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Hyperscaling in the Ising model on the simple cubic lattice
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High-temperature series for the second spherical moment Mq = $„xt (o.oo „) are presented

to 15 terms for the spin-2 Ising model, on both the simple cubic and body-centered-cubic lat-

tices. These results are combined with previously known series to study hyperscaling to 15

terms on the simple cubic lattice, Some of the evidence suggests a violation of hyperscaling.

In the course of studying lattice field theories, I
have computed the high-temperature series for the
full two-spin correlation function for all graphs with

up to 15 internal lines, on both the simple cubic and
body-centered-cubic lattice. The results hold for any
scalar theory with a spin density distribution which is

even in s.
Details and some analysis of the results will be

published elsewhere. Here I wish to concentrate on
the implications for critical indices and hyperscaling

in the Ising model.
High-temperature series for the susceptibility X in

the Ising model have already been computed' for sc
and bcc lattices up to 17 and 15 lines, respectively.
But the most complete results for

Mt —= Xx'(~o~-, )
X

extended to 12 lines. ' My results are'
(u =tanhj jkT)

M2=6v+72v +582v +4032v" +25542v +153000v +880422v +4920576v

+268 796 70v + 144 230 088 v + 762 587 910v' +3 983 525 952v"

+20595680694v" +105 558 845 736v' +536926 539990v",

8v+128v2+1416„3+13568„4+119240„5+992768v6+7 948 840v7+61 865 216v

+470 875 848v + 3 521 954 816v + 25 965 652 936v" + 189 180 221 184v'

+1 364489 291 848v +9 757 802417 152v + 69 262 083 278 152v (2)

for the sc and bcc cases, respectively.
The results for M2 and X can be combined to com-

pute v, the exponent for the correlation length near
the critical point

then

h(x) = —x —(1 —x) e e+"fJ

~here

D2 2l'M2

6x

near x =1. Using

15

f(u) =M2(u) = XM2ju (8)

T = (1 —T,IT),

T & T„ the critical temperature

First, following Baker' I computed j using critical-
point renormalization. ' lf

(4)
15

g(v) =X(u) =1+ gxquj,
J~f

then

(1 —x)—inh(x) ~„ t =2v+1d

(9)

(10)

f(u) = Xfjuj- (u —u, ) e,
g(u) = $g,v'-(v —v, ) e, (6)

Because Nickel's results on the bcc lattice are
more extensive than mine, I will restrict my analysis
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TABLE I. Pade estimates for 2v for the function defined in Eq. (11), N and D are the degrees of the numerator and denom-
inator polynomials. Asterisks denote defects (close poles and zeros, with residue «0.01).

10 12

1

2

3
4
5
6
7

8

9
10
11
12

1.2314
1.2524
1.2704
1.3026
1,2871
1.2908
1.2807
1.2899
1.2754
1.219
1,290
1.281

1.2518
1,5136
1.220
1.2925
1,2900
1.288
1,2853
1.2848
1.2847
1.2844
1,2840

1.2696
1.219
0.849"
1.2906
1.295
1,2833
1.2845
1.2847
1.285
1,285

1.2994
1.2918
1.2895
1.2869
1.2861
1.2847
1,2848
1.285"
1.285

1.2889
1,2884
1.306"
1.2860
1.288'
1.2848
1.285
1.284"

1.2884
1.289
1.2844
1.2845
1.2846
1.2838
1.287

1.2846
1.2856
1.2845
1.2846
1.285
1.285

1.2859
1.285
1.2846
1.285
1.284

1.2840 1.2853 1.2834 1.2841
1.284S 1,285 1.2839
1.232 1.285
1.285

to the simple cubic lattice. .The standard technique4
is to compute the Pade approximants to

er near x =+2. So we can make a linear fractional
transformation.

p(x) = (1 —x)—Inh(x)d
dx a+(1 —u)x

(13)

v =0.6423 + 0.0008 (12)

using the Hunter and Baker6 estimate for the error.
It is clear from the defect-free Pade approximants for
15 lines that p(x) has a pole near x = —1 and anoth-

and evaluate these at x =1. The results for 2v are
shown in Table I. It is noteworthy that the Pade ap-
proximants obtained from using 14 or 15 terms are
plagued with defects (nearby zeros and poles), so
that the results are quite unreliable. By restricting at-
tention only to the first 13 terms one deduces

which leaves both the origin and x =1 invariant, and
which maps the other singularities as far from the
origin as possible. The mapping

X
z =

—,
' +x/5

(14)

accomplishes this, and the results in Table II show
the results of a Pade analysis of p in the variable z.

All poles have moved well outside the unit circle in z

but the problem of defects remains and Eq. (12)
remains the most reliable estimate.

TABLE II. Pade estimates for 2v after mapping Eq. (14).

10 12

1

2

3
4
5
6
7
&

9
10
11
12

1.2314
1.2487
1.2621
1.2884
1.2907
1.2906
1.2838
1.2863
1.286
1.2850
1.285"
1,2843

1.24&1

1.5136
1.206
1.2913
1.2906
1.291
1.2867
1.285
1.284
1.2845
1.299

1,2619
1.205
0.849
1.2904
1.292
1.289
1.2805
1.2842
1.2844
1.284

1.2&44

1.2919
1.2891
1.2869
1.2863
1.2852
1.2849
1.2844
1.284

1.2896
1.2898
1.2791
1.2862
1.288
1.2847
1.287
1.290

1.2898
1.290"
1.2866
1.2853
1.2845
1.2838
1.289

1.2881
1.281
1.2836
1.2847
1.283
1.286

1.2868
1.2835
1.288
1.2S4
1.286

1.285& 1.2853 1.2&49 1.2845
1.2845 1.2839 1.282
1.2842 1.290
1.2&39
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TABLE III. Neville table for 2v. q& is defined in Eq. (16), with h; defined in Eqs. (7)—(9).
Subsequent columns are defined by q&' =(jq&' ' —(j —2r)qJ'& ' I/2I. .

q
(0)

q
(&)

q
(2)

q& q
(3)

J q
(4)

J
(s)

l

2

4
6
8

10
12
14

2.800000
1.725 484
1.549 504
1.473 635
1.431 182
1.404 266
1.385 590

0.650967
1.197 546
1.246028
1.261 371
1.269 687
1.273 531

1.470 836
1.294 509
1.284 386
1.286 319
1.283 142

1.235 733
1.277 637
1.288 251
1.278 908

1.288 113
1.293 559
1.271 900

1.294 648
1.263 236

3
5
7
9

11
13
15

1.850 000
1.551 397
1.467 196
1.422 863
1.395 796
1.377 557
1.364 332

1.103491
1.256 693
1.267 697
1,273 995
1.277 243
1.278 367

1.371 595
1.281 452
1.285 017
1.284 550
1.281 456

1,236381
1.287 988
1.284006
1.276 815

1.307 340
1,281 518
1.270 522

1,273 771
1.265 024

To extract meaningful numbers for 14 and 15 lines
one can abandon the Pade approach and go back to
the ratio test. If h (x) behaves like (1 —x) i'+2"'

near x = 1 and

coefficients for even j and odd j are treated separate-
ly. The Neville table' for this series is shown in
Table III. The sequence of first differences

It (x ) = X h~x
&,

then the coefficients

(15) q
(&) [iq (o) (i 2) q

(o) jg
is better convergent than the original sequences q&' '.
The sequence

q(0) =n hj
J

hj )

(16)

should tend to 2v for large j. For the series defined
by Eqs. (7)—(9), the sequence q& is smoother if the

q&'" = [iq&" ' (i —4) q&'-—'t' l I4 (18)

has lost the monotonicity required for really believing
the Neville table analysis.

Table IV sho~s the Neville tables for the series in

TABLE IV. Neville table for 2v after the mapping (14).

q
(0)

q
(1)

q& q
(2)

q
(3)

q&
(4)

g)
(5)

2

4
6
8

10
12
14

2,240000
1,556422
1,438 745
1.395 101
1.370 986
1.355 482
1.344 677

0.872 844
1.203 390
1.264 169
1.274 525
1.277 965
1.279 847

1.368 663
1.324 948
1.290059
1.284 846
1.284 551

1.310377
1.266 800
1.279 63'2

1.284 159

1.255 906
1.286 048
1.287 554

1.292 077
1.288 156

3
5

7
9

11
13
15

1.657 358
1.468 358
1.410 669
1.380 950
1.362 300
1.349 589
1.340 389

1.184 857
1.266 448
1.276 930
1.278 379
1.279 676
1.280 591

1.327 641
1.290032
1.280 914
1.282 595
1.283 108

1.271 228
1.273 315
1.284 556
1.283 879

1.274 098
1.291 581
1.283 286

1.296 826
1.279 138
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TABLE V. Pade estimates for 2A —y.

10 12 13

1

2

3
4
5

6
7
8
9

10
11
12
13

1.9821
1.9481
4.6712
1.8935
1.887
1.8821
1.8814
1.882
1.8838
1.885
1.88S6
1.8860
1.8863

1.9281
1.6501
1.916
1.884
1.878
1.8813
1.882
1,880
1.8874
1.8885
1.8864
1.8871

1.8998
1.9004
1.888
1.8795
1.8806
1.8837
1.8931
1.884
1.8884
1.888
1.8867

1.9003
1.900"
1.875
1.8808
1.876
1.8891
1.885'
1.885
1.8864
1.8865

1.898
1.926
1.8825
1.883
1.8905
1.882
1.885
1.885
1.8865

1.8868
1.8784
1.883
1.882
1.8853
1.886
1.8861
1.8865

1.884
1.882
1.8856
1.885
1.886
1.888
1.886,7

1.8824
1.8827
1.8847
1.885
1,8865
1,8867

1.8828
1.882
1.8875
1.8859
1.8867

1.884 1.8848 1.886 1.8860
1.852 1.8874 1.8870
1.8853 1.8869
1.886

h(z), defined after the mapping (14). The conver-

gence is better than in Table III, and the results are
quite compatible with the estimate (12). This shows

that the 14 and 15 line results agree with those of 13
lines or less, on which Eq. (12) is based. '

If there are nonanalytic connections to h (x), i.e.,

h(x) —(1 —x) "+'"'
1

&& I+ X f„(1—x)"+A(1 —x)a, (19)
n~1

with 5 nonintegral, then one expects the Neville

table coefficients to behave as

qg =2v+ + + ~ + +, (20)(p) 0'& 13

J j2 jr+1

=2@+—+ +'''(i) n' P
jr+i (21)

I have tried to fit qjt'» to the form (21) in both
Tables III and IV for j=s, 10, 12, 14. But there are
no consistent values for v, u', P', A.

Let us now consider the exponent y —2A, where

TABLE VI. Neville table for 24 —y —3v defined by Eqs. (5), (6), (7), and (27),

q
(p)

q
(4)

J

2

4
6
8

10
12
14

0.285 714
0.131815
0.081 588
0,053 303
0.035 106
0.022655
0.013665

—0.022 085
—0.018 864.
—0.031 552
—0.037 686
—0.039 595
—0.040 278

—0.017 254
—0.044 239
—0.046 886
—0.043 415
—0.041 983

—0.053 235
—0.048 651
—0,039944
-0,040074

—0.047 505
—0.035 590
—0.040172

—0.033 208
—0.042 005

3
5
7
9

11
13
15

0.161 932
0.096 313
0.063 827
0.042 399
0.027 878
0.017 550
0.009 888

—0.002 114
—0.017 388
—0.032 600
—0.037 468
—0.039 252
—0,039920

—0.028 843
—0.051 614
—0,045 986
—0.043 266
—0.041 758

—0.063 000
—0.041 296
—0.040091
—0.039497

—0.033 157
—0.039 338
—0.038 977

—0.041 193
—0.038 796
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0, y are defined by

(22)

point renormalization with

(27)

Using the 15 term results for d xl'dH as f(v) in

Eq. (5), and using x2 as g(v), the Pade results for

(2A —y) are shown in Table V. The result is

2I —~ =1.8863+0.0006,

again using the Hunter-Baker estimate of the error.
According to hyperscaling

The central part of the Pade table is full of defects.
The Neville table coefficients for h (x), which should
tend to 2h —y —3v, are shown in Table VI. Thc
even and odd terms appear to be two monotonically
converging sequences, with limits well within the er-
ror bounds of Eq. (26).

Finally, one can repeat the analysis of Nickel and

Sharpe, '0 which asks whether the function y(y),
analogous to the Callan-Symanzik function of field
theory, can have a zero. y(y) is defined by the rela-

tions

x ( v) =M2(v)/6X(v)

Our result, combining Eq. (12) with Eq. (24), is

2d —y —3v = —0.041 +0.003 (26)
y(v) =x(v) 8'x(v)

BH2 x2 u

which shows a violation of hyperscaling even morc
drastic than Baker's previous estimate~ of —0.028
+0.003 obtained from the fcc lattice up to ten or-
ders.

One can test hyperscaling directly by using critical-

y(y) =x~ =x(v)-~dp dx
dx dV dy

expressed as a function of y by inverting Eq. (29).
Our results add three more terms to the series for
y(y) for the sc lattice

TABLE VII, Pade estimates for zero of y(y) (Upper number) and s1ope (lower number), for y(y) defined in Eq. (30),

10

0.18340
-0.666

0.190
-0.556

0.19087
-0.531

0.18962
—0.560

0.18869
-0.585

0.18903
-0.575

0,190'
-0.550

0.190
-0.539

0.175"
-0.745

0.190'
-0.544

0.185
—0.775

0.18894
-0.578

0.188'
-0.591

0.190
—0.530

0,184"
—0.678

0.18918
—0,570

0.18943
—0.563

0.18951
—0.561

0.18961
—0.557

0.192 18
—0,492

0.18996
-O.S48

0.19023
-O.S36

0.18954
—O.S60

0.189
-0.566

0.18816
—0.602

0.18907
-0.573

0.18962
—0.557

0.18964
-0.556

0.18918
—0,570

0.186'
-0.644

0.18964
-0.556

0.190'
—0.556

0.191"
—0.513

0, 190
M.551

0, 18965
M, 556

0.18911
-0.575

0.190
-0.577

0.19045
-0.524
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y (y) =y —gy' +24y3 —112y~ +469—y' —896ya —2880y' +46 563—ys —159466—y9

—512 960y' +5 772 583—y" —16377 353—y' —53 100416y'

+755 196452 yi 2 561 217 461 y 5 6 729 254 272y

y' =0.1896 + 0.0015

with a slope of

7'(y") = —0.556+0.07

(32)

(33)

These numbers are quite consistent with the Nickel-
Sharpe analysis based on 13 terms

yes =0 189+0 002

y'(y")its =0 56 +0 04

(34)

(35)

but the Hunter-Baker6 error estimates are disappoint-
ingly large and preclude pinning down the parameters
more precisely.

In conclusion, I have added three more terms to
the series for M2 in the Ising model on the simple
cubic lattice. The high-temperature series determina-
tion of v is given in Eq. (12), while that of 2t) —) is
given in Eq. (24). These indicate a violation of
hyperscaling given in Eq. (26). However, the

Pade results for the zeros of ) (y) and the slopes
y'(y) there are shown in Table VII. There is a stable
zero at

Nickel-Sharpe analysis yields a zero of y(y), which is

evidence for compatibility with hyperscaling.
It is noteworthy that from Nickel's 21-term results

for v and M2 for the bcc lattice, the estimate for v

drops appreciably for 18 lines or more. His high-
temperature estimate of v becomes compatible with
the field-theoretic estimates of 0.630. If the results
for 2b, —y are unchanged to 21. orders, the violation
of hyperscaling (from the high-temperature series
analysis) will have disappeared. It may be that the
defects obtained in our Pade analysis of v for 14 and
15 lines indicate that a similar shift in the value of v

is imminent.
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