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The melting transition for simple atomic, two-dimensional solids occurs in the Monte Carlo
computer experiments at the Kosterlitz-Thouless-Feynman instability temperature and with
first-order behavior, in contradiction with renormalization-group arguments. It is pointed out
that this melting temperature is not the thermodynamic melting temperature but an upper limit

for the stability of the metastable solid.

I recently presented an isothermal-isobaric Monte
Carlo computer simulation study on melting for a
two-dimensional Lennard-Jones system! 2 and con-
cluded that the melting transition is first order, in
contrast to the two-stage, second-order melting
behavior suggested as a possibility by Halperin and
Nelson.3~ In this present paper, I demonstrate that
the Kosterlitz-Thouless-Feynman’-? instability cri-
terion for a two-dimensional solid is satisfied at the
observed first-order melting transition for my Monte
Carlo experiments. This is consistent with the recent
computer simulation® and laboratory experiment!® for
the melting of the'two-dimensional electron solid
where the order of the transition has not been estab-
lished but is inconsistent with renormalized-group ar-
guments that the transition should be continuous.
This also supports my interpretation of the Frenkel-
McTague!! and Tobochnick-Chester!? computer ex-
periments; i.e., they were simulating a constant-
density, first-order melting transition for the two-
dimensional Lennard-Jones solid.? Finally, the sug-
gestion that my computer experiments may have
missed the hexatic phase because of ‘‘critical slowing
down’’ of the relaxation processes near the alleged
second-order melting transition (e.g., see Ref. 6) is
not supported by my findings, since my observed
melting temperature equals the Kosterlitz-Thouless-
Feynman instablility temperature and this instability
temperature is significantly greater than the thermo-
dynamic melting temperature.

Kosterlitz and Thouless,” and independently Feyn-
man,? pioneered the application of the dislocation
model of melting for a two-dimensional solid. From
this theory of melting, the Kosterlitz-Thouless-
Feynman (KTF) criterion for the stability of a solid
phase against the formation of isolated dislocations
was found to be
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where T,, is the melting transition temperature, a is
the lattice constant, and u, A are the Lamé elastic

coefficients. Hence, the parameter K shows a
universal discontinuity of 167 at the instability tem-
perature which Kosterlitz-Thouless and Halperin-
Nelson identify with the thermodynamic melting tem-
perature. The point of view argued here is that the
metastable solid does indeed become unstable at this
temperature, but that this bears no relation to the
thermodynamic melting transition; the dislocation-
unbinding instability provides a path by which the
system reaches the stable (liquid) phase which be-
comes the thermodynamically stable phase at a lower
temperature.

I have extended my previous studies? on two-
dimensional melting of a Lennard-Jones solid by cal-
culating numerically the Lamé coefficients as a func-
tion of temperature and density. Expanding on my
earliest study,' I have performd isobaric-isothermal
Monte Carlo calculations for Lennard-Jones 256- and
529-atom systems to study melting at two low pres-
sures near the triple-point pressure (Po2/e=0.01
and 0.05) and at one high pressure (Po?/e=1).2
The constants (€, o) denotes the well depth and size
parameters of the Lennard-Jones 6-12 interatomic
potential. For the 529-atom system, approximately
11 million configurations were generated for each
temperature and pressure. By monitoring the various
thermodynamic and structural measurements in the
configurational averaging, I carefully established that
the system was not continually relaxing to some
unachieved state near the melting transition (~ 10°
configurations were needed for equilibration); i.e.,
there was no peculiar behavior in the convergence to
equilibrium, such as a ““critical slowing down’’ of the
system (see Ref. 2). In all cases, the melting transi-
tion was found to be first order."? In Fig. 1(a), I
present the equilibrium density po? for the Lennard-
Jones system of 529 atoms as a function of tempera-
ture kT /e and for fixed pressure Pa?/e=0.05. At
kT/e=0.45, the solid melts into a liquid after
~ 5 x 10° configurations with a dramatic decrease in
equilibrium density. The details of the Monte Carlo
method, the thermodynamic and structural properties
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FIG. 1. (a) Equilibrium density as a function of tempera-
ture for the Lennard-Jones 529-atom system at a fixed pres-
sure Po?/e=0.05 near the triple point pressure. (b) The
Kosterlitz-Thouless parameter K as a function of tempera-
ture for the Lennard-Jones 529-atom system at fixed tem-
perature and density corresponding to an average pressure
of Pa?/e=0.05.

of the two-dimensional condensed phases, and the
melting process may be found in Refs. 1 and 2. For
the Lennard-Jones 529-atom system at fixed tem-
peratures and densities corresponding to an average
pressure of Po?/e=0.05, I have now calculated the
Lamé coefficients using the exact expressions origi-
nally derived by Squire, Holt, and Hoover.!* From
the measured Lamé coefficients and Eq. (1), the
Kosterlitz-Thouless parameter K was obtained and is
presented as a function of temperature in Fig. 1(b).
We note that at the observed instability temperature
kT,/e=0.45, K has approached, by extrapolation,
the approximate value of 167, while at the neighbor-
ing temperature of 0.44 the K of the solid is signifi-
cantly above 167r. Using my experimental elastic
constants data for temperatures below 0.45, I esti-
mate that the instability temperature based on the
Kosterlitz-Thouless criterion is 0.45 +0.005.!* The
measured value of K at the observed melting tem-
perature is significantly lower than 167 because of
defect formation in the solid constrained to remain at
a solid density. I conclude that my experimentally
observed melting temperature? is consistent with the
Kosterlitz-Thouless-Feynman instabiltiy criterion and

that the transition at this temperature is consistent
with a first-order phase change. The first-order
behavior contradicts the prediction based on the ap-
plication of renormalization-group arguments to the
dislocation model for melting where it is predicted
that the two-dimensional melting transition is con-
tinuous.

A detailed free energy analysis yielding the phase
diagram of the two-dimensional Lennard-Jones sys-
tem finds that the thermodynamic melting temperature
is approximately 0.415.' This is in sharp contrast to
my finding that computer experiment and the
Kosterlitz-Thouless-Feynman theory give a melting
temperature of ~0.45. However, this may be
resolved by the following argument. The dislocation
theory of melting only describes the stability of the
solid state in terms of the improbable existence of
solid-state defects (e.g., dislocations, disclinations) in
its equilibrium solid structure. At the Kosterlitz-
Thouless-Feynman instability temperature, a dilute
concentration of defects becomes likely and the solid
may then readily transform to the lowest free energy
phase, the liquid state. Certainly, the defect solid
with a low concentration of dislocations is not a prop-
er model for a liquid and must be in a higher free en-
ergy state relative to the equilibrium liquid state.
However, the defect solid state is an effective precur-
sor for melting to the liquid state. In the laboratory,
atomic solids do-not melt at this stability limit to de-
fect formation, but melt at, or very near to, their
thermodynamic melting temperature. This is because
of the necessary existence of a solid surface. In Fig.
2, this is demonstrated by Monte Carlo simulations
of a two-dimensional strip of 512 Lennard-Jones
atoms at a temperature (0.40) slightly below and at a
temperature (0.42) slightly above the thermodynamic
melting temperature of 0.415 and initialized at the
appropriate low-pressure, solid-state densities for the
respective temperatures. Periodic boundary condi-
tions exist at the strip’s horizontal boundaries, while
the two vertical boundaries are free surfaces in con-
tact with a vapor phase region (see Ref. 16 for addi-
tional technical details). The trajectory plots are gen-
erated from 5 x 10 consecutive configurations and
are typical of the equilibrium atomic behavior of the
strip over a continuous simulation of ~ 50 % 10° con-
figurations for each temperature. The simulations
clearly demonstrate a stable crystal phase with
premelted surfaces at k7 /e=0.40 [Fig. 2(a)] and a
stable liquid phase at kT/e=0.42 [Fig. 2(b)]. Sur-
face premelting of a three-dimensional crystal has also
been established by computer simulation.!” The
results in Fig. 2 also provided nice confirmation that
the earlier estimate of the thermodynamic melting
temperature'® is valid. In the computer experiments,
it is easy (actually, too easy) to exclude the presence
of surfaces by imposing periodic conditions at all
boundaries of the computational cell and to effective-
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FIG. 2. Atomic trajectory pictures of a two-dimensional Lennard-Jones system with two free surfaces for a temperature slightly
below (a) and slightly above (b) the thermodynamic melting point of 0.415.

ly constrain the solid to superheat well beyond the
thermodynamic melting temperature.

We may imagine other types of fluctuations that
may result'in a different stability limit for the ‘‘sur-
faceless’’ atomic solid. For example, in a hetero-
phase fluctuation,'® we would consider a local crystal
region of a few tens of atoms which would ‘‘premelt”’
(i.e., a liquid cluster embedded in the crystal matrix).
However, because of the density difference between
the liquid and solid states and because of liquid layer-
ing neighboring a crystal boundary,'® the energetics
would be prohibitive, and this heterophase precursor
to melting would be very unlikely. I conclude that
the dislocation-dissociation mechanism is the most
efficient precursor to bulk melting of the metastable
solid.

In summary, the dislocation-unbinding model for
two-dimensional melting leads to a theoretical insta-
bility temperature that is consistent with the experi-
mentally observed instability temperature of the solid
phase. However, this melting temperature is not the
thermodynamic melting temperature, this being much
lower; it is a temperature corresponding to an upper

limit for the stability of the metastable, two-dimen-
sional solid. Also, the renormalization-group argu-
ments applied to the Kosterlitz-Thouless-Feynman
model predict that the melting transition is continu-
ous, in sharp contrast to the first-order character ob-
served in my numerical experiments. I conclude that
the dislocation-unbinding theory for melting does not
give a correct thermodynamic theory of melting. The
thermodynamic melting temperature is significantly
lower than the temperature for which the solid be-
comes unstable to dislocation pair dissociation (the
Kosterlitz-Thouless-Feynman temperature), and the
thermodynamic phase transition is first order.

It seems likely that my findings and conclusions for
the melting of a two-dimensional atomic solid are
also valid for three dimensions.
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