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q-state Potts model in general dimension
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Critical properties of the q-state Potts and Potts-lattice-gas models are calculated by means of
the Kadanoff variational renormalization group for dimensions 1.58, 2, .-and 2.32, and the Migdal

approximation for arbitrary dimensions. Accurate results for the critical and tricritical exponents
are obtained as well as for q„ the largest value of q for which the Potts transition is continuous.

It is concluded unambiguously that the three-state Potts model in three dimensions undergoes a

first-order phase transition.

I. INTRODUCTION

One reason the q-state Potts model' has received
much attention in recent years is the interesting
dependence of its critical properties on the parameter
q. Whereas Landau mean-field arguments' predict
that the transition is first order for all q & 2 indepen-
dent of dimension, Baxter' proved that, in two

dimensions, this prediction is correct only for q & q,
=4. For q ~ q„ the transition is continuous. This
result'led to many attempts to calculate the critical
exponents of the model for arbitrary q, but none
reproduced the abrupt change in the nature of the
transition at q, .4 In 1979, den Nijs' conjectured that
for q ~ q, the thermal exponent of the Potts model,

yT, is related to that of the eight-vertex model, yT".
according to

(yr-3)(yrs"-2) =3

whereyrs"=(2/m)cos '(Jq /2) taken along the
branch 0 ~yT'" «1. That such a relation might exist
is plausible in light of the mapping between the Potts
model and the Baxter line of the eight-vertex
model. Nienhuis, Berker, Riedel, and Schick then
showed how the change in the nature of the transi-
tion with q emerges readily in the context of a
renormalization-group (RG) calculation when carried
out on a generalization of the Potts model, the
Potts-lattice gas. This model has three fixed points,
critical, tricritical, and discontinuity, when q ( q„
and a single discontinuity fixed point, when q & q„
such that the phase transition of the pure Potts
model is governed for q ( q, by the critical fixed
point and for q & q, by the discontinuity fixed point.
As usual, the discontinuity fixed point describes
first-order behavior. At q = q„ the critical and tri-
critical fixed points annihilate, which reflects the spe-
cial properties of the four-state Potts model. Once
this mechanism for the change in the nature of the
transition at q, is established, analyticity of the RG
equations implies that one analytical relation must

yield the critical and tricritical exponents as functions
of q. In particular, Nienhuis et al. ' suggested that
the extension of the den Nijs conjecture of Eq. (I) to
the branch —1 ~yT" (0 yields the tricritical thermal
exponent of the Potts-lattice gas. An approximate
calculation employing the Kadanoff variational RG
method' yielded critical and tricritical exponents in
very good agreement with these conjectures. " The
same approximation was applied to obtain values for
the magnetic exponents, yH, and the results suggest-
ed the relationship' '3

(4yH +yr'" —6) (yr'" —2) = —3 (2)

The other critical exponents follow from the usual
scaiing relations with v = I/yr and 5 =yH/(d —yH).
The topology of smoothly merging lines of critical
and tricritical fixed points has been used to construct
phenomenological scaling-field equations from which
the singularity structure of the free energy has been
extracted. '" " Recently, Black and Emery' have
presented a microscopic derivation of the den Nijs
conjecture (I).

The purpose of this paper is to study the critical
properties of the Potts model for general dimension,
d. In particularI the dependences of the critical ex-
ponents on q and d and of the critical value, q„on d
are determined numerically. The calculation incor-
porates the same ideas that led to the successful
evaluation of the properties of the two-dimensional
Potts model. The techniques employed are the Ka-
danoff variational RG procedure, ' for dimensions
d =1.58, 2, and 2.32, and the Migdal bond-shifting
technique, "for general d. Both schemes are applied
to the Potts and the Potts-lattice-gas models. Other
recent work on the Potts model in d dimensions is
discussed in Sec. IV.

The main results of this study are as follows. '

First, q, decreases rapidly as a function of d near two
dimensions and is already less than three for
d =2.32. Therefore, the three-state Potts model in
three dimensions exhibits a first-order transition.
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Second, when dimension one is approached from
above, q, behaves like exp[2/(d —1)]. Third, the
small-q behavior of the exponents predicted by Eqs.
(1) and (2), yr ~q' ' and d —

yH ~ q' ', is peculiar to
two dimensions. For all other dimensions, y~ and y~
linearly approach finite values between zero and d as

q 0. Fourth, for d greater than two the degree of
instability of the fixed points along the "tricritical"
line changes from two to three, with decreasing q, at
a value q (d). This may indicate that the tricritical
behavior is classical for q less than q (d).

II. METHODS

Central to the success of the computational ap-
proach to the Potts model, "'"which yields first
as ~el! as second-order phase transitions, is the idea
of enlarging the Hamiltonian space to that of the
Potts-lattice gas. Some remarks motivating this
method are in order. Any RG describing a phase
transition must preserve the symmetries that relate
the phases involved. '9 For the q-state Potts model,
the q equivalent ordered phases transform into each
other under the elements of the permutation group
of q objects, while the disordered phase is invariant
under this group of transformations. In a first-order
transition the symmetry must be preserved at a
discontinuity fixed point, which occurs at zero tem-
perature. Since one is limited, in approximate RG
calculations, to finite systems one faces the difficulty
that no zero-temperature cluster of Potts spins is
both disordered and invariant under the permutation
group. An easy way around this difficulty is to intro-
duce a new spin state to be associated with the disor-
dered phase in analogy to the q states of the original
Potts spin associated with the q ordered phases. ' The
new state referred to as the vacancy state must be
chosen such that it is invariant under permutation of
the other q states. In practice, this procedure is im-

plemented by mapping disordered clusters of Potts
spins onto the vacancy state rather than onto a Potts
spin. Under repeated iteration the disordered phase
is mapped by this RG transformation onto a state in
which all sites are vacant. The symmetries of this
state are easily preserved at zero temperature along
with those of the ordered states which guarantees the
existence of a discontinuity fixed point. This pro-
cedure describes the Potts model as embedded in the
more general space of Potts-lattice-gas Hamiltonians.
The nearest-neighbor Hamiltonian for a Potts-lattice
gas is

—pX= X t, tt(It. +J5. ,,) —aXt;,
&ij) I

with the symmetry-breaking term

(3a)

—p3C' Xt,5t, + =X t;tt[L(5t, +5), ) +M5t, 5), ]
&i j&

(3b)

The lattice-gas variable t; equals unity if a Potts spin
s; =1,2, . . . , q occupies lattice site i and is zero oth-
erwise. The chemical potential 4 governs the con-
centration of vacancies. Throughout the calculation,
q enters as a continuously variable parameter. The
topology of the lines of critical and tricritical fixed
points associated with this model was briefly reviewed
in the Introduction. '

The above ideas are easily incorporated into stand-
ard RG approximation methods. Here we employ the
Kadanoff variational method' and the Migdal bond-
rnoving scheme. " Consider the model (3) on a hy-
percubic lattice of d dimensions. In the variational
approach, this Potts-lattice-gas Hamiltonian can be
written as a sum over local Hamiltonians, each
representing 2 sites of an elementary hypercube,
—PÃ= XX„,. The RG transformation maps each
block of spins onto a single site. The dimension of
the lattice enters solely through the number of sites
of the elementary hypercube, and the transformation
is well defined whenever 2~ is an integer. However,
the computation time needed to solve the variational
equations grows rapidly with d. Therefore, only the
cases 2 =3, 4, and 5, or d =1.58, 2, and 2.32, were
investigated for general q. The pure Potts subspace is
considered for comparison since, in two dimensions,
it had been found to yield superior critical exponents
when q &( q, . Details of the computational method
are found elsewhere. '

Migdal recursion relations can be easily formulated
for general d. " We used the approach to obtain
qualitatively the critical behavior of the Potts model
for general q and d. There is an ambiguity in the
procedure as to what fraction, p, of the on-site chem-
ical potential, d, is to be shifted with the nearest-
neighbor bonds. Results of the Migdal method
depend in general on this parameter, p, and also on
the value of the rescaling factor, l. In certain limits
universal, i.e. , parameter independent results are
found that appear to be more reliable. For example,
Migdal" observed that the method yields for the n-

vector model with n & 2, d & 2, critical exponents
that to leading order are independent of l and in
agreement with exact results. For the Potts model
we find that in the limit d 1+ the value for q, be-
comes independent of p and l.

III. RESULTS

The calculational techniques can be tested for the
two-dimensional Potts model against the presumably
exact results (1) and (2) for the thermal and magnet-
ic exponents. Figures 1(a) and 1(b) summarize
results obtained by the Kadanoff variational method
as well as the conjecture. "' Critical and tricritical
data are shown as lower and upper branches. Ap-
plied to the Potts-lattice gas, the method yields, in
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FIG. 1, Thermal exponent y~ (a) and magnetic exponent vH (b) as functions of q for the critical and tricritical Potts transi-
tions in two dimensions (lower and upper branch, respectively) from variational renormalization-group calculation for pure and
dilute Potts systems (dotted and broken curves, respectively). The solid curves represent the conjectured data that are presum-
ably exact.
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the vicinity of q, and along the tricritical branch, ex-
ponents in excellent agreement with the conjectures.
For smaller q on the critical branch, the calculation
for the pure Potts model gives more accurate ex-
ponent values. In fact, no dilute critical fixed point
was found for the Potts-lattice gas when q & 1. Of
course, only the lattice-gas calculation reveals the
changeover to first-order behavior. The critical value

q, =4.08 compares well with the exact one, ' q, =4.
Burkhardt' has independently carried out the varia-
tional calculation for d =2 and finds full agreement
with our results. Finally, in the limit of small q, the
Migdal method yields excellent critical exponents as
shown in the inset of Fig. 2.

Figures 2—5 present data for the leading and next-
to-leading thermal and magnetic exponents as ob-
tained from variational RG calculations for the
Potts-lattice gas (solid curve) and the pure Potts
model (dashed curve) for dimensions d =1.58, 2,
and 2.32. Lower and upper branches refer again to
critical and tricritical transitions and, for q ) q, (d),
the transitions are first order. The circles in Fig. 2
denote values for the critical and tricritical thermal
exponents of the three-dimensional Potts model for
q =1 and 2 obtained by other techniques. ' The
points can be connected smoothly by a curve of a
shape similar to those depicted for d & 3. This yields
q, (d =3) =2.2. Figure 3 shows that the tips of the
curves coincide very closely with the point at which
the second thermal exponent, yT ~, changes sign.
This provides a criterion for the quality of the ap-
proximation and internal consistency of the calcula-
tion. Figures 4 and 5 exhibit results for the first and
second magnetic eigenvalues, y~ and yII ~, respective-

yT
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FIG. 2. Thermal exponent yT vs q for the q-state Potts
model of dimensions d =1.58, 2, and 2.32 from variational
renormalization-group calculation (dashed and solid curves
for pure and dilute Potts systems, respectively) and Migdal

approximation (dotted curves in the inset of the figure).
The results for d =2 are identical with those in Fig. 1(a).
Circles denote exponent values for the one- and two-state
Potts models in three dimensions.

I
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FIG. 3. Second thermal exponent yT & vs q for the q-state
Potts-lattice-gas model in dimensions 0 =1.58, 2, and 2.32
from variational renormalization-group calculation. The ex-
ponents change sign at q = q, (d) to good approximation.
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FIG. 4. Magnetic exponent yH vs q for the q-state Potts-
lattice gas in dimensions d =1.58, 2, and 2.32 from varia-

tional renormalizatioo-group calculation (dashed and solid
curves) and Migdal approximation (dotted curves). The
results for d =2 are identical with those in Fig. 1(b).

ly, which are relevant for both the critical and tricriti-
cal transitions. %e expect that ye 2 is also approxi-
mated well by the variational method since, for d =2
and q = q„ it yields y& 2 = —,

'
in agreemen~ with a

conjecture by Barber. "
In comparing the results for different dimensions

one makes the following observations.
(i) The shapes of the curves close to the tips, i.e.,

for q q„are very similar. This indicates that in
this range of dimensions the same mechanism is
responsible for the changeover from continuous to
first-order behavior and that the exponents are ana-
lytic functions of q near q, . This property is likely to
change at d =4, when q, becomes equal to 2. As is
apparent from Pigs. 2 and 3, the eigenvalues y~ and

y~2 for d =2.32 on the tricritical branch exceed their
classical values two and one, respectively, for all

q &q =1.46. For these values of q, we find three
relevant thermal exponents indicating that the fixed
points no longer describe tricritical phenomena. '4 %e
infer that the tricritical line of fixed points intersects
with the Gaussian fixed line at q =q and that the
actual tricritical behavior for all q & q~ is classical. If
so, q (d) should approach two as d approaches four,
the upper tricritical dimensionality of the Potts
model.

(ii) Much attention has been paid to the question
of how the critical value q„at which the Potts transi-
tion changes from continuous to first order, depends
on the dimension d of the system. There arc one ex-
act result, q, (d =2) =4, 3 and two conjectures,
q, (d ~~4) =2 (Ref. 26) and q, (d I+)
0:exp[2/(d —I)]. The data points in Fig. 6 summa-
rize the results for q, (d) obtained from the variation-
al RG approach to the Potts-lattice gas as well as, for
d =3, from the interpolation through the data points
in Fig. 2. The smooth curve in Fig. 6 is a guide to
the eye. In dimensions d =1.58, 2, and 2.32 we find
the sequence for q, of 12.6, 4.08, and 2.85. There-
fore, near two dimensions, q, decreases rapidly as a
function of dand is less than three at d =2.32.
Hence wc conclude that the three-state Potts model
in three dimensions undergoes a first-order phase
transition. In the limit d 1+, we find from numer-
ical work employing the Migdal method that q, as-
sumes the asymptotic form q, ~ exp[2/(d —1)j, in-

dependent of the RG parameters p and / (compare
Sec. II). Berker and collaborators2' have obtained
this result independently, but did not consider the p
dependence.
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FIG. 5. Second magnetic exponent ye 2 vs q for the q-

state Potts-lattice gas in dimensions d =1.58, 2, and 2.32
from variational renormalization-group calculation. In two
dimensions at q„ the exponent assumes to within 0.20/o the

7
value s conjectured by Barber.

FIG. 6. Critical value q, as function of d from variational
renormalization-group calculation for d =1,58, 2, and 2.32,
respectively, smooth interpolation of series expansion data
for d =3, and conjecture for d ~ 4,
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(iii) The small-q behavior of the exponents
predicted by Eqs. (1) and (2), yr ~ q'~' and

yH
—d ~ q' ', is peculiar to two dimensions. For all

other dimensions, y~ and yH linearly approach finite
values between zero and d. Specifically, Fig. 2 shows
that the thermal critical exponent y~ equals zero at

q =0 only when d =2. The inset of that figure com-
pares the results of the variational RG (dashed
curve) with those of the Migdal bond-moving scheme
(dotted curve). The agreement for q close to zero is

striking and may indicate the reliability of these cal-
culations for small q. Furthermore, we find that
within the Migdal approximation the tricritical, ther-
mal and magnetic exponents approach d for all

dimensions. The variational RG calculation does not
show that, probably for the following reason. The
probability for the presence of a spin, (t), is propor-
tional to the number of spin states q. When q ap-
proaches zero the system will be depleted of all spins
unless the chemical potential diverges like lnq. At
the tricritical fixed point generated by an approximate
RG this is not normally the case. The ambiguity in

the Migdal bond-moving scheme (compare Sec. II)
allows one to cure this problem by setting b, = b —lnq
and shifting only LL. This yields magnetic and ther-
mal exponents that approach d when q vanishes.

(iv) The special role that dimension d =2 plays is

apparent from Figs. 7 and 8, which show the thermal
and magnetic exponents as functions of d for some
values of q. The results are for the pure Potts model

by means of the Migdal method. Although the Mig-
dal results are incorrect for large d (for example, as
d 6 the exponent y~ approaches one rather than
two) they show the proper behavior for small q and
d. The exceptional behavior at d =2 is due to the
fact that this is the lower critical dimensionality of the
zero-state Potts model. It has been stated that this
implies that the Migdal recursion relations become

l.0

1.0

0'8
I

FIG. 8. Magnetic exponent yH/d as a function of il for the
critical Potts transition from Migdal recursion relations.

exact to first order in (d —2), but we are not aware
of a proof. If correct one would expect that at d =2
the exponents and critical temperature can be ob-
tained exactly to first order in Wq. The critical tem-
perature is obtained correctly, T, =1/ln( Jq +1).
However, if the conjectures (1) and (2) for the ex-
ponents are exact then the Migdal results are off by a
factor 3/n to first order in Jq. We note that the sit-
uation is reverse for the n-vector model in the
(2 —d) expansion, where the Migdal method yields
the exact critical exponents but a critical temperature
off by a factor 3/m. '7

IV. DISCUSSION

The results presented above are numerical in na-
ture and contribute to the phenomenology of the crit-
ical properties of the Potts model. The thermal and
magnetic exponents, for the critical and tricritical
transitions, have been obtained as functions of q and
d, and the critical value q, as a function of d. The
calculational method developed previously for the
two-dimensional Potts model is of conceptual in-
terest. In the remainder of this section we review
other recent work on the Potts model and compare
with our results.

Aharony and Pytte' have obtained near four
dimensions,

q, (d =4 —a) =2+a+0(a') (4)

0.5

0I

FIG, 7. Thermal exponent y& as function of d for the crit-

ical Potts transition from Migdal recursion relations. The
lower critical dimension of the zero-state Potts model is

presumably two.

expanding about the Ising limit in terms of q —2.
The upper critical dimension of the Potts model is six
for q ~ 2. One observes that the curve in Fig. 6 does
not follow the result (4) for d & 4. A similar expan-
sion for the thermal and magnetic exponents, y~ and
yH, would be instructive since it could decide whether
the exponents depend analytically on q near q, for all
d (4,

With regard to the three-state Putts model in three
dimensions, our calculation predicts that the transi-
tion is first order and explains why theoretical calcula-
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tions29 and experiments may have difficulty deter-
mining the order of the transition. The topology of
the RG phase diagram is such that for q not much
larger than q„ the RG flows towards the discontinui-
ty f~xed points are strongly influenced by the operator
that is marginal at q, . As a result the latent heat is
small }L ~ exp[ —C/(q —4)' '1 in two dimensions'}
while the specific heat and susceptibility are large so
that the transition almost appears to be second order.
However, computer simulations, 3O a 1/q expansion, 3'

the present study, as well as early momentum-space
RG calculations32 and an experiment3 leave no doubt
as to the first-order nature of the transition.

There is a large body. of evidence supporting the
vahdity of the conjectures (1) and (2) for the ex-
ponents of the two-dimensional Potts model. The
first direct proof of (1) on the critical branch is a

derivation by Black and Emery. '6 The analyticity ar-
guments of Sec. 1 imply that (1) is also exact for the
tricritical values. Evidence for (2) includes agree-
ment with thc new exact results for the hard hexagon
model by Baxter, '4 which imply yH(q =3) =—„,as

well as numerical results by the variational RG" and
a transfer matrix calculation. In the absence of
such conjectures for d ~ 2, calculations such as those
described herein must suffice to predict critical
behavior of the Potts model in general dimension.
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