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The extended scaling relations between the critical exponents of the 8-vertex model can be

derived by a mapping of this model onto the Luttinger model. The equivalence of this method

to the one that connects the 8-vertex model to the Gaussian model is discussed. The Luttinger

model is equivalent to the Gaussian model. Its operators are identified as vortex and spin-wave

operators. The spin-eave operator cos4@ is present in the critical 8-vertex Hamiltonian via an

umklapp process. This explains the Kosterlitz-Thouless transition in the 6-vertex model, and

resolves questions concerning the validity of the lattice continuum limit in the treatment by

Luther and Peschel.

INTRODUCTION

From the Baxter solution' it is known that the criti-
cal exponents in the 8-vertex model vary continuous-
ly. The solution gives the exponent of the energy
operator (the specific heat). It has been conjectured,
mainly on numerical evidence, that the exponents of
different operators satisfy extended scaling relations,
such as '

x x 1, x ~4X

x~ is the correlation function exponent of the ener-

gy operator, x~v that of the electrical field, and x&

that of the crossover operator (which in the Ashkin-
Teller language becomes an energy operator).

Recently these relations are derived by exploring
the relationship of the 8-vertex model to the general-
ized Villain model. 4' This is a Gaussian model with

interactions that introduce vortex and spin-wave exci-
tations. Kadanoff and Brown6 used the operator ex-
pansion method. Knops7 on the other hand sho~ed
that the 8-vertex model can be imbedded in the gen-
eralized Villain model. After a few initial renormali-
zation transformations, the 6-vertex model (i.e., the
critical line in the 8-vertex model) will be described
by the exact soluble Gaussian model with spin-wave
interactions of type cos4$. The presence of cos4$ is

necessary to describe the infinite-order phase transi-
tion in the 6-vertex model.

The approach by Knops appears to be similar to an
earlier one by Luther and Peschel. s The Luttinger
model (= massless Thirring model) is a one-
dimensional quantum-field model of massless fer-
mions. ~ In Sec. I it will be shown that this model is
the quantum-field version of the two-dimensional
Gaussian model. The XYZ model (chain of Heisen-

berg spins) is in the same way the counterpart of the
8-vertex model. '0 Luther and Peschel showed that the
XXZ model (which is equivalent to the 6-vertex
model) maps, in the limit of small lattice constant,
onto the Luttinger model. They derived the relation
xz'v- —xqsv. Luther and Peschel's and Knops's results

should be the same. They overlooked however the
presence of the spin-eave operator. By a more care-
ful review of their calculation it will be shown in Sec.
II that this operator is hidden in the 0. cr,'+~ operator
as an umklapp process. After this adjustment the
results agree with those of Knops. The XXZ model
(6-vertex model) is equivalent to a massive-Thirring
model (sine-Gordon model).

In order to be able to compare the two methods,
we must first establish in detail the relationship
between the Luttinger model and the Gaussian model
(Sec. I). The generalized Villain model not only
describes the critical behavior of the 8-vertex model,
but also that of virtually all other 20 systems, e.g. ,
the planar model (its Kosterhtz-Thouless transition
describes superfluid He films), the sine-Gordon
model, the discrete-Gaussian model (its roughening
transition describes the growth of a crystal surface),
and the 20 Coulomb gas. In the past these models
have already been shown to be related to the
massive-Thirring model. " ' This is a Luttinger
model with extra fermion interactions that make the
model massive. Because of the more fundamental
nature of the Gaussian model, these equivalencies
become very simple in the presentation of Sec. I.
The transfer matrix of the Gaussian model is equal to
the infinitesimal time-evolution operator of the Lut-
tinger model. Moreover we can identify all vortex
and spin-wave operators with fermion operators of
the Luttinger model.
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Kadanoff and Brown and Knops' showed how to
identify the operators of the 8-vertex model to those
of the Gaussian model, without referring to the 10
quantum-field models. In Sec. II we will first
translate the 8-vertex operators into the Pauli-spin
operators of the XXZ model. Next, we will extend
the Luther and Peschel method, and identify each of
them to a fermion operator in the Luttinger language.

Some of the identifications that are reported in this
paper are new. It is shown for example that a direct
electrical field in the 6-vertex model (i.e., a trans-
verse field in the XXZ model) corresponds to the
operator Bi+I}r (the density operator) in the Gaus-
sian (Luttinger) language. This leads to the remark-
able result that the 6-vertex model in a direct electri-
cal field can be used as a model to describe a
commensurate-incommensurate transition (Sec. II).

This does not mean that the quantum-field method
is more powerful ~ The same results can be obtained
by the operator product expansion method or by the
renormalization method of Knops. There was some
hope that the quantum-field models might give more
insight in the operators that do not fit in the present
scheme, e.g. , the magnetic field operator of the 8-
vertex model and the Potts operators.

This is not the case, since the set of fermion opera-
tors of the Luttinger model are precisely the same as
that of the Gaussian model. The quantum-field
method discussed in this paper appears to be a third
equivalent way of showing the relationship between
the spin models and the Gaussian model, and of
deriving the extended scaling relations for the critical
exponents of the spin models.

I. EQUIVALENCE OF THE LUTTINGER MODEL
TO THE GAUSSIAN MODEL

The Luttinger model was introduced in the context
of a one-dimensional electron gas (of spinless elec-
trons). ' Figure 1(a) shows schematically the disper-
sion relation in a tight-binding approximation. Extra
interactions will only influence the low-lying excita-
tions, i.e., the states at the Fermi surface. A trunca-
tion of the dispersion relation far away from kF is not
expected to change the physics, while it may simplify
calculations. Identify the states around +kF with
type-"1" particles (moving to the right) and those
around —kF with type-"2" particles (moving to the
left)

f[(k) = p(k +kF), &2(k ) = f(k —kF) . (1.1)

Then we can represent the Hamiltonian by the linear-
ized form

Hp = X vk [Qt(k)$] (k) $2(k) $2(k) ) . (1.2)

This is the diagonal part of the Luttinger Hamiltoni-
an. The particles are fermions; they satisfy anticom-
mutation relations

(1.3)

In real space the model is considered to be continu-
ous and periodic over a length L. Then strictly
speaking the energy levels are not bounded from
below (—~ ( k (~). This means that there is no

(a) (b)

k

FIG. 1, Dispersion relations for an (a) electron gas in a tight-binding approximation and the XX model, and for (b) the
Luttinger mo~~~
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y (r) - L, '" X-e'""y (k)

one finds that p;(k) is given by

p;(k) =
Jl dr e'"'p;(r) = Xy; (0+l)y;(I) LA gg, 0

—.
I

(1.6)

The constant A is chosen such that the expectation
value of p; with respect to the ground state is zero.
A is only finite when a cutoff procedure is used
(A =1/2wa = 1/2L number of states).

Mattis and Lieb'5 showed that, in the above-
menttoned continuum limit, p~(k) and p2(k) have a

boson character

[pi(—k), pi(i)] = [p2(k), p2( —i)] =
2

41 (1 7)
kL

They are raising and lowering operators of Ho

[H0, pi(k) ] = vk p, (k),
[H0. p2(k)]- —vkp2(k) . (1.8)

Therefore the fermion operators in Ho can be re-
placed by these boson operators

H, = "
X [p, (k)p, (-k) +p, ( k)p, (k)l +-Z,

k&0

"
X—,

'
[p, (k)p, (—k)+p (—k)p (k) 1+—,&0

sl]

(1.9)

In the Luttinger model a nondiagonal boson pair in-

teraction is added,

Hr -H0+ "
X [p)(k)p2( —k) +p2(k)pi( —k) ]

a&0

ground state. In order to keep the model physically
meaningful we have to use a cutoff for large k. That
is, we visualize that our model is really placed upon a
lattice with a small lattice constant. %hen in the
ground state of the lattice model all states with ~1, & 0
are filled, the continuum limit leads to a Dirac sea
that is filled up to eI, =0.

Consider the momentum representation of the
density operators

p, (r) - Q,'(r) P, (r) —A

Its effect on the density operators is given by

this brings Hq in the diagonal form Ho with an effec-
tive v = v cosh 2P. The diagonalization is oniy pos-
sible for IX/vI & 1.

In addition to the fermion and boson representa-
tion of HL there exists also a free scalar-field
representation. "'6 Define for this purpose 0+(r)
and 8 (r) via a type of Jordan-Wigner transforma-
tion

0+(r) = 2ni Jl dx [pg(x) + p, (x) ]

Their derivatives are the density operators

—O~(r) =2m i[p2(r) + p)(r)]
Qf

Notice that the periodic boundary condition
0+(r) =0+(r +L ) is ensured via the normal order-
ing of the p;(r) (the constant A).

In its real-space representation HL can now be
rewritten

QQ~

H, = — J' dr -(v+X)
2n' 4 Qf

QQvt

+ —(v —Z)4 Qf
(1.16)

Here we dropped the constant —,Eo. Next define a
momentum operator p and position operator q

p(r)=, q(r) = —0, .
8Q

2% /I'

lt is easy to check via Eq. (1.7) that p and q indeed
satisfy canonical commutation relations

[p (r),q (s) ] = i 8(r —s)—
[p(r),p(s) 1 = [q(r),q(s)] =O . (1.18)

HL reduces in these operators to the free scalar-field
Hamiltonian:

HL, = J)d» —(v —X)p'(r)+ (v+X)
2 2m 8f

e's«'[p (k)+ p (k)le ' «'=e+~[p, (k)+ p, (k)].
(1.12)

%hen

The diagonalization is simple. %'e use a canonical
transformation e's'~'. Define S(p) to be

S(P) = p)(k) p2( —k) —p2(k) p(( —k)

k)0

(1.19)

The importance of this representation is, that it
makes the equivalence of HI to the Gaussian model
obvious.

Consider a two-dimensional square lattice with at
the sites r variables Q( r ) that can take all real
values. The P( r ) interact via nearest-neighbor
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Gaussian interactions

Hg = X——,
' K [qh (x,y) —d (x + s,y) ['

+ —,
'

K» [d (x,y) —P (x,y +s) ]' . (1.20)

In the limit of small lattice constant s the partition
function reads

ZS(K„,K») = X exp' —Jl dy JI dx E„—'

(y(+) I

r

+-'K 0&
gy

1

Zo(K„K») = tr& exp i J dr—HL (v, h. ) (1.22)

of a free quantum-field Hamiltonian. (For a more
detailed proof in the context of a Landau-Wilson
Hamiltonian see Scalapino and Sears. ")So the
transfer matrix of the Gaussian model is the infini-
tesimal time-evolution operator of HL, with the iden-
tification

u + li. rrK„, (1 —X)rrK» 1 (1.23)

Despite its almost trivial nature, the Gaussian
model plays an important role in our understanding
of critical phenomena in two dimensions. The model
is critical for all EC„, E~. Its critical exponents vary
continuously with the parameter $

(1.21)

%hen the y direction is interpreted as a time axis, the

K» term represents the kinetic energy p'j2K» (with p
the momentum). The partition function is equal to
the trace over the time-evolution operator for com-
plex times t

normalization transformation their critical points flow
towards the Gaussian model, which is exactly scale
invariant. Properties such as the extended scaling re-
lations between critical exponents are easily obtained
and understood in the context of Hg.

In the Luttinger language, the critical nature of Hg
is reflected in the absence of a gap in the energy
spectrum (it is linear); the model is massless. When
the Hq interactions are added that are the equivalents
of the spin-wave and vortex interactions, the model
becomes massive. Stated more precisely: Introduce
in H~ an extra interaction

H-H (K„,K, )+ ', J dr 0,(r) . (1.25)
2'lr A

0;( r ) is a local operator and u; its conjugate field.
Let the free energy show a singularity with respect to
Q;

f-lul ' (1.26)

g =(0,(r+ r') 0(r'))„0-r (1.27)

Scallllg lmphes that x, +y;=2. Ffonl Eq. (1.22) lt

follows that in the Luttinger model g corresponds to
a time-dependent correlation function in the ground
state ~0). For equal times

g - (OiO;(r + r') 0;(r') i0) —r (1.28)

corresponds to a correlation between two operators in

the same row of the two-dimensional lattice.
The ground-state energy Eo of the quantum-field

model

The critical exponent y; can be obtained from a corre-
lation function. At a critical point the correlation
length diverges, i.e., the correlation functions show a
power-law decay

l[l-—ln(n'K„K ) = —arctanh—1

X P (1.24) H=Hl. (v, k)+ ', J dr 0, (r)
2lrR

(1.29)

In order to move away from criticality and see the
singularities in the thermodynamic properties, one
needs to add interactions to Hg that introduce spin-
wave and vortex excitations. This leads to the gen-
eralized Villain model. Important models such as the
planar model, the discrete Gaussian model, the two-

dimensional Coulomb gas and the 8-vertex model
(including the Ashkin-Teller model) can be imbed-
ded in the generalized Villain model. Under a re-

is equal to the free energy of the classical model and
therefore sho~s the same singularity with respect to
u;. The gap between Eo and the energy of the first
excited state is proportional to the inverse of the
correlation length

d, - g-' —fu, ]

1/y. (1.30)

First we discuss the spin-wave operators. Consider
the partition function5'

N2( r )X exp — X —[4(r) —y(r')[' g X exp[i@@(r)W(r)lu„" ''
Cg( r )) (, —,') 2 r N(T)

(1.31)

The integer variables N(r)-0, +1, +2, . . . are just as the $(r) located at the lattice sites r. When the
fugacity u» is small, the N( r ) will only take the values 0, +1. Then, only spin-wave excitations with spin-wave



DERIVATION OF EXTENDED SCALING RELATIONS BET%EEN. . .

number p are present. Since

X exp [ i@y( r )N ( r ) ]urn "——exp j 2u, cos [p y ( r ) ] }
N(r)

(1.32)

On(r ) =exp[IWP(r )] (1.33)

generates a spin-eave excitation with spin-wave
number N at site r. The corresponding quantum-
field operator is [see Eq. (1.17)]

we have effectively included an external field that
favors the values $( r ) = 2m(n(p)(n =0, +1,
+2, . . . ). The resulting system is called the sine-
Gordon model. In the limit ur 1, where the $(r)
are restricted to the values 2n (n/p) one obtains the
discrete Gaussian model. %hen on the other hand
we carry out in Eq. (1.31) the trace over all $( r )
configurations, the model becomes the Coulomb gas.

The operator

sider the operators

Ou(r) =exp[ —M8 (r)]

(2na)u[y)(r)y2(r)]u, M p0
(2n a ) [y2 (r)yt(r) ],u, M ( 0 . (1.38)

These are the operators that generate vortex excita-
tions in the Gaussian language, as we will see below.

Consider the partition function of the Villain
model"

Z= X exp X ——[8(r)-0(r')
I8Mn) ( „) 2

2nn(—r, r')]'

On(r) = exp[ —,' W8+(r) ] (1.34)
&( QO,u(R)u„~ '"', (1.39)

For N = +2 this is the boson representation of the
operator

y)(r)yt(r)=(2«) 'O2(r),
P2 (r) y( (r) = (2n a ) '0 2(r)

(1.35)

+ '
J dr [P', (r)y, (r)+y2(r)y)(r)] . (1.36)

The fermion representation for integer values of %,
other than 2, is obtained via the contraction of —,%
different 02 operators, e.g. ,

O, (r) = lim 02(r) O, (r + a)
«)0

- (2ma)' lim [y( (r) y, (r) yt (r + a) y, (r + a) ]
«)0

(1.37)

In the Luttinger language it is natural also to con-

Just as in the case of Ho, which we can represent by
both Eq. (1.2) and Eq. (1.9) this is not an operator
identity. However, as first shown by Luther and
Peschel, '~ they satisfy the same equations of motion
and commutation relations, and hence have (apart
from short-distance, cutoff effects) the same correla-
tion functions.

%hat we have found now is the well-known
equivalence of both the sine-Gordon model" and
Coulomb gas" to the massive-Thirring model

H-HL(v, x)

with 0~0~(r ) & 2m and M(R), n(r, r') =0, +1,
+2, . . . . The 8(r) are located at the lattice sites
r, the integer variables M(R) at the sites R of the
dual lattice, and the n ( r, r ') = n( r ', r ) a—re bond
variables. The vortex operator O,u(R) restricts the
values of the four bond variables around R.

O,u(R) =8(qM(R), n( r, , r, ) +n ( rq, r3)

+ n ( r, , r 4) + n ( r „, r, )) . (1.40)

For u, =0 all M(R) are zero, and no vortices are al-

lowed. The bond variables can be rewritten then as
site variables n ( r, r ') = n ( r ) —n ( r ') and the
modei reduces via y(r ) -8(r ) +2mn(r ) to the
Gaussian model. For small u„M(R) can take only
the values 0, +1. When M(R) =1, O&u(R) gen-
erates a vortex with vorticity q at site R; along a
closed path around R the sum over the difference
variables 0( r ) —0( r ') will add up to @2'. In the
limit u, 1 the n ( r, r ') become unrestricted, and
for q = 1 give rise to an interaction that is periodic
over 2m (the planar model).

The combined vortex and spin-wave operator

O, u(r) =On(r)otu(r)

generates a spin-wave excitation with spin-wave
number N and a vortex excitation with vorticity M at
site r (in the continuum limit the difference between
r and R can be neglected). In the Luttinger
language this becomes the operator

Onu(r ) = exp — 'O~+(r ) —MO" (r) —. (1.42)N,

2
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The simplest way of proving the identification of
the vortex operators is obtained via studying the
symmetries of both models. The Gaussian model is
known to have a duality transformation. ' " It ex-
changes high and low temperatures. Moreover it
maps the Villain model [Eq. (1.39)] and the sine-
Gordon model [Eq. (1.31)] into each other. lt maps
vortex operators into spin-wave operators'.

HAEC„~—
1

mEy
ON, M O2M, N/2 (1.43)

In the Luttinger language, the same effect is ob-
tained by changing the sign of p~(r). This implies
A, ~-A. and 0+~—0 and therefore proves the iden-
tification of the vortex operators,

The Gaussian model is also invariant under the di-

latation $(r) e+r $(r), Ir:; e 2r E;. Now the
spin-wave and vortex operators are mapped according
to 0~~ 0„„.In the Luttinger language this

is obtained by the canonical transformation e' (i' that

we used before to diagonalize HL.
For completeness, in the boson representation the

single-fermion operators 0; are given by

err (2&&) 0-1, 1/2i 4rl (2e a) 0l, —1/2

4, -(2sra) '"0) r/2, y2-(2ea) '"0
r, p2 .

(1.44)

As pointed out before, many properties of the
Gaussian and Luttinger model with small vortex and
spin-wave interactions can be understood from the
power-law decay of the correlation functions. Their
calculation is simple. In the Gaussian language they
are extensively discussed by Kadanoff et al. " For
the Luttinger model their calculation is described by
Mattis and Lieb's (for the fermion representation)
and by Luther and Peschel for the boson representa-
tion.

Consider the equal time multipoint correlation
function between n spin-wave and m vortex operators

g (0~+exp[-(N, /2)O+(r;)] @exp[—M/, O (r„)]~0)
i~) k

First transform to the diagonal form of HL. Equations (1.11)—(1.14) give, when we define x -e ~

n N0- &Olgexp[ —(&/2x)O (r;)] g exp[ —xhfko (r/, )]IO) .
i 1 k 1

(1.45)

(1.46)

Split each vortex and spin-wave operator in an operator e" that generates excitations and e that annihilates them

with

8+(r) A +(r) 8+(r) C+(r)
e — -e — e — e

A+(r) -— X —[—p, (-k)(e'""-1)+ pr(k)(e '"'-1)],2m I

(1.47)

8+(r) = — X —[p2(k)(e '""—I) + pr( k)(e'"" 1)],— —
L a&ok (1.48)

C+(r) —
—, [A+(r),8+(r)]+ r[p2(0) +p~(0)]

The commutator results from the relation e"+s=e"ese '" /. This relation is valid when [A,B] commutes with

both A and 8. The commutator between an A and 8 operator is given by
r r

[B~(r),A „(s)] - [8 (r),A (s) ] - ln g
g r, 1 g( —s, 1)

r

[8+(r),A (s)]= [8 (r),A+(s)] =ln —' (1.49)

with
r 1

g(r, a) =exp -2a 2e cos(kr ) —1

L k)0 k

/

h (r, a ) = exp 2/a-~ 2m sinkr
L k&o

(1.50)

The A and 8 operator are introduced because of their simple impact on the ground state: 8+ ~0) = 0 and
(0(A+=0, while by definition (O~p;(0) (0) =0. The trick is to move all es(e") to the right (left). A commuta-
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tor results for every time an e" and e~ operator are exchanged. So the correlation function factorizes into pair
contributions

spin-eave
pairs i,)

j.
, Arm, g g(, —,, 'MM)

vortex' spin-wave-vortex
pairs k, l pairs i, k

il (r, —r, , —,'W, M, )i(r„,'W, M-, )I ( r„,-,'W, M—„)]'

with 8 sgn(r, —r„). . (1.51)

The boundary terms g(r, I) from Eq. (1.49) cancel
each other, since the total vorticity and spin-wave
number are zero.

XW, = XM„-0
k I

Both g and h are only properly defined with a cut-
off in k. The usual procedure is to replace g by

r

21l' m cos(kr ) —I
g ( f, Q ) ~ exp —20'L... k

0r'+ O2 f
0,'

g (r, rr ) =g (ro, o )—r

fp
A(r, a) = h(ro, a)

(1.53)

For f & fp the results are cutoff dependent, while
at r-0, g(0,a) =It(0,a) =1. The vortex —spin-wave
pairs in g only give rise: to an extra multiplicative
constant, because h is distance independent.

The pair-correlation functions give the critical ex-
ponents x~~ of the O~~ operators

A cutoff independent description is obtained by intro-
ducing a reference length ro (»e). Equation
(1.50) implies

is well known. 5 For the case that only a spin-wave
interaction is added

& =HL(v, a)+ " -, Jtdr O, o(r)
(2m a)' (1.57)

5 —( ' —exp( —

HAIK

—K„ I
'~2) (1.58)

Suppose that we have been able to show that a
specific model can be imbedded in the generalized-
Villain model, and that its "critical" Hamiltonian can
bc described by Eq. (1.57) with p =4. Lct ln thc

(using the Luttinger language) it is shown in Fig. 2
(rrE =e '~).

The value of x„ is sufficient for a zeroth-order ap-
proximation of the renormalization equations. %hen
x~ & 2 (x~ & 2) one flows towards (away) from the
Luttinger model (which itself' is scale invariant). In
the shaded domain the model remains critical (mass-
less), while in the nonshaded domain it is massive.
An equivalent statement is, that in the (scaling) limit
a ] 0, one is allowed to neglect O~ 0 as long as x~ & 2.
Equation (1.54) implies that O~ 0 is proportional to
a ~. So the second term in Eq. (1.57) is proportional

to e ~ . A-long path 1 the gap vanishes with the ex-
ponent y„=2 —x„[see Eq. (1.30)]. Along path 2 the
transition is of infinite order. It is the Kosterlitz-
Thouless transition. 2p In this case the gap vanishes as

(0IOn, ~(r~)O ~ ~(r2)IO)— fp
(1.54)

xg~= +M x
N2

4x

The X]A~ satisfy extended scaling relations, e.g. ,
I

Xp IX2 p~ 1, xi p~ 4x2 p (1.56)

MASSIVE
DOMAIN

These relations can also be obtained as direct results
of the above discussed symmetry relations that map
the various Olv~ onto each other.

The critical exponents vary continuously with @,
and can take all values 0 ~x~,~ ~ ~. Only for
x~,~ & 2 the operator O~,~ is relevant, and generates
a gap. For x~~ & 2 it is irrelevant; the model
remains critical (massless).

The phase diagram of the generalized Villain model

FIG, 2. Phase diagram of the 2D sine-Gordon model and
the 10 massive-Thirring model, Along path 1 a power-lave
singularity, ~ith a continuously varying exponent is found at
u~ 0. Along path 2 a Kosterlitz-Thoulcss transition takes
place at K&.
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110+
'

110

I

(1.59)

Their critical exponents do not change along the
critical line; the diagonalization of HL only multiplies

Fni«r by a constant. The values of xPQ are again
easily calculated; one finds

language of the model X/v be the ratio between two
coupling constants and u~, such that one is restricted
to path 2. Further let the operator Oo ] be identified
as the energy operator OT and Oo 1/2 as an electrical
field OE.

Prom Fig. 2 we see that this model has a critical
line with continuously varying exponents, that satisfy
the extended scaling relation xE = 4xr. Moreover

the critical line is found to stop at E~ where it shows
a Kosterlitz-Thouless transition. Beyond this point
the free energy can remain regular or show a first-
order transition with respect to OT and OE. This
depends on the fixed point to which the points in the
nonshaded domain flow. The properties of this fixed
point lie beyond the Gaussian analysis.

As we will see in Sec. II the situation sketched in
Fig. 2 is precisely that for the 8-vertex model.

Finally we have to discuss the density operators
themselves. Equation (1.15) yields that in the
Gaussian language these are the gradients of the
$(r) fields. Kadanoff" named them Fn~ operators.
Define

for thc existence of a critical line with continuously
varying critical exponents.

II. MAPPING OF THE 8-VERTEX AND XFZ MODEL
ONTO THE LUTTINGER MODEL

+PCS(i)S( j)T(k) T(0. (2.1)

The summation runs over all basic squares of the
composite lattice. A critical line is located at J~ = J~,
e2~sinh2J = 1. Its critical exponents vary continu-
ously with the parameter Q = tanh2E. Allowing

Jz & JT corresponds to moving away from thc critical
line in a crossover direction. A duality transforma-
tion on the S; spins converts the model into the
Ashkin-Teller model. In that language the crossover
operator T(k) T(l) —S(i)S(j) becomes the energy
operator. In the model solved by Baxter J must be
equal to JT. They are however allowed to be aniso-
tropic. Thc Hamiltonian of the XYZ model

In its Ising-spin representation the 8-vertex model
consists of two Ising models with nearest-neighbor
interactions. The spins T(i) of the second model are
located at thc sites of thc dual lattice of the first
model [with spins S(i)]. The two models are cou-
pled via a four-spin interaction

Hsy X JsS (i)S ( j) +Jr T(k) T(i)
(ijki)

(OIFnm(ri)Fn+(r~) Io& = c(r& —«2)"", (1.60) H~rz = —X [cr"( i) o "(i + 1) + o'(i ) ir «(i + I ) ]

with

c (r) =— X 2k cos(kr)2m

L k&0
(1.61)

+) o'(i)o'(i +1)
+y[o "(i)o"(i+I) —ir«(i)o «(i +1)]

(2.2)

The same cutoff procedure as in Eq. (1.52) yields

2f 2c(r)-—
8r r2+ 0,2 r2

(1.62)

Our definition of F~~ actually slightly differs from
that of Kadanoff. In his defin1t1on also te1ms 11ke

(r) '/Br ')(80+/Iir) ' (with ni+ ni = W) are includ-
ed. These gradient operators have the same ex-
ponents x -N +M since their correlation functions
are derivatives of the ones in Eq. (1.60).

The low-lying F~~ operators require some extra
comments. F01 and F1 0 have a relevant exponent
x -1 but do not generate a gap. %hen these 'interac-
tions are added to HL, the new Hamiltonian can be
brought back to the original form via a translation

p; p;+b;. F1 0 and F01 are so-called redundant
operators since the volume integral over their correla-
tion function, leading to the susceptibility vanishes.

F1, 1, F2, 0, and Fo, 2 have a marginal exponent x = 2.
HL, exists out of these operators. Their marginality
could be expected, since this is a necessary condition

is obtained from the transfer matrix by taking thc
logarithmic derivative with respect to thc anisotropy
parameter V, in the limit of extreme anisotropy. '

This implies that the ground-state energy Eo is equal
to the derivative of thc free energy with respect to V,

The free energy of the 8-vertex model is regular with
respect to the anisotropy. ' So this is another redun-
dant operator, Eo has singularities with the same ex-
ponents as the 8-vertex model. For more details the
reader is referred to Baxter's paper' and the Appen-
d1x.

The eigcnspcctrum of the XFZ model follows
directly from the solution of the 8-vertex model. '0

Its phase diagram is shown in Fig. 3.
The model is critical (massless) at the five heavily

lined curves. They are equivalent: (1) maps onto
(3) via o « —o*, o* o «; the lines (I) and (4) are
mapped onto each other when the same procedure is
applied at the sites with even values of i and 0.~~ a',
g' —o ~ at thc uneven ones. In the standard
identification, y-=0 is the 6-vertex model and line
(4) is the critical line that one encounters in the Ising
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&6&$0

FIG. 3. Phase diagram of the XYZ model.

representation of the 8-vertex model. The XXZ
model (@=0) will be chosen as the basis for our
further discussion. For [h, [ ( I, where the model is
massless, a gap develops with respect to y,

1/ SV

( 1 [y[ r (2.3)

SV SVyr' =2 —xr'" =—arccos( —h. )
m'

(2.4)

y is directly related to a change of the temperature in
the 8-vertex model. So o "(i)o"(i +1)—o (i)o (i

+I) is identified as the energy operator Ors .
Many other operators can be added to H»z. A list

is given in Table I. Of course we have no Baxter
solution to tell us whether these operators give rise to
a gap, nor what are the critical exponents of such
possible gaps. All these operators, however, have in
the 8-vertex language a well-known meaning, and for
most of them an extended scaling relation is pro-
posed (see Table II). The details of the identification
to 8-vertex operators can be found in the Appendix.
%e will be able to identify each of them with a spin-
wave, vortex, or density operator in the Luttinger
model. As a result their extended scaling relations
will follow directly from Eq. (1.55).

The XXZ model becomes massive at [h. [ ) 1. For
A. & 1 the model is frozen in the ferroelectrical
ground state (o') = 1. The transition at )t = 1 is first
order. Also in the Luttinger model this is a boundary
of the critical line. From Eqs. (1.55) and (1.24) it

follows that 0 ( xN ~ & ~. In the XXZ model xT is

equal to zero at X = 1.
The other limit X=—1 is of more interest. An

infinite-order transition takes place into the antifer-
roelectrical order state. Here xT' =2. This does not
correspond to a natural boundary of the Luttinger
model. Here the presence of the spin-wave operator
04 p (i.e., the notion that we are moving along path 2

in Fig. 2) becomes important.
As a first step towards the Luttinger model the

TABLE I. Identification of 8-vertex operators in the XYZ-model language.

Name Identification
in 8-vertex model

Identification in XYZ model
Pauli-spin representation

Fermion representation

g6V
E

g6VS

gSV
T

gAT
T

Direct electrical-field
6-vertex model

Staggered electrical-
field 6-vertex model

Energy operator
8-vertex model

Energy operator
Ashkin-Teller model

oz(n)

i [o.&( n) o (n + 1) —o."(n) cr &( n + 1 ) 1

(—1)no'(n)

o. (n)cr"(n +1)—fr+(n) a.3'(n +1)

(—1)n[o "(n)o (n + 1)+ o.~(n) o-~(n + 1)
+~~ (n)~ (.+1)]

p(n)

—[a (n)a(n+1)+a(n)a (n+1)]

(—1)na (n)a (n)

2
[a (n)a (n+1) —a(n)a(n+1) j

(—1)"( 2
[a (n)«n+I) —a(n)a (n+ I)l

+ha (n)a(n)a (n+1)a(n+1))

gSVE

gSVS

gAT
E

Direct electrical-
field 8-vertex model

Staggered electrical-
field 8-vertex model

Electrical-field
Ashkin-Teller model

(—1)no- ~(n)

n —1 n —1

m-1 ,m 1

Q i2o'(m) =exp X i rro *(m)

1
n —1

a(n) exp—X i w[2p(m)+ ll +—c.c.
2/ 2

,m 1

( 1)n n 1

a'(n) exp X , i [2p(o)+1m] +c.c. —
2(

,m 1

n —1

exp X imp(m)
,m 1
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TABLE II. Identification of 8-vertex operators in Luttinger language.

8-vertex language (compare Table I)
Name Identification Name

Luttinger language
Fermion representation

Extended scaling
relation

g6V
Direct electrical-

field 6-vertex model

Is F
2m

F.0;1

S[P (I')+P ( )]
S

—.[P2(r) —P1(r) j
I

X (F) X (F)Xi p =Xp1

(Redundant)

g 6Vs
Staggered electrical-
field 6-vertex model

02.0+ 0-2, 0 S [y1(I)y2(I.) + y2(I ) ItI1(i) 1 X2 pxXp 1=1

g8V
T

g AT
T

Energy operator

8-vertex model

Energy operator

Ashkin- Teller model

1—[02,0 0 2, 0j

—
. [It 1(I)ItI2(i) —

q 2(i)q 1(I)j

—.[y1(~)y2(.) —y,2(.)y, (~) j
I X2, 0 Xp, 1

g8v Direct electrical-

field 8-vertex model 0, —1/2 + 0; 1/2 Js g', (r) exp[ —,8+(r) I +c.c. 1

X0 1/2 X0 1

g8vs
Staggered electrical-

field 8-vertex model
g —2, —1/2 O2, 1/2 Js y', (r) exp[ 28+(r) l+c.c. 1

X2 1/2~ 4Xp 1+
Xp 1

gAT Electrical-field

Ashkin-Teller model
O-1, 0 e p[ —0 ()j1 1

1, 0 4 2, 0

Pauli-spin operators must be transformed into fer-
mion operators via a Jordan-signer transformation

cr'(i) = a'(i) a (i) ——,
' (2.6)

o (i) =o"(i)+io (i) =a (i) exp in X a ( j)a( j)
j~1

(2.5)

Here p(k) is the Fourier transform of the density
operator p(i) = a (i)a (i) ——.Just as in Sec. I, p; is

1

defined such that its expectation value, is zero:
&o'(I)) = (p(i)) =0.

For X =0 the XYZ model reduces to the XY model.
In the 8-vertex language this is the free-fermion
model (two decoupled Ising models). As y =0 its
Hamiltonian is already diagonal

The XXZ Hamiltonian then reads H„s = —Xcos(ks) a (k) a (k) (2.10)

N

Hssz = —X &

[a"(i)a (i + 1) —a (i)a (i + 1)]

—k
a(k) =Q 'i Xe

' "'a( j) (2.8)

one obtains
r

Hssz = —Xcos(ks) a (k)a(k)+ —p(k)p( —k)
k N

(2.9)

+ h [a (i)a (i) ——'] [a (i +1)a (i +1)—
z

l

(2.7)
The results for the other operators is given in Table
I. After a Fourier transformation

Since (o'(i) ) =0 we have a half-filled band.
This is the situation of Fig. 1(a). We will replace

the dispersion curve by that of the Luttinger model,
Fig. 1(b).

First we must convince ourselves that the diagonal
Luttinger Hamiltonian Hc [Eq. (1.2) with v =1] still
describes the XY model correctly. - The replacement
of Hq~ by Hp involves two steps. First Hqq is rewrit-
ten in terms of the type-"1" and type-"2" particles.
This replaces the lattice by a cutoff procedure in k
space. Second the continuum limit s [0 is taken.
This neglects the short-range (lattice) effects, and is
equivalent to going to the scaling limit. The effect is
comparable to that of a few initial renormalization
transformations.

Define the operators a1 and a2 via a translation in
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k space

a(k) ~a)(k —kr) =a2(k+kr)

i.e., the real space

(2.11)

Let P~(x) and &2(x) be the field operators of Sec.
I. They are defined on the continuum 0~x & sN
(with periodic boundary conditions). The a, can be
replaced by a;( J) ~Js if&; (xi). This gives

Hg»- Xsin(ks) [yt(k)y((k) —&2(k)&2(k)] . (2.14)

The lattice is now represented by a cutoff in k space.
Equation (2.14) suggests a sharp cutoff. When how-
ever the lattice constant is small enough, also the
softer cutoff of Eq. (1.52) (with , urn = s) c—an be
employed.

Expansion of sinks gives

a (i) = 8 a i(l) = e a2(l)

The summation in H~q can then be restricted to
lkl &k, .

e»»- X sin(ks)[a,"(k)a,(k) —a,'(k)a, (k)] .

(2.13)
g =(Olp(n+i)p(i)I0)

r

1 s [2 cos(2kr r ) —2]
4m' r

with r=ns, kr=rr/2s

(2.16)

The alternating piece is due to the staggered
electrical-field operator Os and the rest to the direct
electrical-field operator Os (both in the 6-vertex
language identification, see Table I). As we will see
p(i) is replaced by Os+cos(2krr)Os with

Oz(r) s [pq(r) + p~(r) ] = — '
F~ 0(r)

2n.

Os (r) = s [g) (r) &2(r) + yI(r) y) (r) ]

(2.17)

remains. This is the diagonal part Ho of the Lut-
tinger Hamiltonian. The higher-order terms
correspond (in real space) to higher-order gradients
of the P; P; operator. They are all irrelevant under a
renormalization transformation.

The effect of the procedure on the correlation.
functions can be illustrated by the density operator
p(i) =a (i)a (i) —

—,. Its correlation function in the

ground state of Hqq is easily calculated, via the
Fourier transform of a (i) and the property
at(k)IO) =0 for Ikl & kr One finds

~ [y', (k)y, ( )ky', (k)—y, (k) l . (2.iS)

In the limit s )0 only the term proportional to k

[02 0(r)+0 2 o(r)]
2&&

The interactions

Xa'(i) = Xat(k)a(k) ——,
'

X(—I)'~ (I) = Xa'(k)a(k —2k, )

(2.1S)

(2.i9)

(c)

FIG. 4. Four different types of processes at the Fermi
surface, generated by the o'(n)o'(n +1) interaction in the
XXZ model. (c) is called backwards scattering. (d) is
known as umklapp.

will only influence the states near the Fermi surface.
But we must be careful to take into account all
processes that take place there. The operators a] and
a2 allow many different ways of representing the
sanle operator

a (i) (ia) - )' (ai) )(ai) =a2 (i)a2(i)

- (—I)'a( (i)a2(i) = (—I)'a,'(i)a((i)

(2.20)
Choose the representation that brings all processes

in the interval lkl & kr.

X '(i)- X a,'(k)a, (k)+a,'(k)a, (k) I, —

(2.21)

X(—I)'o'(i)- X ap (k)a)(k)+a("(k)a, (k)

(2.22)

Each process at the Fermi surface now takes place at
small k. So we can safely change the dispersion rela-
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tion at large k. When we again replace the a, (i) by

Wsy, (r, ) we obtain Eqs. (2.17) and (2.18).
In the new language the correlation function of.Eq.

(2.16) reads

$2
8 = — (OIF, 0(r + r, )F, 0(r, ) Io)

4m

+, , cos(2krr)(OI020(r+r)0 20(r)IO)

(2.23)
6 is known from the results of Sec. I. In the cutoff-
independent domain r & ro the result is the same as
before.

Consider the p(i)p(i+I) interaction term in

H~~z. It gives rise to four different processes at the
Fermi surface, and therefore to four different contri-
butions. Remember that p(k) has the effect of gen-
erating an excitation with energy k [see Eq. (1.6)1.
In Fig. 4 every arrow represents the action of p(k).
The smail-k processes (a) and (b) lead to diagonal
and nondiagonal Luttinger interactions

The k = +2kr process (c} is known as backward
scattering. It gives the contribution

k J dr[y~(r)y)(r)y', (r+s)y, (r+s)+c.c.] . (2.25)

This operator is a contraction of the two spin-wave
operators 0, 0(r)0, 0(r +s) [compare Eq. (1.57)].
The composite operator preserves the number of
type-"1" and type-"2" particles, and can be expand-
ed in the density operators as

-k JI dr 2p2(r) p((r)
1

+s p2(r) + p)(r) + . (2.26)
~P& ~P'2

I 1

Figure 4(d) represents the umklapp process. Its
contribution is a contraction of two alike O+2 0 spin-
wavc operators

& Jtdr [$2(r)f~(r)&2(r +s)P~(r +s)+c.c.] . (2.27)

—Xcos(ks)[pi(k)pt(-k) +p2(k)p2(-k)
L I

+2p, (k)p, (-k)] . (2.24)

In Sec. I [Eq. (1.37)l we have identified this as the
spin-eave operator 04 0+0 4 0. This contribution is
neglected by Luther and Peschel.

Thc final result for Hygz I[s

s-'H„, -X k[yt(k)q, (k) —y', (k)y, (k)l ——'
[p, (k)p, (-k}+p, (k)p, (-k)l — '

p, (k)p, ( k)-
Ir i

A.~+ dr [04O(r)+0 4O(r)] (2.28)

Only the term generated by the umitlapp process
can lead to a gap. The other operators are always
massless.

In the 2D Gaussian language Eq. (2.28) becomes a
sine-Gordon model (Sec. I). It is the same model
that Knops found after a few initial renormalization
transformations.

Knops was able to rewrite the 6-vertex model
directly into the language of the generalized Villain
model. He found a Gaussian next-nearest-neighbor
interaction, and a modified form for the nearest-
neighbor coupling. His statement that this modifica-
tion is irrelevant, i.e., that it renormalizes to the con-
ventional Gaussian model, is equivalent to the state-
ment that we afe allowed to expand the sin(ks) in
Eq. (2.14), the cos(ks) in Eq. (2.24), the backward
scattering term in Eq. (2.25), and only take into ac-
count their leading contributions. This is motivated
by the knowledge that at the fixed line (the Luttinger
model) these neglected operators have an irrelevant
scaling index.

Next to these massless interactions Knops found
that the 6-vertex Hamiltonian contains the staggered
energy operator of the Ashkin-Teller model. Via the

renormalization transformation it generates the cos4@
operator. The staggered OT T itself is redundant in
the Gaussian limit.

From Table I we see that in the Pauli-spin language

H~~z indeed can be presented as the staggered OT .
Also in our treatment it only becomes apparent later,
during the replacement of the lattice by the cutoff in
k space, that 04 o is still hidden in this operator (via
the umklapp process).

The renormalization equations are known only
around the Luttinger model for small u;.""' They
give rise to the phase diagram of Fig. 2. It is likely
that its topology is correct also for larger values of u;
(no new fixed points). Within this assumption, the
mapping of the XXZ model onto. Eq. (2.28), and the
equivalent procedure by Knops in 2D is exact.

Since we do not know the explicit renormalization
equations that map Hqrz onto Eq. (2.28), we do not
know the details of the analytic relations between the
renormalized coupling constants A, ; and the parameter
A. in Hyfz. Without the Baxter solution, which gives
xr (h.), we would have iost control over the precise
dependence of the critical exponents on A..

From Eq. (2.28) we can now understand the critical
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behavior of the XXZ model. %'e arc dealing with

path 2 in Fig. 2. The massless domain of Hq~z,
—1 & A, & 1 corresponds to K & K~. These critical
points flow towards the Gaussian model. So we
know their critical exponents exactly. Each 8-vertex
operator in Table I can be identified with a vortex,
spin-wave, or density operator. O~ and 0~6 are al-

ready discussed abov'c. The procedure for the other
operators is straightforward. The results are given in

Table II. Most operators contain products of Pauli
spins at different sites. This implies that next to the
dominant operator given in Table II they also contain
less relevant operators such as gradients.

Thc extended scaling relations for thc 8-vertex
model follow directly from Eq. (1.55). Also, we

know a large set of correlation functions for thc 8-
vertex model at T„ in the scaling limit [Eq.
(I 51)] 8, 18

The infinite-order transition in the XXZ model,
from the massless into the antiferroelectrical ordered
domain, takes place at A. = —1. It occurs through a
Kosterlitz-Thouless mechanism, caused by the excita-
tions of the umklapp operator. %'e know that at
A. -—1 the critical exponent tv is marginal. Oqsv is
identified as the vortex operator 00, ~ (see Table II).
Indeed the extended scaling relation xo lx4 0=4 im-

plies that also x4 0 is marginal at X =-1, i.e., that the
excitations of 04 0 become relevant.

In this paper we have discussed models in 20 sta-
tistical mechanics and also in 10 quantum-field
theory that can be mapped exactly onto each other or
that via a renormalization transformation are
equivalent. I would like to finish with another exam-
ple.

Recently the sine-Gordon model

H- X —[d(r-)-d(r')-E]'
(r, r )

+ u, Xcos[4d ( r )] (2.29)

has been studied in the context of the
commensurate-incommensurate transition. '4 '6 Con-
sider particles that are located at a surface, and that
are coupled to each other via springs. The cos4$
term represents the substrate potential. The displace-
ments $(x,y) are measured with respect to the sub-
strate. E is thc misfit parameter. The model is sim-
plified, since instead of 2 there is only 1 displacement
component.

F. couples to the operators F~ 0 and Fo, (Sec. I).
From Tables I and II it follows that this corresponds
to a direct electrical field in the 6-vertex model. This
model has been solved exactly and is discussed by
Lieb and Wu27 (see Fig. 32). The antiferroelectrical
domain corresponds to the commensurate phase and
the massless domain to the incommensurate phase.

At the commensurate-incommensurate transition the
specific heat only diverges at the incommensurate
site. Its exponent is a = —,. The netto polarization of
a row of arrows corresponds to the incommensurate
order parameter, i.e., the number of domain walls. It
vanishes with the exponent P = —,. The 6-vertexl

model has also been used before as a crystal-growtH

model, showing a roughening transition. It is the
body-centered solid-on-solid (BC-SOS) model. " In

this language the misfit regions (the domam walls)

correspond to steps on the crystal surface. Thc misfit

parameter is a field acting on the boundaries of the

lattice, favoring a netto height difference. It acts as
the fugacity for a step on the surface.

In order to obtain the critical properties. of Eq.
(2.29) it is (as one would expect) not necessary to go
to the more complex level of the spin models. The
same results were already obtained from its Luttinger
representation. "'

It is however instructive to find another example
showing the central role that the 6-vertex model

plays in the description of two-dimensional critical

phenomena.
Note addedin proof. After this work was completed I

received a report of work prior to publication by
Black and Emery, independently pointing out the
importance of the umklapp process in the 6-vertex
model.
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APPENDIX

In this appendix the identification of the 8-vertex
operators with those of the XYZ model (Table I) is

discussed.
The transfer matrix of the 8-vertex model is equal

to the trace of a product of Ro matrices. '

2'([ ], ( '})=Tr Q~o(;, &; il&;, ,
') . (Al)

Each Ro represents the contribution of one vertex in

the row.

Ro(a, Z'~Z, a') = X P;cr', rr', .
i-&

a; = +1 (A, ; - +1) denotes the direction of the arrow
at a vertical (horizontal) bond. The o ' are the Pauli

matrices (o", o r. o',
2

1). The Boltzmann weights P;
are related to the more usual weights a, b, c, and d
as: P~ =2(b+d), P2=2(b —d), P3-2(a- —c), and
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P4=2(a +c). The XYZ Hamil'tonian with

N

Hrrz= Xplgi rri+l+P2rrfrr~r+l+»gl~l+l+ 4~4
i 1

J
gV 'a e 1

, b d 0
{Ag)

a~
a e 1

rb dW
(A4)

This provides a graphical method for constructing the
phase diagram of the XFZ model. The five different
critical lines in Fig. 4 are due to the five different
critical planes in the 8-vertex model that meet at
a = c =1, b =d =0, i.c., the. planes d =0,
u +b +d =c. Notice that in the. 6-vertex model
(d 0), Pl is equal to P2, So y in Eq. (2.2) is zero.

For most operators in Table I it is sufficient to
realize that a,' represents- o.;. In the Ising representa-
tion (—1)'o,' represents the product of two nearest-
neighbor spins 5; T; in the same row. %c can also
obtain the identification of the operators by a
straightforward generalization of Baxter's method for
deriving H~yz. %hen all eight possible vertex states
are allowed to have different Boltzmann weights

(«l;, i =1—g) the transfer matrix includes cross
terms:

with

8 ~RP+l(Qlg' ~O' t Q2O' „iO' t)

+ (Q3o' io' I + Q40' ~o'„ i)

Ql - ««3 —4 —«l7+ «lp

Qp =«l3 —«l4+«pq —«lp

Q3 = «ll —«l2+ ««5 —«lp

Q4 = «pl
—«l2 —«l5 + «l6

(A6)

Taking again the logarithmic derivative leads to the
following extra terms in thc quantum-field Hamil-
tonian:

(A3)

1s obtained by tak1ng thc logarithmic dcrivativc of T
with respect to V in the extreme anisotropy limit. ' V

is one of the three parameters in Baxter's elliptic-
function representation of the Boltzmann ~eights. V

can bc interpreted as the lattice anisotropy; the two
other parameters as the temperature t and the
universality-class parameter A. . The extreme anisot-
ropy limit is in the Boltzmann weight language ob-
tained at the point a = c = 1, b = d =0. At this point
all equi-(il. , r) curves come together. The p, in H»z
are the tangents of these curves at this point,

O,sv-(-1)'g;, Ogv= (A9)

In a previous paper I discussed the relationship
between the 8-vertex, 6-vertex, and Ashkin-Teller
model. '~ The energy operator of the Ashkin-Teller
model is shown there to correspond to the field that
makes the weight a and b staggered. This leads to
the identification

Or (—1)'(g,"cr,"+l+ rr rcr r+l + ho,'g+l) (A 10)

It was also shown there that in the 6-vertex model
the energy operator of the Ashkin-Teller model coin-
cides with the magnetic field operator S; of the 8-
vertex model; i.e., use thc Ising-spin language of the
8-vertex model and discuss the behavior of the
operator S, along hne (1), which in that language is
located in a zero-temperature direction. A spin-spin
correlation function in the 8-vertex model can be
represented by a string of electrical field operators:

(~+.~;) = ((~,+.T+.-I) (T;+.-l~;+.-2) (T;+1~;))

=(0) ff 2;/0) . (A 1 1)

This gives the electrical-field operator of the Ashkin-
Teller model

OP = Q (2i g,') = exp i rr X cr,* (A12)

The magnetic field operator of the 8-vertex model
can bc 1dcnt1flcd as

i 1 —(. il-
Olr ——Q(2g J)=exp ' X(2O J—1) . (A13)

,j 1 2

This result enables us to identify the operators of
Table I. Apply an electrical field to the 6-vertex
model that makes eoi W ao2. This gives a transverse
field interaction X,. o in the XYZ model. A stag-
gered electrical field in the 6-vertex model acts on
the weights cu5 and co6. It leads to a staggered
transfer field X, (—1)'o, since Q3 (i) = Q4(i )—

Q, (i-+1)- Q4(i + 1).
A (staggered) electrical field in the g-vertex model

gives the same result. However, one then discusses
the critical behavior along critical iine (4) in Fig. 4.
The transformation o-~ -o', 0' a~ for even
values of i and 0-~ —a-', o' o.~ at the uneven ones
that maps line (4) onto (1) gives

ifxrz X 2
(q4rrr +q3gf+l)

+ l (q l g ro,"~l q2g,"g r+l)—(A7)

Unfortunately the Jordan-signer transformation
does not leave us with a simple form for this opera-
tor.
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