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Phase diagram of spin-1 quantum Ising models: Applications to systems
of weakly coupled classicai Ising chains
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The global phase diagram of the S ='1 Ising model in a transverse field is studied using a
mean-field approximation. The critical behavior has also been considered by real-space
renormalization-group techniques. This model is used to analyze the phase diagram of weakly
coupled (J~/Jii && 1) classical Blume-Emery-Griffith chains. It is found that such systems
display a first-order transition only in a very limited range of their parameters.

Physical systems described by spin-S models with

S & —, have been studied extensively in recent

years. ' Examples range from magnetic systems
such as CsNiC13, '" RbNiC13, ' TMMC [TMMC is

(CD3)4NMnClq], and CsMnC13 ~ 2H20, ' to classical
fluid mixtures, ' "'He-'He solutions, ' "and many
others. " The phase diagrams associated with these
models are rather complex, exhibiting first- and
second-order transitions and a variety of multicritical
points. These models have been studied using a
mean-field theory, " " e expansion methods, "series
expansions, '9 Monte Carlo techniques, 20 and real-
space renormalization-group (RG) calculations. ""
It is generally found that the predictions of the con-
ventional mean-field theory concerning the phase dia-
grams and the order of the transitions are qualitative-
ly correct for isotropic d ~3 dimensional models.

A case of particular interest is that of weakly cou-
pled chains. Here fluctuations of the order parameter
are strong and as a result the ordinary mean-field
theory may fail to give a qualitatively correct phase
diagram. For example, in the limit of vanishing in-
terchaln coupling the theory predicts finite transition
temperatures, although the system is effectively one
dimensional and it orders only at T =0. In addition
to the reduction of the transition temperature, the
fluctuations may modify its order as well. In order to
study these effects one should analyze the phase dia-
grams of these systems using approximations which
take into account the effect of the large fluctuations.
This may be done using RG techniques or high- and
low-temperature series expansions. Alternatively,
one may use the transfer matrix method to transform
the problem into an interacting (d —1) dimensional
quantum-spin model. 23 3~ This model may, in turn,
be solved using the mean-field approximation. This

procedure. amounts to solving the single chain exactly
and treating the interchain coupling in the mean-field
approximation, ' and is expected to yield qualitatively
correct phase diagrams.

In this paper we analyze the phase diagram of a
model Hamiltonian related to a d-dimensional classi-
cal system of weakly coupled chains. %e first map
this problem into an interacting (d —1) dimensional
quantum model, which we then study using mean-
field methods and approximate RG calculations. '
Specifically, we consider the following S = 1 model:

&=—Jt X S~S~ —Jq g SS~+6 $S,'
&V)ii $il)~ t

-I/2HI -Ho -I/2HIM=e e e (2a)

—E)( g S;2SJ —ECg X S;2SJ2
() '' '&}, ' ' '

~here Sl = + 1,0, b is a single-site energy, Jii and J~
are, respectively, the intrachain and interchain ex-
change interactions, E~~ and Eq are likewise quadru-
pole lnteractlons. For slmpllclty, we take J)I JJ E(i,
Eq~o. The sums X& &, and Xt ) run over

nearest-neighbor spins parallel and perpendicular to
the chains, respectively. The Hamiltonian (1) is an
anisotropic Blume-Emery-Griffiths (BEG) modei. '"
It has been extensively studied by mean field, " '5 E'

expansion, '8 and real-space RG methods, 2'22 as the
simplest model whose phase diagram exhibits first-
order and second-order surfaces, critical and tricritical
lines, and a special Potts-type point.

The transfer matrix, M, of the model (1) along the
chain direction can be written as
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where

Hp=X XS„)+Z XS„; (2b)

where

x- X, y= Y, z= Z1 1 1

PJj. PJi PJi
(7c)

H(= y XS,2) PJj—XS,~Sg PK~—QS,2SJ
(iy )

In the mean-field approximation, the ground state is
written as

(8)

010
S„=.~ 1 0 1

'010,
1 0 0

S, =00 0

,0 0 —ll

(2d)
0-—= 'P'='+=

4q+m
2

~I —q

+ 4q —m

2

where Ihtfi- are spinors given by

(»)

The indices i and j now run over the lattice points in
the (d —1) dimensional subspace. The coupling
parameters are given by

sinh2X=e [cosh(PJp) —e ] '

cosh(P Jp) -PK]]
(coshP Jp e )

sinh'(P Jp)

y =PA —ln[2e 'cosh(PJp)]

Using the Baker-Hausdorff formula, 'p Eq. (2) can
be written as

m =exp[-(H, +H, ) +H'],

where 0 ~ m ~ q ~ l. The overall phase of this spi-
nor is such that P )0. As for the signs of 0, and y,
it is easy to see that the ground-state energy depends
only on the relative sign of 0. and y. This is due to
the fact that the ground-state energy of Eq. (7) is in-
variant under the transformation x —x. %e there-
fore, arbitrarily, take the 0. & 0. The'parameters q
and m satisfy

q = {S,')

m={S,)

(9b)

where { ) denotes the ground-state expectation
value. In the mean-field approximation one first cal-
culates the expectation values:

H'= —,', [Hp, [Hp, H)]l+ —„[H),[Hp, H)]]+

(6b)
e+(m, q) =

J &eG IHleG),
PJi

(10)

Consider now the extremely anisotropic case
Jq &( Jp. In the transition region one has PJp » 1,
PJq &( 1. Assuming as well that PK1 (& 1 and
p(b, —Jp —Kp) « 1, we find that Hp, H~ && l. In
this limit H' can be neglected, as it is of 0(Hp3, H~' ).
%e thus finally arrive at the following quantum
model:

H =Hp+H) X XS„;+Z XS„2+y QS,1

—pJg XS,ISg —PKg QSzSg~ . (7a)
&v& &v&

The ground state of Eq. (7) can be obtained using
a mean-field-type approximation for the interaction
terms [we emphasize that this is unrelated to the
usual mean-field approximation of the classical prob-
lem (1)l. For the sake of simplicity we take PKq =0,
and consider the Hamiltonian measured in units of
PJ&:

H =x XS„,+z XS„+y XS,i —XSg)Scrip), (7b)
pJi I /

e+(m, q) =z —m'+ (y ——,
'

z) q

-
I I~I -q (&q+ +&q-

+ -'z (q' —m') '/'
2

Note that m and q satisfy 0 ~ m ~ q ~1. In order to
analyze the phase diagram associated with Eq. (11) it
is instructive to first consider thc plane x =0. In this
case it is obvious that for z & 0 one has e+(m, q)~ e (m, q) and therefore only e+ has to be con-
sidered. Similarly, for z & 0 only ~ has to be con-
81dc1'ed.

This diagram exhibits, four phases: a ferromagnetic
phase F in which the ground state is P, = (n, 0; y),
and three paramagnetic phases P1, P2, and P3. The
ferromagnetic phase is separated from the paramag-
netic phases P1 and P3 by two critical lines

As these lines are approached the paramaters n and y
vary continuously satisfying n 1, y +1, respec-
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tively. The I'-P2 transition line is first order, and is
given by

z + z+1 —4~~z ~~41 2 1

16 2 (13)

The transition between the P1 and P2 phases is first
order and it occurs at

p=z, z ~~4

The P2-P3 transition,

(14)

PI

is rather special. In order to analyze this transition
we consider the energy

e+(q, m =0) =z+qy

It is clear that for y & 0 the energy is minimized by

q =0, while for y & 0 the minimum occurs at q =1,
as seen in Fig. 1. However, along the transition line,

y =0, the energy is independent of q, and all states
(4q/2, Jl —q, v'q/2) are degenerate. Therefore
although the ground states associated with the phases
P2 and P3 are distinct, the two phases are not
separated by a first-order transition. This is due to
the fact that the Landau energy at the transition does
not exhibit a two-well shape, as it does for ordinary
first-order transitions, but is flat. For nonzero x, this
degeneracy is removed in a way which eliminates the
P2-P3 transition, and the two phases constitute a

single paramagnetic phase. %e now analyze the

phase diagram in the three dimensional parameter
space xyz. The phase diagram is given schematically
in Fig. 2. It consists of three phases: a ferromagnet-
ic phase F and two paramagnetic phases P1 and P2
(=P3). These phases are separated by two surfaces
0-1 and 0-2. The 0-2 surface has a small first-order
portion (the shaded area in Fig. 2) separated from
the second-order part by a tricritical line t. The 0.

1

surface, associated with the F-P1 transition, is entire-
ly second order. %e find that in the P2 phase the
gfoulld state ts fo while 1n the Pl phase it ts QG. As
a consequence, the ~1 and ~, surfaces are associated
with phase transitions in the states P~ and 4~,
respectively. An interesting property of the P1 phase
is that the quadrupole moment attains its full value,
q =1, throughout this phase. This is rather surpris-
ing since the operator S„ introduces a coupling
between the S, =+1 states and the state with S, =0.
Ho~ever, it turns out that this coupling vanishes for
the mean-field ground state of the P1 phase,
PG = (I/K2) (1,0, —1). This property of the ground
state is thus due to a quantum-mechanical cancella-
tion effect.

In order to locate the two critical surfaces 0-1 and
a2 one should first minimize a+(q, m) with respect to
q. Solving the equations

Be+(q,m) =0
Bq

one obtains a function q = q (m), which minimizes
e+ for a.given m. Inserting q(m) into e+(q, m) one
obtains an expression for the energy e+(m) which

pp

U2 (Ij
0 = —JoI

q=l
m=0

FIG. 1. Phase diagram in the x =0 plane, showing the
ferromagnetic phase F and thc three paramagnetic phases
Pl, P2, and P3. F is separated from Pl and P3 by
second-order lines (thin) and from P2 by a first-order line

(thick). Pl and P2 are separated by a first-order line. The
phases P2 and P3 are distinct only at x =0. The broken line

in the F phase is the projection of the tricritical line t onto
the x =0 plane. Note that the parameters x,y, z of Eq, (7c)
are used throughout the figures.

FIG. 2. Schematic phase diagram in the xyz parameter
space. The phase diagram is symmetric under thc transfor-
mation x —x. Only thc x & 0 part is shown. The fer-
romagnetic phase F is separated from the paramagnetic
phase Pl by a second-order surface o.

1 and from the
paramagnetic phase P2 by a surface a.2. cT2 is mostly second
order but has a small first-order portion (shaded) bounded
by the tricritical line t. rr1 and a.

2 meet at the first-order line
separating the phases Pl and P2 in the x =0 plane. For de-
tails of the o.

1 and o.
2 surfaces see Fig. 3.
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~ a2kPPf
+ 2k

k~0

ao+ = z +yqo —2 lx l Qqo( I —qo) (19b)

a,+ = —1+,lxl jqo(I —qo) — z, (19c)1

4qo 4qo

a4+ =, lx I +qo(1 —qo)—+= 5 — 1

64q04 16qo

depends only on m. Expanding now o+(m) in

powers of m, the usual Landau expansion of the en-
ergy in the vicinity of the critical surface is obtained.
In fact, due to the symmetry of the Hamiltonian (7)
only terms even in m appear in this expansion.

It turns out, however that Eq. (17) is rather com-
plicated for nonvanishing m, %e therefore solve it
by expanding q (m) in powers of m', and solving for
the first few terms in the expansion. Consider first
the o.2 surface, associated with ~+. For m =0 we

find, q = qo, where qo satisfies the equation:

2qo 1
y+lxl =0 .

dqo(1 —qo)

Expanding. ~+ in powers of m2 we find

~here

(23b)

l X2

a2 =-z —1—
4(z -y)

a, = —— +-- +—. (23d)
1 x 1 xy z

16 (3 —y)3 16 (z —y)z 16

(23c)

The critical surface o-l is given by

a2 =0. (24)

Note that throughout the surface (24) one has
a4 & 0 and therefore, no tricritical line is found on
this surface. Some xz sections of the phase diagram
for several values of y are given in Figs. 3(a)—3(c).
In these figures one finds the ferromagnetic phase I'

and the two paramagnetic phases P1 and P2. The
intersections of the al and a2 surfaces with the
y =const planes now appear as two lines. The P1-F
transition is second order for all values of y. For
y & 0 and y & 4 the P2-F transition is also second or-
der [see Figs. 3(a) and 3(c)1, Ho~ever for
0 & y & 4, the o-2 surface has a small first-order por-
tion which is connected to the second-order part by a
tricritical line (r) [see Fig. 3(b)1. For large lx l and z

the surfaces o.
2 and o-l approach the planes

a,+=,lxl jqo(I —qo) —,z,+ 21 1

512q06 36qo
(19e) lxl =z+2

and qo is given by Eq. (18). Using this expansion we

locate the critical surface 0-2 by setting
lxl =z ——,y —2,1 (25b)

a+ =0 (20)

with

The tricritical line t is given by the equations

a+ =a+ =0,2 4

with

(21)

A convenient parametric representation for the tri-
critical line is provided by the following equations:

lx I =4(1 —qo) v'qo(1 —qo),

y =4(1 —qo) (1 —2qo)

z =4(1 —3qo+qoz )

(22a)

(22c)

o = X azkm'",
k 0

(23a)

Here qo is regarded as a parameter. In order to lo-
cate the critical surface crl we observe that in the P1
phase one has q =1. Expanding ~ in powers of m2

we find

respectively.
e have also studied the model (7b) using the

real-space quantum block spin RG method. In
this method, the chain is divided into blocks of n

spins, the intrablock Hamiltonian is diagonalized and
its lowest three levels are retained, defining the new
single-spin variables. New nearest-neighbor spin cou-
plings are also generated at each step. %e have per-
formed this calculation for d =2 (quantum chain)
and with n =2. The tricritical fixed point found by
Hamber36 and Hu3' was obtained along with tricritical
exponents which agree, within numerical inaccura-
cies, with theirs. %e have also found a critical Ising-
like fixed point which happens to have an exponent v

close to unity. In trying to extend these RG calcula-
tions to regions far from those fixed points we find,
however, difficulties in the method. For example,
working at x =0, one would like the RG transforma-
tion to preserve the symmetry S„—S„, It turns out
that by retaining the three lowest levels this sym-
metry is broken and a nonzero value of x is generat-
ed. An ad hoc procedure to overcome this difficulty,
in this special case, would be to choose states other
than the three lowest ones, requiring that they have
the appropriate symmetry. Furthermore, due to
numerous level crossings in the full parameter space,
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l2—

different RG recursion relations are generated in dif-
ferent regions of the parameter space and it is not
clear how to generate continuous global RG flows.

%e now apply the results of the quantum model to
the weakly interacting classical chain system. %e
first simplify the general relations (3)—(5) to the
relevant case J~ && J]]. We shall also assume

-p(J]]+K][)
0 & K]]« J]]. To leading order in e, Eqs.
(3)—(5) take the form

X2 = 2 & ][+"[[

(PJt)'
(26)

(27)

y = (d —Jii —Kii)/Jt, (2S)

(b)

l2—

l2

(c)

y=8

l2—

0
4 l2 l6 20

FIG. 3. Sections of the phase diagram of Fig. 2, showing
the intersections of o-~ and o& with the y =const planes. {a)
A typical y & 0 section: y = —2, exhibiting two second-
order lines starting at x =0, z =+ 4; (b) a typical 0 & y & 4
section: y =+2. Here, the line associated with oz starts at
4(J2 —1) = 1.65 and has a small first-order portion (thick)
separated by a tricritical point t from the second-order part;
(c) a typical y )4 section: y =+8. Here o-~ and o.

~ start

from the same point, z =8, and are second-order
throughout.

where the normalized variables [see Eq. (7c)] were
used. As T 0, the classical model (1), with Kt ——0,
maps onto'the x =z =0 line of the quantum model
where y is determined by Eq. (2S). With increasing
T, the parameters x and z become nonzero [see Eqs.
(26) and (27)] while y stays constant. Thus as the
temperature is varied a given classical model will map
into a steep parabolic line (26)—(2S) in the y =const
plane. The intersection of the surface spanned by
these lines with the phase transition surfaces, o.

~ and
o.q, define the phase transition line in the classical
model. In fact, since the original transformation to
Eq. (7b) holds only for pJt (( 1, z ((x', the clas-
sical surface will intersect only with the a.

q surface.
At thi intersection, x & O(l), see Figs. 2 and 3.
Note, that the condition 5 —Jii —Kii —Jt [or
equivalently y = 0 (1)] is also required for the
transformation to the quantum model to hold. To a
leading approximation one can find T, by neglecting
z, obtaining the value of x for which the transition
occurs for the given value of y and solving Eq. (26)
for P. It is interesting to note that in the limit

Jt/Jii 0, the transition temperature satisfies T, 0,
unlike the usual mean-field approximation. ' " In
Fig. 4 we plot /T[ jJi(+d —1)Jq] as a function of
5/[ Jii+ (d —1)Jt] for d =2, and for several values
of Jq/Js. Also shown is the analogous curve corre-
sponding to the ordinary mean-field approximation of
the BEG model. " The latter curve is of course in-
dependent of the ratio Jt/Js. Each transition line has
a second-order (thin line) and a first-order (thick
line) segment joined at a tricritical point. As J~/Jii
decreases, the transition temperature is lowered and,
in addition, the first-order segment shrinks. In fact, the
first-order transition occurs only for

i

—1 &0— (29)
J][+Jg J[[

This is a rather interesting result since it implies that
for weakly coupled chain systems the first-order tran-
sition occurs only within a narrow range of the
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FIG. 4. Phase diagram of the d = 2 classical model (1)
sho~ing kg T,/( J))+Jg) as a function of 5/( J)I+Jj), The
upper curve is the result of the ordinary mean-field theory
of the BEG model, The lo~er two curves display the results
of our mean-field approximation for J~/J~~ =0.1, 0.01. As

J~/J~~ 0 the tricritical point approaches ( T, =0, 4 = J~~).

highly unfavored for the single chain, and the model
is equivalent to an effective S = —, Ising system. One
would therefore expect such systems to almost always
exhibit second-order transitions.

To summarize, we have analyzed the global phase
diagram of the S =1 Ising model in a transverse field
using the mean field-approximation. The applicability
of real-space quantum renormalization-group meth-
ods for studying the phase diagram is discussed. In
applying our results for weakly interacting classical Is-
ing chains, we find that these systems are expected to
yield second-order transitions, except for a narrow
range of the parameter space, in which the transition
is first order.
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