# Site-selective excitation, crystal-field analysis, and energy transfer in europium-doped monoclinic gadolinium sesquioxide. A test of the electrostatic model

J. Dexpert-Ghys, M. Faucher, and P. Caro

Eléments de Transition dans les Solides, E.R. 060210 Centre National de la Recherche Scientifique, 1 Place A. Briand, 92190 Meudon, France (Received 18 June 1980)

The fluorescence spectrum of  $Eu^{3+}$  in monoclinic  $Gd_2O_3$  is analyzed at 300, 77, and 4.2 K. There are three distinct  $C_s$  crystallographic sites for the rare earth in the monoclinic structure. Through selective excitation of the three  ${}^5D_0$  levels with a dye laser and time-resolution equipment, three different fluorescence spectra are obtained. To assign the spectra to definite crystallographic sites an electrostatic calculation of crystal-field parameters is undertaken for each site using the latest available structural data. The calculation involves both contributions from point charges and induced dipoles. The result is corrected for the shielding effect of 5s and 5p electrons and corrections to free-ion radial integrals are derived from experimental determination for other lanthanides in solids. Good agreement is found between simulated and experimental spectra, which allows an assignment of each of the three spectra to each of the three sites. Energy transfer from site to site is measured but is not interpreted at the moment.

## I. INTRODUCTION

The absorption and fluorescence properties of  $Eu^{3+}$  in monoclinic  $Gd_2O_3$  were first investigated by Rice and de Shazer.<sup>1</sup> They expected that the information could help to elucidate the nonradiative relaxation processes in oxides. They concluded that the  $Eu^{3+}$  ion occupies three nonequivalent sites of  $C_s$  symmetry but could not assign the spectral lines to any particular ion site. The aim of the present study is to complete and develop preliminary results<sup>2</sup> concerning selective site excitation in this material. The subject is in three parts:

The identification of the three distinct fluorescence spectra originating from  ${}^5D_o$  levels of Eu<sup>3+</sup> in the three crystallographic sites. This is done by using dye-laser selective site excitation of Eu<sup>3+</sup>.

The assignment of each spectrum to  $Eu^{3+}$  in a definite crystallographic site. This is made possible by comparing experimental results and *a priori* calculations using the electrostatic model (point-charge and dipolar contributions).

Some comments about fluorescence rise and decay times and site-to-site energy-transfer properties.

## **II. CRYSTALLOGRAPHIC DATA**

The monoclinic structure of rare earth sesquioxides is related to the hexagonal form and to the fluorite cell. In hexagonal  $Ln_2O_3$  the  $Ln^{3+}$  ion is surrounded by six oxygens forming an octahedron, and a seventh along a threefold axis, the point symmetry being  $C_{3\nu}$ . The monoclinic structure was established for  $Sm_2O_3$ ,  $Tb_2O_3$ , and  $Eu_2O_3$ (see Refs. 3, 4, and 5). There are three nonequivalent point sites for  $Ln^{3+}$ , each of them of  $C_s$ symmetry. Following Cromer<sup>3</sup> the coordination around Ln III atoms can be described as a distorted octahedron with a seventh oxygen atom along a "threefold" axis, but at a very long distance (3.13 Å for  $Eu_2O_3$ ). Ln I and Ln II have a sevenfold coordination with six oxygens at the apices of a trigonal prism and a seventh lying along the normal to a face. The positional parameters reported in Ref. 5 for  $Eu_2O_3$  are probably very close to those of  $Gd_2O_3$ .

### **III. SAMPLE PREPARATION**

Sintered samples were obtained by physical mixture of the oxides (95 at. %  $\text{Gd}_2\text{O}_3$ -5 at. %  $\text{Eu}_2\text{O}_3$ ), pressed into thin plates, and fired in a lime-stabilized zirconia heating element at 1800 °C for 24 hours in an oxidizing atmosphere. The measured unit-cell parameters a = 10.06 Å, b = 3.57 Å, c = 8.76 Å,  $\beta = 100^\circ$  were those of pure monoclinic  $\text{Gd}_2\text{O}_3$ .

# **IV. EXPERIMENTAL**

All the fluorescence spectra were recorded with a Jarrel-Ash 78460 Czerny-Turner spectrometer (focal length 1 m) at 300 K, 77 K or 4.2 K. Conventional ultraviolet excitation of  $Eu^{3+}$  was achieved by an Osram HBO 150-W lamp equipped with a Wood filter. Continous excitation of the  $Eu^{3+5}D_0$  level was accomplished by a Spectra Physics 375/376 cw single-mode jet-stream rhodamine 6G dye laser ( $1 \times 10^{-3}M$  in ethylene glycol) pumped by a Spectra Physics 164 argon-ion laser. The wavelength of the laser beam was continuously tunable from about 5700 to 6500 Å, the linewidth being 0.7 cm<sup>-1</sup>.

Pulsed excitation was obtained with the same assembly, the laser beam being chopped by an acousto-optic modulator (Soro IM 20) (Fig. 1). A boxcar integrator (ATNE) provides electronically gated signal processing and simultaneously

607



FIG. 1. Experimental apparatus.

triggers the modulator. The usual pulse duration was 30  $\mu$ s. With the theoretical output power of 600 mW, a pulse corresponds to an 18- $\mu$ J energy and consequently to about 5×10<sup>13</sup> photons. Timeresolved fluorescence spectra were obtained by analyzing each wavelength after a constant delay from the pulse start. Fluorescence-decay curves were recorded for a given wavelength by scanning the delay time between the pulse and the signal detection.

# V. RESULTS. IDENTIFICATION OF A, B, C, SPECTRA

# A. Steady-state fluorescence

The Eu<sup>3+5</sup> $D_0 \Rightarrow {}^7F_0$  transition wavelength falls in the broad emission range of the powerful Rh6G dye. The experiment consisted of exciting the Eu<sup>3+5</sup> $D_0$  level for a given crystallographic site and recording the corresponding  ${}^5D_0 \to {}^7F_{1,2,3,4}$  fluorescence transitions.

Three lines were previously identified as  ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transitions in Ref. 1 and the laser wavelength was tuned successively in exact resonance with each of them. Three distinct fluorescence spectra were thus obtained for the  ${}^{5}D_{0}$  at 5786 Å (A), 5822 Å (B), 5823.5 Å (C); Figs. 2 (77 K) and 3 (4 K). In Fig. 2 the top spectrum was due to the sample under ultraviolet excitation. Two statements can be made:

(1) The spectra obtained in exciting directly into each of the A, B, C levels do not correspond to the fluorescence of an Eu<sup>3+</sup> ion in a single site.

(2) For each excitation wavelength  $(\lambda_e)$  the same lines are observed but with very different relative intensities.



FIG. 2. Fluorescence of Eu<sup>3+</sup> in monoclinic Gd<sub>2</sub>O<sub>3</sub> at 77 K. (a): under uv excitation; (b): under laser excitation  $\lambda_e = 5786$  Å (A spectrum); (c); under laser excitation  $\lambda_e = 5822$  Å (B spectrum); (d): under laser excitation  $\lambda_e = 5823.5$  Å (C spectrum). Arrows indicate lines from directly excited Eu<sup>3+</sup> ions.





Two conclusions arise immediately:

(a) There is always energy transfer from site to site in this compound, so that fluorescence from a  $Eu^{3+}$  not directly excited appears after transfer; this problem will be considered later.

(b) Fluorescence lines arising from  $Eu^{3+}$  ions whose  ${}^{5}D_{0}$  level is in exact resonance with the laser wavelength are always greatly enhanced with respect to the others.

Accordingly, we can separate  ${}^{5}D_{0} \rightarrow {}^{7}F_{0-4}$  emission into three groups of lines originating from distinct Eu<sup>3+</sup> sites (Table I). In the present case it was possible to distinguish the spectra emitted by Eu<sup>3+</sup> occupying distinct crystallographic sites even under continuous selective excitation. Only some ambiguities remain when several lines are in accidental coincidence. Some weak lines appearing on the long-wavelength side of the  ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ . transition could not be attributed to any particular spectrum; these are probably vibronic components and are referred to as "v" in Table I.



FIG. 4. Comparison of continuous selective excitation (a) and pulsed selective excitation (b)  $\lambda_e = 5822$  Å; arrows indicate lines directly excited.

#### B. Time-resolved fluorescence

As can be seen in Fig. 4 the selective excitation was improved when using a time-resolved method. The upper spectrum was measured for  $\lambda_e(B)$  under continuous excitation, and the lower spectrum with a 35- $\mu$ s delay between the excitation pulse and the detection, so that energy transfer from *B* to *C* was not completely accomplished and *B* lines were enhanced relative to *C* lines which were almost suppressed.

# VI. ASSIGNMENT OF THE OBSERVED SPECTRA TO THE CRYSTALLOGRAPHIC SITES

The large differences observed between the three  ${}^5D_0 \rightarrow {}^7F_1$  spectra in particular reveal large differences between second-order crystal-field parameters which must be highly structure dependent. The best way to assign each experimen-

|                                                                                |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |            | Identification                                                                                  |                                                                                                                                                                                                                                                                                             |  |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Two maitian                                                                    | <u>م</u> ر (                                                                                                                                            | E (or -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A T (am -1)                                                                                                          | Downsonton | atter Re                                                                                        | I. L                                                                                                                                                                                                                                                                                        |  |
| 1 ransmon                                                                      | Λ ( <b>A</b> )                                                                                                                                          | E (Cm -)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta E (cm^{-1})$                                                                                                 | Barycenter | 1 ransmon                                                                                       | Nature                                                                                                                                                                                                                                                                                      |  |
| A spec                                                                         | trum                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$                                          | 5786                                                                                                                                                    | 17283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |            | ${}^5D_0 \rightarrow {}^7F_0$                                                                   | σ                                                                                                                                                                                                                                                                                           |  |
| ${}^{5}D_{a} \rightarrow {}^{7}F_{a}$                                          | 5838                                                                                                                                                    | 17129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 154                                                                                                                  |            | ${}^{5}D_{1} \rightarrow {}^{7}F_{2}$                                                           | π                                                                                                                                                                                                                                                                                           |  |
| 20 -1                                                                          | 5904                                                                                                                                                    | 16 938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 345                                                                                                                  | 381        | ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$                                                           | a                                                                                                                                                                                                                                                                                           |  |
|                                                                                | 6010                                                                                                                                                    | 16 639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 644                                                                                                                  | 001        | $D_1 - 3$                                                                                       | Ū                                                                                                                                                                                                                                                                                           |  |
| 50 70                                                                          | 6005(1)                                                                                                                                                 | 10 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 040                                                                                                                  |            | 50 70                                                                                           | -                                                                                                                                                                                                                                                                                           |  |
| ${}^{\circ}D_0 \rightarrow {}^{\circ}F_2$                                      | 6085(1)<br>6165(2)                                                                                                                                      | 16434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 849                                                                                                                  |            | ${}^{0}D_{2} \rightarrow {}^{1}F_{6}$                                                           | σ                                                                                                                                                                                                                                                                                           |  |
|                                                                                | 0105(2)                                                                                                                                                 | 16 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1062                                                                                                                 | 10.50      | $D_0 \rightarrow P_2$                                                                           | 0                                                                                                                                                                                                                                                                                           |  |
|                                                                                | 6235(3)                                                                                                                                                 | 16038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1245                                                                                                                 | 1070       | 5 n 7 m                                                                                         |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 6274(4)                                                                                                                                                 | 15 939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1344                                                                                                                 | [line(1):  | $D_1 \rightarrow F_4$                                                                           | σ                                                                                                                                                                                                                                                                                           |  |
|                                                                                | 6293(v)                                                                                                                                                 | 15 888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1395                                                                                                                 | doublet    |                                                                                                 | . •                                                                                                                                                                                                                                                                                         |  |
|                                                                                | 6310(v)                                                                                                                                                 | 15848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1435                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^5D_0 \rightarrow {}^7F_3$                                                  | 6462                                                                                                                                                    | 15475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1808                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 6485                                                                                                                                                    | 15420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1863                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 6488                                                                                                                                                    | 15413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1870                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 6537                                                                                                                                                    | 15297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1986                                                                                                                 | 2009       |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 6597.5                                                                                                                                                  | 15157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2126                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 6620                                                                                                                                                    | 15106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2177                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 6644                                                                                                                                                    | 15050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2233                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$                                          | 6880                                                                                                                                                    | 14535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2748                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| •                                                                              | 6926                                                                                                                                                    | 14438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2845                                                                                                                 |            |                                                                                                 | σ<br>σ<br>σ<br>π                                                                                                                                                                                                                                                                            |  |
|                                                                                | 7065                                                                                                                                                    | 14154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3129                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 7082                                                                                                                                                    | 14120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3163                                                                                                                 |            |                                                                                                 | attificationer Ref. 1tionNature $F_0$ $\sigma$ $F_3$ $\pi$ $F_3$ $\sigma$ $F_6$ $\sigma$ $F_2$ $\sigma$ $F_4$ $\sigma$ $F_4$ $\sigma$ $F_1$ $\sigma$ $F_2$ $\sigma$ |  |
|                                                                                | 7084.5                                                                                                                                                  | 14115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3168                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 7132                                                                                                                                                    | 14021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3262                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 7140                                                                                                                                                    | 14006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3277                                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| B spec                                                                         | trum                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^5D_0 \rightarrow {}^7F_0$                                                  | 5822                                                                                                                                                    | 17176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |            | ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$                                                           | σ                                                                                                                                                                                                                                                                                           |  |
| $5D \rightarrow 7E$                                                            | 5010                                                                                                                                                    | 16 920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 256                                                                                                                  |            | $5D \rightarrow 7E$                                                                             | σ                                                                                                                                                                                                                                                                                           |  |
| $D_0 = T_1$                                                                    | 5961                                                                                                                                                    | 16 776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400                                                                                                                  | 360        | $5D \rightarrow 7F$                                                                             | σ                                                                                                                                                                                                                                                                                           |  |
|                                                                                | 5969                                                                                                                                                    | 16 752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400                                                                                                                  | 500        | $5D \rightarrow 7F$                                                                             | π                                                                                                                                                                                                                                                                                           |  |
|                                                                                | 5909                                                                                                                                                    | 10 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 424                                                                                                                  |            | $\mathcal{D}_0 = \mathcal{D}_1$                                                                 | 'n                                                                                                                                                                                                                                                                                          |  |
| ${}^{b}D_{0} \rightarrow {}^{\prime}F_{2}$                                     | 6150(1)                                                                                                                                                 | 16260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 916                                                                                                                  |            | ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$                                                           | σ                                                                                                                                                                                                                                                                                           |  |
|                                                                                | 6155.5(2)                                                                                                                                               | 16246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 930                                                                                                                  |            | ${}^{\mathfrak{D}}\mathcal{D}_{\mathfrak{g}} \rightarrow {}^{\prime}\mathcal{F}_{\mathfrak{g}}$ | σ                                                                                                                                                                                                                                                                                           |  |
|                                                                                | 6232.5(3)                                                                                                                                               | 16045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1131                                                                                                                 | 1040       |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 6302.5(4)                                                                                                                                               | 15867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1309                                                                                                                 | [line (1): |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      | doublet    |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
|                                                                                | 000-01                                                                                                                                                  | 1 = 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000                                                                                                                 |            |                                                                                                 | σ<br>π<br>σ<br>σ<br>σ<br>σ<br>π<br>σ<br>σ                                                                                                                                                                                                                                                   |  |
|                                                                                | 6325(v)                                                                                                                                                 | 15 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1366                                                                                                                 |            |                                                                                                 | σ<br>π<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ<br>σ                                                                                                                                                                                                      |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$                                          | 6325(v)<br>6517.5                                                                                                                                       | $\begin{array}{c} 15810\\ 15343\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1366<br>1833                                                                                                         | · · · ·    |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$                                          | 6325(v)<br>6517.5<br>6535                                                                                                                               | 15 810<br>15 343<br>15 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1366<br>1833<br>1874                                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^5D_0 \rightarrow {}^7F_3$                                                  | 6325(v)<br>6517.5<br>6535<br>6538.5                                                                                                                     | 15 810<br>15 343<br>15 302<br>15 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1366<br>1833<br>1874<br>1882                                                                                         |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$                                          | 6325(v)<br>6517.5<br>6535<br>6538.5<br>6558                                                                                                             | $15\ 810\\15\ 343\\15\ 302\\15\ 294\\15\ 249$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1366<br>1833<br>1874<br>1882<br>1927                                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^5D_0 \rightarrow {}^7F_3$                                                  | 6325(v)<br>6517.5<br>6535<br>6538.5<br>6558<br>6573.5                                                                                                   | $15\ 810\\15\ 343\\15\ 302\\15\ 294\\15\ 249\\15\ 212$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1366<br>1833<br>1874<br>1882<br>1927<br>1964                                                                         |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^5D_0 \rightarrow {}^7F_3$                                                  | 6325¢)<br>6517.5<br>6535<br>6538.5<br>6558<br>6558<br>6573.5<br>6613.5                                                                                  | $15\ 810\\ 15\ 343\\ 15\ 302\\ 15\ 294\\ 15\ 249\\ 15\ 212\\ 15\ 121\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1366<br>1833<br>1874<br>1882<br>1927<br>1964<br>2055                                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$                                          | 6325¢)<br>6517.5<br>6535<br>6538.5<br>6558<br>6573.5<br>6613.5<br>6873.5                                                                                | $15\ 810\\ 15\ 343\\ 15\ 302\\ 15\ 294\\ 15\ 249\\ 15\ 212\\ 15\ 121\\ 14\ 549$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1366<br>1833<br>1874<br>1882<br>1927<br>1964<br>2055<br>2627                                                         |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$<br>${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ | 6325(v)<br>6517.5<br>6535<br>6538.5<br>6558<br>6573.5<br>6613.5<br>6873.5<br>6847                                                                       | $15\ 810\\ 15\ 343\\ 15\ 302\\ 15\ 294\\ 15\ 249\\ 15\ 212\\ 15\ 121\\ 14\ 549\\ 14\ 395$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1366<br>1833<br>1874<br>1882<br>1927<br>1964<br>2055<br>2627<br>2781                                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$<br>${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ | 6325(v)<br>6517.5<br>6535<br>6538.5<br>6558<br>6573.5<br>6613.5<br>6873.5<br>6873.5<br>6947<br>6957                                                     | $15\ 810$ $15\ 343$ $15\ 202$ $15\ 294$ $15\ 249$ $15\ 212$ $15\ 121$ $14\ 549$ $14\ 395$ $14\ 374$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1366<br>1833<br>1874<br>1882<br>1927<br>1964<br>2055<br>2627<br>2781<br>2802                                         |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$<br>${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ | 6325(v)<br>6517.5<br>6535<br>6538.5<br>6558<br>6573.5<br>6613.5<br>6873.5<br>6947<br>6957<br>6964                                                       | $15\ 810$ $15\ 343$ $15\ 202$ $15\ 294$ $15\ 212$ $15\ 121$ $14\ 549$ $14\ 395$ $14\ 374$ $14\ 360$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1366<br>1833<br>1874<br>1882<br>1927<br>1964<br>2055<br>2627<br>2781<br>2802<br>2816                                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$    | 6325(v)<br>6517.5<br>6535<br>6538.5<br>6558<br>6573.5<br>6613.5<br>6873.5<br>6947<br>6957<br>6964<br>7025.5                                             | $15\ 810\\ 15\ 343\\ 15\ 302\\ 15\ 294\\ 15\ 249\\ 15\ 212\\ 15\ 121\\ 14\ 549\\ 14\ 395\\ 14\ 374\\ 14\ 360\\ 14\ 234\\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1366<br>1833<br>1874<br>1882<br>1927<br>1964<br>2055<br>2627<br>2781<br>2802<br>2816<br>2942                         |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$    | 6325(v)<br>6517.5<br>6535<br>6538.5<br>6558<br>6573.5<br>6613.5<br>6873.5<br>6947<br>6957<br>6964<br>7025.5<br>7058                                     | $15\ 810\\ 15\ 343\\ 15\ 302\\ 15\ 294\\ 15\ 249\\ 15\ 212\\ 15\ 121\\ 14\ 549\\ 14\ 395\\ 14\ 374\\ 14\ 360\\ 14\ 234\\ 14\ 168\\ 14\ 168\\ 14\ 284\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 14\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 16\ 168\\ 1$ | 1366<br>1833<br>1874<br>1882<br>1927<br>1964<br>2055<br>2627<br>2781<br>2802<br>2816<br>2942<br>3008                 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$<br>${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ | 6325(v)<br>6517.5<br>6535<br>6538.5<br>6558<br>6573.5<br>6613.5<br>6873.5<br>6947<br>6957<br>6957<br>6954<br>7025.5<br>7058<br>7059.5                   | $\begin{array}{c} 15\ 810\\ 15\ 343\\ 15\ 302\\ 15\ 294\\ 15\ 249\\ 15\ 212\\ 15\ 121\\ 14\ 549\\ 14\ 395\\ 14\ 374\\ 14\ 360\\ 14\ 234\\ 14\ 168\\ 14\ 165\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1366<br>1833<br>1874<br>1882<br>1927<br>1964<br>2055<br>2627<br>2781<br>2802<br>2816<br>2942<br>3008<br>3011         |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$<br>${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ | 6325(v)<br>6517.5<br>6535<br>6538.5<br>6558<br>6573.5<br>6613.5<br>6873.5<br>6947<br>6957<br>6957<br>6957<br>6964<br>7025.5<br>7058<br>7059.5<br>7073.5 | $15\ 810\\ 15\ 343\\ 15\ 302\\ 15\ 294\\ 15\ 249\\ 15\ 212\\ 15\ 121\\ 14\ 549\\ 14\ 395\\ 14\ 374\\ 14\ 360\\ 14\ 234\\ 14\ 168\\ 14\ 165\\ 14\ 137\\ 14\ 37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1366<br>1833<br>1874<br>1882<br>1927<br>1964<br>2055<br>2627<br>2781<br>2802<br>2816<br>2942<br>3008<br>3011<br>3039 |            |                                                                                                 |                                                                                                                                                                                                                                                                                             |  |

TABLE I. Laser site selective excitation: numerical results (T = 4 K).

=

|                                       | -             | · .                          |                               |               | Identification                        |                                                |  |
|---------------------------------------|---------------|------------------------------|-------------------------------|---------------|---------------------------------------|------------------------------------------------|--|
| Transition                            | λ (Å)         | <i>E</i> (cm <sup>-1</sup> ) | $\Delta E (\mathrm{cm}^{-1})$ | Barycenter    | Transition                            | tion<br>- 1<br>Nature<br>σ<br>π<br>σ<br>σ<br>π |  |
| C spec                                | t <b>r</b> um |                              | ···· · · ·                    |               |                                       |                                                |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ | 5823.5        | 17172                        |                               |               | ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ | σ                                              |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ | 5939          | 16838                        | 334                           |               | ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ | π                                              |  |
| U I                                   | 5945          | 16821                        | 351                           | 349           | ${}^5D_0 \rightarrow {}^7F_1$         | σ                                              |  |
|                                       | 5949.5        | $16\ 809$                    | 363                           |               | ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ | π                                              |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ | 6140.5(1)     | 16 285                       | 887                           |               | ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ | σ                                              |  |
| 0 2                                   | 6177.5(2)     | 16188                        | 984                           |               | ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ | σ                                              |  |
|                                       | 6235(3)       | 16 038                       | 1134                          | 1007          | <b>v</b> 5                            |                                                |  |
|                                       | 6239(4)       | 16028                        | 1144                          | [line $(1)$ : | ${}^{5}D_{1} \rightarrow {}^{7}F_{4}$ | π                                              |  |
|                                       | 6257.5(v)     | 15981                        | 1191                          | doublet       |                                       |                                                |  |
| ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ | 6519          | 15340                        | 1832                          |               |                                       |                                                |  |
| 0 3                                   | 6533          | 15307                        | 1865                          |               |                                       |                                                |  |
|                                       | 6543.5        | 15282                        | 1890                          |               |                                       |                                                |  |
|                                       | 6560          | 15244                        | 1928                          |               |                                       |                                                |  |
|                                       | 6567.5        | 15226                        | 1946                          |               |                                       |                                                |  |
|                                       | 6605          | 15140                        | 2032                          |               |                                       |                                                |  |
| ${}^{5}D_{a} \rightarrow {}^{7}F_{a}$ | 6842          | 14616                        | 2556                          |               |                                       |                                                |  |
| - <b>U</b> - 4                        | 6941          | 14407                        | 2765                          |               |                                       |                                                |  |
|                                       | 6966          | 14353                        | 2819                          |               |                                       |                                                |  |
|                                       | 7000          | 14286                        | 2886                          | 2904          |                                       |                                                |  |
|                                       | 7020.5        | <b>14244</b>                 | 2928                          | · ·           |                                       |                                                |  |
|                                       | 7066          | 14152                        | 3020                          |               |                                       |                                                |  |
|                                       | 7073          | 14138                        | 3034                          |               |                                       |                                                |  |
|                                       | 7080          | 14124                        | 3048                          |               |                                       |                                                |  |
|                                       | 7094.5        | 14095                        | 3077                          |               |                                       |                                                |  |

TABLE I. (Continued)

tal spectrum A, B and C to a particular  $C_s$  site I, II, III is the following:

Determination of three sets of *ab initio* calculated crystal-field parameters relative to Ln I, Ln II and Ln III, respectively.

Diagonalization of the crystal-field interaction matrix to obtain theoretical energy levels.

Comparison of each spectrum with calculated values.

# A. A priori calculation of $B_a^k$

The crystal-field Hamiltonian associated with a  $C_s$  symmetry may be described by 14  $b_q^k$  and  $s_q^k$  values  $(B_q^k = b_q^k + i s_q^k)$ . Ab initio  $B_q^k$  values were calculated following the electrostatic model (EM), utilizing the recent structure refinement of monoclinic Eu<sub>2</sub>O<sub>3</sub> carried out by Yakel.<sup>5</sup> The author admits the possibility of a Cm or C2 space group instead of C2/m owing to an eventual slight displacement of ions from symmetry elements, but as it stands, the indices of agreement after the C2/m refinement are low enough to warrant precise positional parameters, which is an essential

condition for *a priori* calculations.

Two contributions to the multipolar crystal-field development were taken into account: the point charge contribution (PC) and the induced dipoles contribution (ID). In a previous paper (Ref. 6), it was shown that the addition of dipolar effects improved the EM results in the particular cases of Nd<sub>2</sub>O<sub>3</sub> and Nd<sub>2</sub>O<sub>2</sub>S. The mathematical details may be found in Ref. 6. The same method was applied to Eu<sup>3+</sup> in the three crystallographic sites of Gd<sub>2</sub>O<sub>3</sub>. The results are summarized in Table II. Two corrections are made to the crude (PC + ID) values:

(a) A shielding parameter correction (PC + ID)  $(1 - \sigma_k)$  which measures the reduction of the  $B_q^k C_q^k$ term of the crystal-field expansion at the 4f site, due to the shielding effect of 5s and 5p electrons. Gupta and Sen<sup>7</sup> calculated a  $\sigma_2$  value of 0.686 for Eu<sup>3+</sup>.  $\sigma_4$  and  $\sigma_6$  were set equal to 0.139 and 0.109, respectively [values for Nd<sup>3+</sup> (Ref. 6)]

(b) An "expansion" correction to obtain "lattice" radial integrals from free-ion radial integrals. A similar line of argument was followed by Karayianis and Morrison<sup>8</sup> who stated that the Har-

|             | Ln I                  |           |              |       |                       | Ln II |      |       |                       | LnIII      |      |       |  |
|-------------|-----------------------|-----------|--------------|-------|-----------------------|-------|------|-------|-----------------------|------------|------|-------|--|
|             | $\beta = -43^{\circ}$ |           |              |       | $\beta = -31^{\circ}$ |       |      |       | $\beta = -41^{\circ}$ |            |      |       |  |
|             | (a)                   | (b)       | (c)          | (d)   | (a)                   | (b)   | (c)  | (d)   | (a)                   | (b)        | (c)  | (d)   |  |
| $b_{0}^{2}$ | 0                     | 573       | 573          | 252   | 361                   | 133   | 494  | 217   | 238                   | 292        | 530  | 233   |  |
| $b_{2}^{2}$ | 151                   | 143       | 294          | 129   | -699                  | -70   | -769 | -338  | 1744                  | <b>241</b> | 1985 | 873   |  |
| $s_2^2$     | 200                   | -200      | 0            | 0     | -588                  | 588   | 0    | 0     | -305                  | 305        | 0    | 0     |  |
| $b_{0}^{4}$ | -175                  | 11        | <b>-1</b> 64 | -279  | -183                  | -28   | -211 | -359  | -120                  | 80         | -40  | -68   |  |
| $b_{2}^{4}$ | 382                   | 142       | 524          | 891   | -678                  | 55    | -623 | -1059 | -743                  | -86        | -829 | -1409 |  |
| $s_2^4$     | -680                  | 45        | -635         | -1079 | -353                  | 26    | -327 | -556  | -797                  | -64        | -861 | -1464 |  |
| $b_{4}^{4}$ | 322                   | -30       | 292          | 496   | -211                  | -8    | -219 | -372  | 288                   | 8          | 296  | 503   |  |
| $s_4^4$     | -153                  | 13        | -166         | -282  | -317                  | 30    | -287 | -488  | 355                   | 96         | 451  | 767   |  |
| $b_{0}^{6}$ | -200                  | -11       | -211         | -485  | -216                  | 10    | -206 | -474  | -226                  | -34        | -260 | -598  |  |
| $b_{2}^{6}$ | 48                    | <b>26</b> | 74           | 170   | -37                   | -5    | -42  | -97   | 40                    | -1         | 39   | 90    |  |
| $s_2^6$     | -5                    | -7        | -12          | -28   | -40                   | 8     | -32  | -74   | -57                   | -9         | -68  | -156  |  |
| $b_4^6$     | -52                   | 11        | -41          | -94   | 55                    | -16   | 39   | 90    | -96                   | 3          | -93  | -214  |  |
| $s_{4}^{6}$ | -12                   | -11       | -23          | -53   | 93                    | -24   | 69   | 159   | 51                    | -10        | 41   | 94    |  |
| $b_6^6$     | -2                    | _1        | -3           | 7     | 32                    | 17    | 49   | 113   | 45                    | -18        | 27   | 62    |  |
| $s_6^6$     | 100                   | -19       | 81           | 186   | 9                     | 9     | 0    | 0     | 83                    | 17         | 100  | 230   |  |
|             |                       |           |              |       |                       |       |      |       |                       |            |      |       |  |

TABLE II. Calculated  $B_q^k(\text{cm}^{-1})$ .  $B_q^k = b_q^k + i s_q^k$  reference axes: z parallel to b (crystallographic axis), y rotated of  $\beta$  around z from c (crystallographic axis) and x normal to z and y. (a) Point charge contribution (PC). (b) Induced dipole contribution (ID). (c) Total contribution (PC+ID). (d) Corrected total contribution (PC+ID)(1 -  $\sigma_k$ )  $c_k$  (see text).

tree-Fock wave functions were inadequate even for reproducing free-ion empirical Slater integrals. Free and bound states radial functions should have similar expansions but far stronger than those exhibited by the theoretical Hartree-Fock functions. To take this into account, they introduced an additional parameter  $\tau$  in the wave function, with the effect of replacing  $\langle r^k \rangle$  by  $\tau^{-k} \langle r^k \rangle$ .  $\tau$  was fitted by comparison from the experience.

Ours was a different procedure which was already applied in Ref. 6. The experimental  $F^2$ ,  $F^4$  and  $F^6$  from Ref. 9 were compared to the theoretical (Hartree-Fock)  $F^k$ , and their lowering allowed for a crude estimation of true  $\langle r^k \rangle$ . In the present case,  $F^2$ ,  $F^4$ , and  $F^6$  were unknown, so we adopted the same corrections as in Ref. 6, i.e., we supposed that the radial wave functions of Eu<sup>3+</sup> were expanded in the same way as Nd<sup>3+</sup>, so that  $\langle r^2 \rangle$ ,  $\langle r^4 \rangle$ , and  $\langle r^6 \rangle$  (from Freeman and Watson<sup>10</sup>) were multiplied by  $c_k = 1.4$ , 2, and 2.6, respectively, in the Gd<sub>2</sub>O<sub>3</sub> matrix.

The lack of accurate polarizability values is probably the crucial point. We set  $\alpha(O^{2^{-}}) = 2 \text{ Å}^{3}$ ,  $\alpha(Eu^{3^{+}}) \simeq \alpha(Nd^{3^{+}}) = 1 \text{ Å}^{3}$ .

The final results  $(PC + ID)(1 - \sigma_k)c_k$  are reported in Table II.

# B. Calculated spectra: Assignment

Ab initio  $B_q^k$  are introduced in the order 49 complex interaction matrix, including spin-orbit coupling and crystal-field interactions, within the  ${}^7F_{J,M}$  sublevels (Ref. 11). In the theoretical spectra I, II, and III, the overall splittings of the  ${}^7F_1$ level are equal to 114, 153, and 398 cm<sup>-1</sup>, respectively. These values are to be compared with the experimental values (Table I), i.e., 490, 168, and 29 cm<sup>-1</sup> for A, B, and C, respectively.

Though there is no rigorous one-to-one coincidence between the calculated and experimental sets, it is inviting to identify site III with spectrum A, site II with spectrum B, and site I with spectrum C (a larger discrepancy occurs in the last correlation). This assumption is reinforced by the inspection of the whole energy scheme of the  ${}^{7}F_{J}(J=1 \text{ to } 4)$  manifold as compared with III, II, I, respectively (Fig. 5). One can see that the agreement is fairly good.

In the previous work by Rice and de Shazer<sup>1</sup> (on





a single crystal presumably untwinned), polarization measurements were performed in order to identify the irreducible representations associated with each sublevel, but important discrepancies arise by comparison with our own results. Concerning, for example,  ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$  (see Table I), their identification leads to  $(2\sigma + \pi)$  lines for spectrum *B* and  $(2\pi + \sigma)$  for spectrum *C*, results which are unconsistent. In a *C<sub>s</sub>* symmetry, the *J*=1 representation is reduced to (A' + 2A'') which should lead to  $(\sigma + 2\pi)$  in both cases. In fact, the authors mention the lack of precision of the polarization measurements of fluorescent transitions which is probably responsible for these discrepancies. Three other diagonalizations were performed with point-charge contributions only in  $B_q^k$  values (with the same shielding and radial integral corrections). The overall splittings of the  ${}^7F_1$  sublevels are then equal to 53, 175, and 364 cm<sup>-1</sup> for I, II, and III, respectively. Surprisingly enough, the agreement is better than with dipolar corrected parameters. Owing to the weak influence of dipolar corrections to  $B_q^4$  and  $B_q^6$ , the aspect of the remaining levels  ${}^7F_2$ ,  ${}^7F_3$  and  ${}^7F_4$  is not much changed. Once more, the lack of symmetry information makes it impossible to decide whether the use of the correction is, on a whole, beneficial or not, in this particular case. Three points need to be emphasized:

(a) Second-order parameters are very sensitive to small atomic displacements. When structural information from the earlier work of Hubbert-Paletta and Muller-Buschbaum<sup>4</sup> is utilized, even larger  $B_q^2$  values are found for LnI. It is evident that the new structure (Ref. 5) works better. (b) Sengupta and Artman<sup>12</sup> found, for Nd<sup>3+</sup>-and Np<sup>4+</sup>-doped PbMoO<sub>4</sub>, a dipolar contribution equal to ten times the monopolar contribution. They then expressed some doubt concerning "the validity of the convergence of a multipolar lattice-sum analysis". It is true that our dipolar corrections are not so large, but it is obvious that a quadrupolar calculation would help to clear up the matter.

(c) In a recent paper, Newman<sup>13</sup> emphasized the correlation between the nephelauxetic series and ligand polarizability. As pointed out by this author, crystal-dependent O<sup>2<sup>-</sup></sup> polarizability should then be reflected by variation of Slater shifts. In the present case, there exists a quite important nephelauxetic shift between B and C spectra on the one hand  $({}^{5}D_{0} \rightarrow {}^{7}F_{0} \sim 5820 \text{ Å})$  and the A spectrum on the other hand  $({}^5D_0 \rightarrow {}^7F_0 \sim 5790 \text{ Å}); \Delta \simeq 100 \text{ cm}^{-1}.$ However, the  $Eu^{3+}$  case is complex and it was shown<sup>14</sup> that the raising of the  ${}^{5}D_{0}$  level in solids cannot be related to an unambiguous variation of  $F^2$ ,  $F^4$ , and  $F^6$ , but only to a preferential decrease of  $F^2$  with respect to  $F^4$  and  $F^6$ . Besides, in the present case, we should rather speak about a "site-dependent" O<sup>2<sup>-</sup></sup> polarizability since this ion occupies five different crystallographic sites in

TABLE III. Contribution from first neighbors to calculated  $(B_q^2)$  ID.  $R, \theta, \varphi$  are the polar coordinates of a ligand and  $M_x$ ,  $M_y$  the Cartesian coordinates of induced dipoles at the ligand site.

|       | Ligand            | <i>M<sub>x</sub> (e</i> Å) | М <sub>у</sub> (eÅ) | R (Å) | θ (°)                                       | φ (°)  | $(B_0^2)d \ (\mathrm{cm}^{-1})$ | $(b_2^2)d \ (\text{cm}^{-1})$ |  |
|-------|-------------------|----------------------------|---------------------|-------|---------------------------------------------|--------|---------------------------------|-------------------------------|--|
|       | 0(1)(2)           | 0.319                      | -0.059              | 2,537 | 135.2                                       | -125.7 | -144                            | 162                           |  |
| Ln I  | 0(3)(2)           | 0.157                      | 0.160               | 2.290 | 44.8<br>141.9<br>38.1                       | 14     | 364                             | 35                            |  |
|       | 0(3)              | -0.157                     | -0.160              | 2,656 | 90                                          | -65.6  | -66                             | 52                            |  |
|       | 0(4)              | 0.153                      | 0.057               | 2.413 | 90                                          | 168.5  | 165                             | -154                          |  |
|       | 0(4)              | -0.153                     | -0.057              | 2.298 | 90                                          | 97.6   | 53                              | 13                            |  |
|       | To <b>ta</b> l fi | rst neighb                 | ors Lni             |       |                                             |        | 592                             | 305                           |  |
| Ln II | 0(1)(2)           | 0.324                      | 0.011               | 2.462 | $\begin{array}{c} 137\\ 43 \end{array}$     | 99.5   | -53                             | 68                            |  |
|       | 0(2)(2)           | -0.016                     | -0.010              | 2.297 | $\begin{array}{r} 141.6\\ 38.4 \end{array}$ | -118.8 | 32                              | -5                            |  |
|       | 0(1)              | 0.016                      | 0.010               | 2.288 | 90                                          | ÷55.6  | 0                               | -21                           |  |
|       | 0(3)              | -0.119                     | -0.1905             | 2.340 | 90                                          | 30.2   | <b>26</b> 8                     | -263                          |  |
|       | 0(5)              | 0                          | 0                   | 2.739 | 90                                          | 175.1  | 0                               | 0                             |  |
|       | To <b>tal f</b> i | rst neighb                 | ors Ln11            |       | 226                                         | -158   |                                 |                               |  |
|       | 0(4)(2)           | 0.1509                     | 0.062               | 2.254 | $143. \\ 37.$                               | 54.4   | 285                             | -60                           |  |
|       | 0(5)(2)           | 0                          | 0                   | 2.544 | $135.1 \\ 44.9$                             | -106.4 | 0                               | 0                             |  |
| Lnm   | 0(1)              | 0.320                      | -0.049              | 2.308 | 90                                          | -19.9  | -454                            | 380                           |  |
|       | 0(2)              | 0.017                      | 0.007               | 2.239 | 90                                          | 177.1  | <b>2</b> 8                      | -32                           |  |
|       | 0(3)              | -0.153                     | -0.165              | 3.132 | 90                                          | 107.6  | 47                              | 8                             |  |
|       | Total fir         | st neighbo                 |                     | 191   | 236                                         |        |                                 |                               |  |

monoclinic Gd<sub>2</sub>O<sub>3</sub>.

Table III reports the first-neighbor contribution to the dipolar correction of the  $B_a^2$  for I, II, and III sites. Note that convergence is far from effective at the first coordination shell. In fact the convergence of  $(B_q^2)_{\text{ID}}$  behaves like  $\sum_i f(i)/R^4$ . It is intermediate between the convergence of  $(B_q^2)_{\rm PC}$ and  $(B_q^4)_{PC}$  so that sufficiently accurate values are obtained by a summation within a 8-Å radius sphere. However the largest discrepancy between calculated and experimental  $B_q^2$  occurs for LnI and precisely in this case are the contributions of farther neighbors quite small (at least for  $B_0^2$ ). Table III underlines that the high (undesirable)  $B_0^2$ value originates from a very high O(3) positive contribution which competes with a negative O(1)contribution. Changes in O<sup>2-</sup> polarizability values from site to site should modify their relative magnitudes, but further discussion of the matter at this stage can only be highly speculative.

# VII. ENERGY TRANSFERS

In this section we would like to point out some characteristics of fluorescence transient properties without attempting any theoretical treatment of energy transfer from site to site. In such a multisite compound doped with europium and in our experimental conditions, the only way for energy to transfer from a donor site D (equivalent to sensitizer ion) to an acceptor site A (equivalent to activator ion) is by a process:

$$Eu^{3+}D(^{5}D_{0}) + Eu^{3+}A(^{7}F_{0}) \rightarrow Eu^{3+}D(^{7}F_{0}) + Eu^{3+}A(^{5}D_{0})$$

As was already mentioned, we always observe energy transfer from site to site in  $Gd_2O_3$  even at low temperatures. As can be seen from Figs. 2 and 3, transfer takes place at 77 K either towards lower or higher energies:  $A \Rightarrow B \Rightarrow C$ . At 4 K the  $B \rightarrow A$  transfer is completely inhibited but  $C \rightarrow B$ appears very weakly, the 4-cm<sup>-1</sup> energy difference between the two corresponding  ${}^5D_0 \rightarrow {}^7F_0$  transitions being of the same order as kT. In Fig. 6 are shown the fluorescence rise and decay times of of  ${}^5D_0$  levels. Two kinds of experiment were performed at 4 K:

First, excitation of  ${}^7\!F_0 \rightarrow {}^5\!D_0$  (A, B, or C site) and measurement of  ${}^5\!D_0 \rightarrow {}^7\!F_{1,2}$  (A, B, or C site) respectively. In these conditions the fluorescence rise is too fast to be followed by the apparatus.



FIG. 6. Fluorescence rise and decay times measurements at 4 K. (a): excitation (exc.) C ( $\lambda_e = 5823.5$  Å), analysis (anal.) C ( $\lambda_a = 6140$  Å); (b): exc. B ( $\lambda_e = 5822$  Å), anal. C; (c): exc. A ( $\lambda_e = 5786$  Å), anal. C; (d): exc. B, anal. B ( $\lambda_a = 6150$  Å); (e): exc. A, anal. B; (f): exc. A, anal. A ( $\lambda_a = 6085$  Å).

The decays of *B* and *C* ( ${}^{5}D_{0}$ ) levels are exponential  $\tau(C) = 0.72$  ms is the real radiative lifetime (neglecting back-transfer  $C \rightarrow B$ );  $\tau(B)_{apparent} = 0.68$  ms is the apparent radiative lifetime of Eu<sup>3+</sup> in *B* (donor) sites in presence of Eu<sup>3+</sup> in *C* (acceptor) sites. The  $A({}^{5}D_{0})$  level decay is more complex due to multiple transfers from this more energetic level, and does not exactly follow an exponential law, nevertheless we can estimate the apparent radiative lifetime  $\tau(A)_{ap}$  to be longer than  $\tau(B)_{ap}$  and  $\tau(C)$ .

Second, excitation of  ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$  donor site (A or B) and measurement of  ${}^{5}D_{0} \rightarrow {}^{7}F_{1,2}$  acceptor site (B or C): see Figs. 6(b), 6(c), and 6(e). In these cases the fluorescence rise time is much larger due to donor  $\rightarrow$  acceptor energy transfer. The rate equations describing, for example the B (donor)  $\rightarrow C$  (acceptor) system are

$$\begin{aligned} \frac{dN_B^*}{dt} &= N_B(t)\Phi(t)\sigma - W_B N_B^*(t) - W_{BC} N_B^*(t) N_C(t) \\ &+ W_{CB} N_C^*(t) N_B(t), \end{aligned} \tag{1} \\ \frac{dN_C^*}{dt} &= W_{BC} N_B^*(t) N_C(t) - W_{CB} N_C^*(t) N_B(t) - W_C N_C^*(t), \end{aligned}$$

where  $N_B(t)$  and  $N_C(t)$  are the  ${}^7\!F_0$  level populations in B and C sites. These values are generally assumed to be constants due to low power excitation. In this particular case  $N_B(t) = N_C(t) = N$  because the substitution  $Eu^{3+}/Gd^{3+}$  is equal on the three sites.  $N_B^*(t)$  and  $N_C^*(t)$  are the excited  ${}^5D_0$ level populations for B and C, respectively.  $W_{BC}$ and  $W_{CB}$  are the transfer probabilities from B to C and C to B and are supposedly time independent.  $W_{C} = 1/\tau(C)$  and  $W_{B}$  are the radiative lifetimes of  $\mathrm{Eu}^{3+5}D_0$  in C and B sites.  $\Phi(t)$  is the excitation flux and  $\sigma$  is a constant proportional to the oscillator strength of the absorbing transition. To simplify the resolution of these equations we have assumed the following conditions: that the initial populations are  $N_B^*(0) = N_0^*$  and  $N_C^*(0) = 0$  at the end of the pulse, and that there is no back transfer  $(W_{CB}=0)$ . The simplified rate equations are then

$$dN_{B}^{*}/dt = -W_{B}N_{B}^{*}(t) - W_{BC}NN_{B}^{*}(t),$$
  
$$dN_{C}^{*}/dt = +W_{BC}NN_{B}^{*}(t) - W_{C}N_{C}^{*}(t).$$
 (2)

Equations (1) were applied by several authors to materials in which active  $Ln^{3+}$  ions are either a constituent (PrF<sub>3</sub>, PrCl<sub>3</sub>, Ref. 15), or a dopant (CaWO<sub>4</sub>:Eu<sup>3+</sup>, Sm<sup>3+</sup>, Ref. 16). The integration of Eqs. (2) leads to  $N_B^*(t) = N_0^* \exp[-(W_B + W_{BC}N)t]$ . The value  $(W_B + W_{BC}N)$  is extracted from the *B* decay curve as being  $1/\tau(B)_{ap}$ ;  $N_C^*(t) = W_{BC}N_0^*N[\exp(-W_Ct) - \exp(-W_B - W_{BC}N)t]/W_B + W_{BC}N - W_C$ . However because  $(W_B + W_{BC}N) = 1/\tau(B)_{ap} \simeq W_C = 1/\tau(C)$  in this particular case,

with the approximations  $W_B + W_{BC}N = W_C + \epsilon$  and  $e^{-\epsilon t} \sim 1 - \epsilon t$  we obtain in fact  $N_C^*(t) = W_{BC}N_0^*N[t\exp(-W_C t)]$ .  $N_C^*(t)$  is then maximum for  $t_M = 1/W_C = \tau(C) = 720 \ \mu$ s and the theoretical decay time of *C* after transfer from *B* is found to be  $\tau(C)_{BC} = 1.4$  ms. These results are obviously in contradiction with experimental data  $[t_M = 250 \ \mu$ s,  $\tau(C)_{BC} = 0.790$  ms]. The model employed is thus oversimplified probably mainly by neglecting back-transfer  $C \rightarrow B$ , and by assuming  $N_C^*(0) = 0$  which is not true taking into account the pulse duration (30  $\mu$ s).

#### VIII. DISCUSSION

The accuracy of the one-to-one correspondence between experimental site-selected fluorescence spectra of  $Eu^{3+}$ -doped monoclinic  $Gd_2O_3$  on one hand and crystallographic europium sites on the other hand entirely depends on the reliability of the electrostatic model for *a priori* calculations of crystal-field parameters. The good analogy between calculated and experimental spectra gives us some ground to believe that our conclusions are valid.

The assumption that the expansion of the radial wave functions of the lanthanide ion in the crystalline matrix is the main source of discrepancy between calculated and experimental  $B_q^k$  was discussed earlier by Karayianis and Morrison<sup>8</sup> and Devine and Berthier<sup>17</sup>. The latter compared, for ten different rare-earth compounds (insulator or weakly metallic), effective  $\langle r^k \rangle$  (k = 4 and 6) derived from experimental spectra, with new theoretical values calculated by Freeman and Desclaux<sup>18</sup> (FD) for trivalent rare-earth ions. They noted an increasing discrepancy (experimental  $\langle r^4 \rangle$ ) with increasing atomic number, whatever the type of bonding.

We may compare the results of the present work ( $Eu^{3+}$  in  $Gd_2O_3$ ) together with earlier results<sup>19</sup> (Eu<sup>3+</sup> in LaAlO<sub>3</sub>) with those obtained in Ref. 6 (Nd<sup>3+</sup> in Nd<sub>2</sub>O<sub>3</sub> and Nd<sub>2</sub>O<sub>2</sub>S). For Nd<sup>3+</sup>, the effective  $\langle r^4 \rangle$  is about equal to 3.3 a.u., that is, 1.14 times the (FD) theoretical value. For  $Eu^{3+}$ , the effective  $\langle r^4 \rangle$  is 3.06 a.u., that is, 1.5 times the (FD) free-ion value. This supports Devine's<sup>17</sup> statement as far as the variation of discrepancy of  $\langle r^4 \rangle$  with the atomic weight is concerned. Considering a quite different compound<sup>20</sup>, europiumdoped  $KY_{3}F_{10}$ , the effective  $\langle r^{4} \rangle$  is equal to about 1.4 times the (FD) theoretical value, and this ratio is not very far from that of Eu<sup>3+</sup> in oxides (see above). This seems consistent with the second part of Devine's statement, that is, the nonsensitivity of  $\langle r^4 \rangle$  to the nature of the bonding. However, a counter example to the proposed

hypothesis can be found in a recent paper of Morrison and Leavitt<sup>21</sup>, concerning crystal-field analysis of rare-earth doped trifluorides. Following this work, the apparent  $\langle r^4 \rangle$  of Eu<sup>3+</sup>, for example, is equal to 6.16 a.u. The lattice sum analysis was based on a recent neutron diffraction structure refinement, and the crystal-field analysis on the true  $C_2$  site symmetry. Indeed, calculated values are very sensitive to the way lattice sums are carried out. For instance, results quoted by Devine and Berthier<sup>17</sup> concerning Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>;Ln<sup>3+</sup> and CaWO<sub>4</sub>:Ln<sup>3+</sup> were derived<sup>8,22</sup> by lattice sums on *nonionic* charges  $(q_{A1} = 1.92e,$  $q_0 = -1.55e$  in the former case for instance). The aim of this remark is only to stress the difficulty of comparing different sets of results in a

Yet, it remains true that in similar sorts of compounds such as mixed oxides actually under

- <sup>1</sup>D. K. Rice and L. G. de Shazer, J. Chem. Phys. <u>52</u>, 172 (1970).
- <sup>2</sup>O. Beaury, J. Dexpert-Ghys, M. Faucher, and P. Caro, J. Lumin. 18/19, 249 (1979).
- <sup>3</sup>D. T. Cromer, J. Phys. Chem. <u>61</u>, 753 (1957).
- <sup>4</sup>E. Hubbert-Paletta and H. Muller-Buschbaum, Z.
- Anor. Allg. Chem. 363, 3 (1968).

fully consistent way.

- <sup>5</sup>H. L. Yakel, Acta Cryst. <u>B35</u>, 564 (1979).
- <sup>6</sup>M. Faucher, J. Dexpert-Ghys, and P. Caro, Phys. Rev. B <u>21</u>, 3689 (1980).
- <sup>7</sup>R. P. Gupta and S. K. Sen, Phys. Rev. A 7, 850 (1973).
- <sup>8</sup>N. Karayianis and C. A. Morrison, U. S. National Technichal Report Information Service, Springfield, Va., Report No. A011252.
- <sup>9</sup>P. Caro, J. Derouet, L. Beaury and E. Soulie, J. Chem. Phys. <u>70</u>, 2542 (1979).
- <sup>10</sup>A. J. Freeman and R. E. Watson, Phys. Rev. <u>127</u>, 2058 (1962).
- <sup>11</sup>J. Dexpert-Ghys and M. Faucher, Phys. Rev. B <u>20</u>, 10 (1979).

consideration, the effective  $\langle r^k \rangle$  of a given trivalent rare earth display nearly identical values. We have already made this statement for Eu<sup>3+</sup> in LaAlO<sub>3</sub> (Ref. 19), Y<sub>2</sub>O<sub>3</sub> (Ref. 11), Nd<sub>2</sub>O<sub>3</sub> (Ref. 6), and Gd<sub>2</sub>O<sub>3</sub> (this work).

Although some details remain unsolved, the agreement between observed and calculated level positions as schematized on Figure 5 seems to us quite satisfactory. We think that this work gives proof of the actual usefulness of the electrostatic model, especially when applied to compounds exhibiting several different low-symmetry crystallographic sites for the rare earth.

## ACKNOWLEDGMENT

The authors wish to thank Dr. F. Auzel (Centre National d'Etude des Telecommunications Bagneux, France) for useful discussions concerning energy transfers.

- <sup>12</sup>D. Sengupta and J. O. Artman, Phys. Rev. B <u>1</u>, 2986 (1970).
- <sup>13</sup>D. J. Newman, Aust. J. Phys. <u>30</u>, 315 (1977).
- <sup>14</sup>P. Caro, O. Beaury, and E. Antic, J. Phys. <u>37</u>, 671 (1976).
- <sup>15</sup>D. S. Hamilton, P. M. Selzer, and W. M. Yen, Phys. Rev. B 16, 1858 (1977).
- <sup>16</sup>R. G. Peterson and R. C. Powell, J. Lumin. <u>16</u>, 285 (1976).
- <sup>17</sup>R. A. B. Devine and Y. Berthier, Solid State Commun. <u>26</u>, 315 (1978).
- <sup>18</sup>A. J. Freeman and J. P. Desclaux, J. Magn. Magn. Mater. 12, 11 (1979).
- <sup>19</sup>M. Faucher and P. Caro, J. Chem. Phys. <u>63</u>, 446 (1975).
- <sup>20</sup>P. Porcher and P. Caro, J. Chem. Phys. <u>65</u>, 89 (1976).
- <sup>21</sup>C. A. Morrison and R. P. Leavitt, J. Chem. Phys. <u>71</u>, 2366 (1979).
- <sup>22</sup>C. A. Morrison, D. E. Wortman, and N. Karayianis, J. Phys. C 9, L191 (1976).