors.

Fluid-magnet universality: Renormaiization-group analysis of $ operators

J. F. Nicoll
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

R. K. P. Zia
Department of Physics, Virginia Polytechnic Institute and State Uni versity, Blacksburg, Virginia 2406l

and Racah Institute of Physics, The Hebrew University of Jerusalein, Jerusalen~, Israel

(Received 2 June 1980)

The question of a possible difference between the universality classes of fluids and Ising-like

magnets is addressed by perturbation theory and the renormalization group. The most
dangerous possibility is that of an $5 addition to the usual $4 theory. We show that no @5 fixed

10
point exists in the framework of an expansion around d =

3
. Further we show that to

O (64), t4
———4 —d, the ordinary @ fixed point is stable against the perturbations that mix with

@5. Two new correction-to-scaling exponents are found. One of the exponents, 55, is poorly

determined with a range of values from 0.5 to 1.0 compatible with the O(e42) result. However,

its positivity rules out a separate fluid fixed point, indicating fluid-magnet asymptotic universali-

ty. The second exponent, h3, can be determined exactly: A3 =1 —n —P. This implies the

universal existence of a contribution to the fluid diameter scaling like the internal energy.

I. INTRODUCTION

Recently, Valls and Hertz' suggested that the wide-

ly, if tentatively, held notion that fluid systems had
the same asymptotic critical behavior as uniaxial mag-
nets2 was open to question. They based their analysis
on the fact that for d, the dimension of space, less

than —, (not —, —, rt as sta—ted in Ref. 1), the It'10 10 5

term in a Landau-Ginzburg-Wilson effective Harnil-

tonian becomes relevant at the Gaussian or trivial
fixed point. This opens the possibility of a new fixed
point with new critical-point exponents that ~ould be
distinct from those at symmetric magnetic systems

In general, there are two generic ways new fixed
points can appear as some parameter such as the
number of dimensions or field components is varied:
(a) splitting off from existing fixed points; and (b)
appearing in pairs in any region. In the first case, the
signature is the approach to marginality of some
operator representing a perturbation on an existing
fixed point. The classic example is the splitting off
of the Wilson-Fisher fixed point (Q ) from the
Gaussian as d goes below four. It should be em-
phasized that "marginality" is a necessary but not

sufficient condition. There are fewer examples of the
second4 case. We only wish to remark that a sys-
tematic theory of the renormalization group flo~s in
the neighborhood (where the fixed points are to ap-
pear) is needed for credible description of such
behavior.

For the fiuid case, within the context of a perturba-
tive one-component field. theory, we know of no
scheme by which a pair of fixed points can appear in

a controlled fashion. However, we can say something
about the possibility of new fixed points due to possi-
bility (a). Following the philosophy of Valls and
Hertz, we will consider the effects of the @5 operator,
which is expected in a Landau-Ginzburg-Wilson
Hamiltonian with no @ —@ symmetry, on the two

known fixed points: Gaussian and %ilson-Fisher.
The nature of this perturbation on the first is ex-

actly known: marginal in d =
3

and relevant for10

d & =. Thus, there is a possibility of a "@5fixed

point" in an e5 expansion (F5=5 —31/2). However,
in Sec. II, we will show that this possibility is not
realized: To first order in ~5, no fixed point associat-
ed with a pure @5 theory exists. Lacking a fixed
point at this order, there can be none at all, within the
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framework of the e5 expansion T. his property persists
for all odd ( «3) powered single-component field
theories. (For multicomponent theories, tensorial
couplings may alter this conclusion. )

The effect of P' on the Wilson-Fisher fixed point
may be calculated in the well-known e~ expansion
(eq—=4 —d). The O(s4) result is contained in the
general result of %egner5: It is strongly irrelevant for
all d ( 4. In Sec. III, we present results to O(e42).

No longer an "eigenoperator, " this perturbation
mixes nontrivially with $2%2/. After diagonaliza-

tion, both eigenperturbations are found to be still ir-

relevant at d =3, thus ruling out the possibility of a
"fluid fixed point" splitting off from the usual (t"
one. These two results allo~ us to conclude that
fluid systems belong to thc Ising universality class.

The two cigenoperators represent two distinct
sources of asymmetric contributions. Recently,
Vause and Sak, working to O(a4), calculated the ef-
fects on the equation of state of the $' term only; the
other eigenoperator was not included. As the ex-
ponent calculations in Scc. III indicate and as shown
in detail in a separate paper, 7 the operator omitted
from Ref. 6 generates precisely those terms usually
associated with the "revision" of the temperaturelike
variable to include both true temperature and
chemical-potential dependence. Thus this operator
guarantees the universal occurrence of a ~r ~' singu-
larity in the fluid diameter ~here t ~ T —T„n is the
specific-hest exponent and the diameter is defined by

pq —=(ps, „;q+p„,—p, )/2. In a precisely symmetric
theory, the diameter should be zero. In general, ana-

lytic terms are possible leading to the law of the recti-
linear diameter, p~ tx t. Thc two ckgcnopcrators dis-
cussed in Sec. III lead to two singular contributions

P+43 P+d 5
) r ( and ) r ( where p is the coexistence curve
exponent and A3 and 55 are the correction-to-scaling
exponents calculated here, with h3 = I —u —P exact-
ly.

%e therefore consider an interaction Hamiltonian

go
5 x . As is usual, we define a dimcnsionless

coupling constant uo by go = uop,
' where p, is an arbi-

trary mass scale. The p, independence of the bare
theory is expressed in the following renormalization-
group equations for the renormalized N-point vertex
functions I'. q(

~

p +P(u) — q—(u) I')() '=0 .8 (~)
Bp, Bu 2

(2.1)

The functions P and r) are functions of the renormal-
ized dimensionless coupling constant u

q =P lnZ (2.2a)

(2,2b)

and are finite, even in thc limit of infinite cutoff
(A ~) or at the borderline dimension, &5=0.

At the lowest order, thc precise renormalization
scheme is not important. %'e can choose, e.g. , the
following conditions of renormalization:

e,r.(2)(k =0) =1. Fs(')l„=u,",
k

where sp stands for symmetry point: k&
~

k&
= (5 gu —I )p2/6. Writing the relevant bare functions
as

(2.4)

Au2
I (') =k' I — ' +O(u,') (2.5a)

2

Is =uop, I+ +O(uo)
45' Cu0 4 (2.5b)

we have

where Z is the wave-function renormalization constant.
The renormalized vertex functions are defined by

I (N)(u ) Zn/21 (&)(u ) (2.3)

II. $5 FIELD THEORY 5A u2
uo-u 1 —C+ —+

2
(2.6a)

As discussed in Sec. I, the appropriate approach to
a @5 fixed point is an expansion around the Gaussian
or free field theory in a5, a5 = 5 —3d/2. We will show
in renormalized field theory that no fixed point exists
in such an expansion. The method is described in
detail in Brczin et al.9 and Amit. '0 To study the criti-
cal (massless) theory in this case, we must require
the vanishing of the renormalized vertex functions,
I")) '( p =0) =0, N =1, . . . , 4. These conditions are
met for N = I, 2, and 3 by the usual requirements of
a st;cond-order transition and the appropriate choice
of critical parameters (temperature, pressure, and
density). Although no external mechanism is avail-
able to keep I =0, we impose this condition to seek
a P5 fixed point. If successful, the stability of such a
point against Q' insertions would have to be explored.

Z - I+(»'/a, ) +" (2.6b)

where A and C are contributions associated with the
diagrams in Fig. 1.

A + I d
24 dk~

C 5 l5

FIG. 1. The leading order diagrams of the two-point and
five-point vertex functions are shown for the ttl5 theory and

3
e (& 1. (~ F5=5--d. )



From Eq. (2.2) and these expression, we get

P(u) = —esu —(2C +5A ) us

g(u) = —2Au' .

(2.7a)

(2.7b)

I 11S
Evaluating the diagrams we have ~ =

720' C
so that

P(u) = —&su ——"u' .
16

(2.7c}

%e see that there is no nontrivial fixed point at this
order. Higher-order terms (e.g. , u') can never pro-
duce a fixed point in the e5 expansion. Even if the
signs were favorable, solving P(u') =0 formally will

produce u' —0(1) with es corrections. Because
P(u) is expected to have only an asymptotic expan-
sion, finite-order calculations are not likely to be
believable. If a convincing method were found, it
should have nothing to do with the ~5 expansion.

This result for $s is typical of all single-component
odd-power field theories @2~+'. The above analysis
can be repeated, requiring I (~) =0 for N =1, . . . ,
2P. The critical dimension is now 2(2P +1)/(2P —1)
and there is a possibility of a fixed point if ~2~+1 =—2p
+1 —[d(2P —I)/2] is positive. The diagrams
needed for the computation of an equivalent C in Eq.
(2.5b) consist of triangles with sides of r~, r2, and rs
lines, r~ + r2+ rs =2p + I (cf. Fig. 2). Similarly, for
A they are like Fig. I i*.xcept with 2p legs. Only these
diagrams give a pole in ~2~+1. The condition for no
fixed point is

I's = us+8&ss(1 Auo) t lnr } (2.1 1)

where v5 is the quintic coupling constant, A and 8
are constants, and r is the susceptibility. If
Au0 & 1, this can indeed be exponentiated into

„ l e5-(5/2) gl/(2-q)
I 5=85f (2.12)

thereby locating a fixed point value for v5. Ho~ever,
another choice for I"4

(uka(' + k +2ks )
4

3
gives an additional term:

(2.13)

I s = us(1+ cua lnr ) +8 vss(1 —A 'uo) (—lnr ) . (2.14)

not preclude the existence of multicomponent odd
fixed points. For such systems with. tensor couplings
the appropriate invariants will ~eight the various
terms in Eq. (2.9) differently. Since not all the terms
are positive, condition (2.8) may be violated, leading
to a fixed point. "

Of collfse, Valis and Hertz recognize that a pttre @s

theory has no fixed point. They propose that a quar-
tic term of a particular nature may stabilize the quin-
tic theory. They choose a form for 14

(2.10)

~here k1 are the channel momenta and ~ = ~4=4 —d.
They obtain the following form for I 5..

2C+(2p+l)A &0

On evaluating the integrals, this becomes

I'((2P + I —2r;)/(2P —I))
(r,!) 'I'(2r;/(2P —1))

(2.8)

-)1.5/(2-g)
r5 = vsr (2.15}

This comes from the single loop diagram with one
quartic and one quintic vertex and is present for all ~.
In fact the first terms alone exponentiate to (at the
same order)

(2P + 1)!2P!I'((2P + I)/(2P —I ))
(2.9)

In the Appendix we present a bound to show that
this is satisfied for p ~2. These considerations do

where h.s is the anomalous dimension of the $s inser-
tion (cf. Sec. III). This represents the nontrivial P"
correction to the quintic eigenvalue. At higher order
in u, operator mixing occurs but a similar result holds
for the eigenoperator for all ~ if the true I"4 is used.
Thus, these diagrams can be ignored (and an expan-
sion in cs is possible) if and only if Xs —0. This is a
restatement of the general principle that a new fixed
point of this character is associated with a marginal
eigenvalue since the quintic eigenvalue is ~5+ A5—A5. With such a term properly included as in Eq.
(2.15) it is clear that no fixed point exists near the
quartic fixed point as ~q small.

The ansatz Eq. (2.13) is suggested by the spherical
model for which I 4 can be computed exactly:

FIG, 2. The diagrams determining the constant C fcf. Eq.
(2,8) in the text] for @2&+1 theory consist of triangles each
side of which have r1, r2, and r3 legs with r1+ r2+ r3 = &P + &.

I 4(P&.P2.Ps P4) = (2.i6)
I+—", g(k, ) —i

M

where k~ =P~+Pq and ff is the 1-loop integral'

1

ff= J d [ (I — )k'+m'] '~' . (2
0
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This is obtained by noting that I 4's diagram expan-
sion consists of a geometrically summable chain of
1-loop bubbles. For m =0 and u =u', 14 —u'k1'.

Equation (2.13) is only put forward as a counterex-
ampie to Eq. (2.10) which fails to represent the full

14 in that it suppresses, for example, the one-loop
contribution included in Eq. (2.14). Equation (2.13)
picks up this contribution because it is zero only if all
the momenta are zero. As noted above, the exact I 4

always gives rise to a term similar to Eq. (2.15) which
is sufficient to spoil the analysis of Valls and Hertz as
long as A.5 & 0. This will be shown in the following
section.

III. ODD PERTURBATIONS AT THE SYMMETRIC
FIXED POINT

d'xd'(x)1
5

5 f
(3.la)

A 3
—=— d4xd)2(x) )7~$(x)

These are the only operators that have the same
naive dimension (at d =4) of +I, so that in an p ex-
pansion, they are the only ones that mix.

Since the method given by Amit et a/. " for analyz-
ing nearly degenerate operators is well documented
there, we will only give a brief indication of the cal-
culation.

I,' '(a =3, 5) denotes the W-point vertex function
with the insertion of A, . The multiplicative renor-

Having eliminated the possibility of a d)' fixed point
separating from the Gaussian fixed point, we now turn
to the stability of symmetric fixed point. In this
section we will drop the subscript 4 and write ~ =4 —d.

A study of $' perturbations on a d~ theory is en-
tirely appropriate for fluid systems which lack the in-
version symmetry of a magnetic system. Further, the
requirements of a second-order transition only give
I ~~' =0 for Ã =1, 2, 3 and thus we expect the pres-
ence of all the others. The identification of the order
parameter for the fluid system is not simple '" but
whatever order parameter is chosen, the. possibility of
asymmetric terms is clearly important.

The first order in p, the effects of $ perturbations
at the symmetric fixed point are well known. ' They
are eigenperturbations (to lowest order) and
anomalous dimensions can be obtained (to lowest
nontrivial order) without considerations for "off-
diagonal" corrections. At second order, the full
problem of operator mixing must be analyzed.
Anomalous dimensions will appear as eigenvalues
of a matrix. For the $5 case, mixing occurs between

J» d'xy'(x) and Jd'xy'(x) ))'y(x).
Our notation will be the same as that of Ref. 11

with the operators to be inserted (at zero momentum)
chosen to have the same naive dimension, I —3e/2:

malizable pair of vertex functions we will need is
3

r»'»= Xe/ek, 'r&»t, „

I'5 = I —5aup+( —a +20b)up
- f5' 25 (3.2a)

1I'5 =0+0 ——e(1 —p)up
2

- I5)I'3 =0+ 10au(2) —(15a2+55b)up3
A l3) 1I'3 ——I ——a (I —-p) u()2 2

+(—a + —b+ —e)(1 p)up4 2

(3.2b)

(3.2c)

(3.2d)

The O(up3) two-loop terms in Eq. (3.2c) do not
enter the calculations of eigenvalues but are needed
to prove consistency to O ( p ) .. Diagrams corre-
sponding to Eq. (3.2) are given in Fig. 3. In Eq.
(3.2) up is the bare dimensionless coupling constant
related to the bare coupling go= uop, '. For details of
the (b4 theory see, for example, Ref. 10. The sym-
metry point used gives, to this order, the same in-

lO I

I

z

FIG. 3. The diagrams for the dimensionless matrix I bl'l

are shown to two loops. A crossed line represents deriva-
tives coming from A3.

r»5» = r(5»i

where the symmetry point (sp) is defined by

k( kj = (I 8'1 —I )/(», —2); I, =3
~ 5. We find the

dimensionless matrix I (cf. Ref. 9) at two loops to be
given by
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tegrals as in the $' case":

g= —(I+—); b= (I+—p); c=——. (33)1

8e

The eigenvalues of the anomalous dimension matrix

y are
10 685—6+—6
3 324

(3.4a)

g3 = ——6+—6
4 19
3 162

(3.4b)

Taking into account the naive dimension the condi-
tions for irrelevance are co, =1 ——~ —A., )0. To the
order calculated we find at e = 1

the equation of state. A phenomenological analysis
including both effects has been given by Ley-Koo. '

A detailed discussion of the renormalization-group
calculation of the free energy and equation of state is
deferred to Ref. 7.

We note finally that all other odd perturbation such
as $7, $9, . . . are strongly irrelevant at d =3 at the
Gaussian fixed point and, at first order in e, become
even more irrelevant at the Wilson-Fisher fixed
point. 5 Therefore, we do not expect any such terms
to affect the fluid-magnet universality indicated by
the $' calculations given here.

OJ5 =0.72

o)3 =0.95

O.sa)

(3.sb)
ACKNOWLEDGMENTS

so that both perturbations are irrelevant at d = 3. We
note that Eq. (3.4b) is consistent with the result
deducible from an analysis of the equation of motion7

6' —2 1 1
co3 = + 2 ————

YJ
2 p 2

(3.5c)

The correction-to-scaling exponents are 6, = co;v.
Equation (3.5c) gives

A3 =1 —n —P (3.6)

which is, of course, confirmed to O(p') by the
present calculation. This term is responsible for

P+h3 (=~t ~' ') singularities in the fluid diameter.
The complete equivalence to revised scaling does not
fall within the massless formalism used here but is
given in Ref. 7.

The @' exponent 45 has the nearly useless expansion

65 = T~(I +2p —
—,

8
p~) +O(p3) =0.64 . (3.7)

This differs from the estimate 55 = ru(p = I) v(p = I)
-0.46. An accurate value for this exponent awaits
more detailed study. " As an example

= +1.85
1+—E

594

(3.8)

This leads to b,5
—1.18 while a similar Pade for 55 it-

self gives 55 —1.02. Therefore anything in the range
0.5 ~ 5 ~ 1.0 seems compatible with the present result.

This uncertainty in the exponent is transmitted to
I

APPENDIX

Here we supply some mathematical details for the
analysis of a massless pure $ (m odd) theory. The
interaction term is

Jt d~x$"(x) (Al)

The critical dimension is

d" = 2m/(m —2)

We define e by

(A2)

p = (—m —I ) (d' —d) (A3)

so that in p expansions, d =2(m —p)/(m —2) and gp
has dimensions of (mass)'.

For the two-point function, we need to evaluate

m 2 ' 2D(p;, d) = Qd"k;(2 ) (k;) '
p —Xk,

i 1

Using coordinate space representation, this can be
done exactly. The result is (Sq = volume of sphere in
d dimensions):
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D(p;m, d) =
m —2

d

(27r) ~

I'[(d/2) —1]I'
[ I —[(d —2) (m —2)/2] ]

2 2 I'[(d —2) (m —I )/2]

2'r()
Defining up ——p'gp[Sq/(2n , )~]t 't, we write the

(As)

The contribution, including combinational factors, to
G~" is just P

up (m —2) & 2 ~ m

m! 2 tel —2 ftl —2

The factor A in Eq. (2.5a) is the coefficient of up /p

m 2

I

result of the simple pole term (apart from a factor of
—2).
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(A6)

in the formula [with m =5 for Eq. (2.5a)]. So

'(m —2) IT 2
T

m
2

i l

The sign in front of Au(/e comes from p'~ =1/6'".
For the m-point function, only "triangle" graphs

(Fig. 2 ) give rise to simple poles in e. Each triangle

graph has rI(i =1,2, 3) legs in its three sides with to-
tal of X r; = m legs. The integral associated with such
a side is just D (k +q;r;+ l,d). Here k is a momen-
tum around the triangular loop and q is some exter-
nal momenta. Finally wc must integrate over k. The
pole term is independent of external momenta so
that

d~k
1(rI,rz, r3) =Res JI ,D(k;r—t+1,d)D(k +p;rq+ 1,d)D(k + q;r3+1,d)

2w '
Sg

~D (1;rI + l,d )D (1;rq+ l, d )D (1;r3+1,d )
22m ~

where D(1; ~, ) is a shorthand for the coefficient in (A4) and Res represents the residue. The weight of each
of these (for G t ') is

—1 l
m'.

,
—

—, T (m;r&, rq, r3) rI!rq! r3!
m!

where T is the trinomial coefficient m!/(rt! rq! r3!). Making the usual absorption of spherical factors into uo, we
have

(A9)

so that the factor C for Eq. (2.5b) is

(
I f1)m-2

C=, ,
I' $ T (m;rI, rq, r3)RIRqR3

2
3!m! m 2

(Alo)

where

2fI

m —2
i

Prom Sec. II, the condition for no fixed point is 2C & —mA, i.e.,

(All)

X T~(m;r&, r&, r3) R&R&R3 ) 6m m

I m —2
'

Using the representation

@+@+1 P —@+1 = lim I 2e "J„2x x"dx
2 2 a 0

we can do the sum by the formula

2p) 2f2 2f3 I dg d@XT'x 'y 'z '=
I

— (x+ye" +ze'a) (x+ye "+ze 'a)
~ 2Ã 2' (A14)

Repeated application of

lx +ye "I'« 2 lx I I y l(1+cos» . (A15)

appear. The integrands being positive, we can obtain
a lo~er bound by

(1 +cos8) i'(1 +cosItI)f de d4
& 27K 2%

(A16)

gives a lower bound for Eq; (A14) in which the an-
gular integrals 3 m 7r

(1+cosq) &,T' 3 3

0, otherwise (A17)
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so that Eq. (A16) is greater than So, the condition for no fixed point ~ill be satisfied if

(A 1 g)&

(
3 )3m/2

9 2

Performing the x,y, z integrais using Eq. (A13) wiii

lead to

1

3 (3'-6)/2g ~ re )2~
2 Nf —2

I

(A2O)

X T'RRR & 3""4'~'1(-
2

+ —,
'

. (A 19) Since the beta function 8 ~—„ for m ~3, it is easy

to check that the inequality is satisfied for m ~ 5.
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