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A position-space renormalization-group method, suitable for studying the localization proper-

ties of electrons in a disordered system, was developed. Two different approximations to a

well-defined exact procedure were used. The first method is a perturbative treatment to lowest

order in the intercell couplings. This yields a localization edge in three dimensions, with a fixed

point at the band center (E =0) at a critical disorder o-, = 7.0. In the neighborhood of the

fixed point the localization length L is predicted to diverge as L —(o- —cr, +PE2) ". In two

dimensions no fixed point is found, indicating localization even for small randomness, in agree-

ment with Abrahams, Anderson, Licciardello, and Ramakrishnan. The second method is an ap-

plication of the finite-lattice approximation, in which the intercell hopping between two (or
more) cells is treated to infinite order in perturbation theory. To our knowledge, this method

has not been previously used for quantum systems, Calculations based on this approximation

were carried out in two dimensions only, yielding results that are in agreement with those of the

lowest-order approximation,

I. INTRODUCTION

The nature of electronic eigenstates in disordered
systems has been. the subject of intense study ever
since the problem was first proposed by Anderson. '

The problem arose in connection with the diffusion
of electrons when disorder was introduced in an oth-
erwise perfectly crystalline solid. Such disorder can
be caused, for example, by the presence of impurities
in a metal or a semiconductor. A pertinent question,
that has a direct bearing on physical observables,
such as the conductivity, is whether or not the eigen-
states are localized. One example of localized states
is the impurity states in a semiconductor; an impurity

produces bound states which fall off exponentially
away from the impurity. These levels, which may ei-

ther accept from or provide an electron to the sys-

tem, differ in energy from impurity to impurity (even
when they are of the same type) because of their ran-

dom environment.
However, when there is a dense concentration of

impurities, the overlap between neighboring states
can be large. In this case, if the energies do not vary

too wildly, quantum-mechanical tunneling can cause
the states to spread over the ~hole system so that the
theory of metallic conduction becomes applicable.

Similar behavior also occurs in other disordered
systems such as random alloys, 4 semiconducting
glasses, ' metal-oxide-semiconductor field-effect
transistor (MOSFET), 5 dirty metals, 6 etc. All these
systems have one feature in common, namely, that

the disorder can localize some or all of the quantum-
mechanical states, and important physical quantities
depend mainly on the localization properties. With
this in mind, we address the question of localization
in a specific context, namely, the Anderson model, '

which can be considered a model for amorphous
semiconductors and has been most extensively stud-
1ed.

The Anderson model describes noninteracting elec-
trons on a lattice in terms of the Hamiltonian

H = Xa-, ( r & & r (+ z X V~ (I r & & r
I
+

I r & & r I &

where the state
~

r & corresponds to a single atomic
orbital of energy e-, localized at the site r. , is

r r

the overlap between different orbitals, enabling elec-
trons to hop from site to site, and is taken to be

1

nonzero only when r, r are nearest neighbors. Dis-
order can be introduced by taking either or both s-,

and V, to be random variables. The case that re-
I' I'

ceived the most attention' "' is the problem of diag-
onal disorder in which the hopping elements V

r r

are assumed to be constant and the site energies ~-„

are chosen independently from a rectangular distribu-
tion of width N.

The dimensionless quantity o = W/ Vis a measure
of the degree of randomness in the system. The lim-
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iting cases o-=0 and 0o can be trivially solved. For
0.=0 the states are infinitely extended plane waves,
whereas for o- = ~ the eigenstates are given by the
orbitals I r ) and therefore are completely localized.
Between these two limits there must be a transition
from extended to localized states. This transition has
been named the Anderson transition and is reminis-
cent of phase transitions in magnetic systems. The
manner in which such phase changes take place usu-
ally depends on' the spatial dimensionality .of the sys-
tem.

The main theoretical questions one may ask about
the Anderson model concern (i) the density of states,
(ii) the existence of localized and extended states,
and (iii) their effect on physical observables. Except
in one dimension" and the unphysical case of a Cay-
ley tree' no exact analysis of the model exists.
Numerous theoretical calculations' based on approxi-
mate methods yielded conflicting results and generat-
ed considerable controversy about almost all aspects
of the model. The qualitative picture that emerges
from earlier studies can be summarized as follows: (i)
For a rectangular distribution of site energies with

mean zero and width N', the spectrum of the Hamil-
tonian (1.1) forms a continuum within a band ex-

tending from —Z V —
—, H' to Z V + —, W when Z is the

1 1

coordination number (number of nearest neighbors)
of the lattice. Lifshitz has argued that near the band
edges the density of states n (E) vanishes exponen-
tially as exp( —const/IE —Eol) where ED= Z V+ —W.

(ii) In one dimension all states are exponentially lo-

calized. 'a " An eigenstate of the Hamiltonian (1.1)
corresponding to eigenvalue E can be written as

(1.2)Ie) E = Xo-„,l
r )

r

By exponential localization we mean that the
magnitude la, sl falls off exponentially away

from a "center of localization" ro as la,sl—exp( —
I

r —r pl/L) The localiza. tion length L,
averaged over the ensemble, is a function of energy
and the degree of disorder, o.. (iii) In higher dimen-
sions (d ) I) in addition to localized states there
may exist a region of extended states, i.e., states
which have nonzero amplitudes over the ~hole lat-

tice. On physical grounds we expect that localized
and extended states will not coexist in energy, since
the slightest perturbation will cause the former to
delocalize by mixing with the corresponding extended
state of the same energy. Moreover, as we shall see
in Sec. III, the extended states should occur near the
band center (E =0). (iv) Suppose o.o is the random-
ness at which the band center becomes extended. As
~ is reduced more and more states become extended.
We can then talk about regions of localized and ex-
tended states. Mott" argued that there exists a sharp
boundary E,(o) that separates these two regions.
This situation is shown in Fig. 1.

~o~o~

Ec
LOCALIZED

FIG. l. Schematic phase diagram in the o-E plane, The
dotted line shows the band edge and E, is the mobility edge.
The arrows show the flows generated by the RG transforma-
tion. The line h~ =0 is the "critical surface" separating lo-

calized from extended states.

The localization length L increases as the "mobility
edge" E, is approached from the localized regime and
is expected to diverge at E, as

L —(o —o, ) (1.4)

where the exponent v is of the same order as v', but
the exact values may not be equal.

Physical observables which depend only on the
density of states (e.g. , specific heat) are not sensitive
to localization. On the other hand, properties such as
the conductivity, which depends on the mobility of
electrons, are expected to show very different behav-
ior depending on whether the Fermi energy EF is in
the extended or in the localized region. For example,
the dc conductivity at zero temperature is essentially
determined by the states at the Fermi energy EF. As
long as EF is in the extended region, the conductivity
is metallic. When EF crosses Ec into the localized re-

L -IE E,I-
where the "critical exponent" v' depends on the
dimensionality d. Alternatively, if cr, (E) is the ran-
domness at which a given state of energy E becomes
extended, then as 0- is approached from above, the lo-
calization length is expected to diverge as
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gime, the electrons are trapped, and the dc conduc-
tivity should be zero. According to Mott ' as long
as EF is in the localized regime the conductivity C
remains zero; at EF =E~, C jumps discontinuously to
a finite value Co. Co is therefore called the
"minimum metallic conductivity. "

Due to the lack of any exact information, numer-
ous approximate methods have been devised to
analyze the Anderson model. There are some excel-
lent reviews' "'3' on the subject.

The bulk of the theoretical effort has been directed
toward (i) establishing the existence of a mobility

edge; (ii) understanding the nature of the transition
and calculating the values of the critical parameters
(v, v', Ec, ac); and (iii) testing the validity of the
concept of minimum metallic conductivity. " The
results to date have been conflicting and controver-
sial. It is generally believed that all states are localized
in one dimension' " and for d ) 2 there is a mobili-

ty edge. In two dimensions, although earlier analyti-

cal and numerical work predicted a transition, recent
numerical work by Licciardello and Thouless, " and
renormalization-group (RG) studies'6 '8 indicate that,
as in one dimesnion, all states may be localized. '

However, others' " have predicted existence of a lo-

calization edge in two dimensions. There are similar

disagreements regarding the existence of a minimum

metallic conductivity and the values of the critical
parameters. Table I gives a summary of the available
information in two and three dimensions.

We have developed a scaling theory of localization
in the spirit of the position-space RG ideas of
Niemeijer and van Leeuwen. ' Our method is similar
to the one proposed by Wegner" where he considers
a RG transformation of the matrix elements of the
Hamiltonian (1.1). The basic idea is to study the lo-
calization length L characteristic of a state vector of
energy E, in two and three dimensions. To this end
we have performed a sequence of calculations, which
can be viewed as a set of systematically improving ap-
proximations to an exact treatment contained in the
general formalism. In addition to diagonal random-
ness, we have also considered off-diagonal random-
ness of the type in which the signs of the hopping
elements V, are random. Our procedure is based

r r
on a two-parameter RG, which are cr and E,

The results can be summarized as follows: In
three dimensions, (i) we find a localization edge.
The "critical behavior, " characterized by
1.2S & v (1.75, is governed by a fixed point of our
RG transformation located at E =0, rr, —-7.0. (ii)
This fixed point is stable, implying that the localiza-
tion length L diverges with the same exponents along
the entire localization edge E,(o). (iii) On the basis

TABLE I. Summary of the available results for the Anderson model. The abbreviation MMC stands for minimum metallic
conductivity, asterisk represents results obtained for the diamond lattice,

Authors Ref.
2D 3D

MMC

Anderson
Ziman
Herbert and Jones
Licciardello and Economou

1,46
30
47
36

28
22

62
22

20 —40
14.5
8.2

0.60

Abram and Edwards, Abram 48,49
Edwards and Thouless 25

Weaire and Srivastava 50
5 —6

6

0.75

15
8.0

0.60
Yes

Yoshino and Okazaki
Licciardello and Thouless
Frelovsek
Schonhammer and Brenig
Stein and Krey
Schuster
Aharony and Imry

Freed

Abrahams et al.
Lee
McMillan
Follit

6.5
6.1

51
15,26

52
37

21,29 6.5 + 0.5
53
54

55

16 No mobility edge
20 -6.0
18 No mobility edge
44

0.80 2.0)1.0
0.7 —1.2

Yes
No

&1.0

-1.0

1.0 No
Yes

0.807 No

24
0.80 + 0.05 1.30 + 0.10 8.0 + 0.5 0.66 + 0.05 1.25 + 0.10 Yes

0.670 + 0.006
0.59

2

3
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of a simple scaling argument, we predict a parabolic
"phase boundary" E,2(o) ~(a, —o.). (iv) ln two
dimensions, we have not found a fixed point; which
implies that all states are localized, in agreement with
Abrahams et al. '

The organization of this paper is as follows. In Sec.
II we discuss the general philosophy of RG approach
to localization, some recent scaling theories, and
some numerical RG calculations of localization and
their relation to our method. The general formalism
on which our method is based is presented in Sec. III.
Explicit approximate recursion relations, derived us-

ing first-order-perturbation theory, are given in Sec.
IV; the numerical method and results of this approxi-
mation are given in Sec. V. Section VI contains an
infinite-order-perturbative formalism and the result-
ing numerical recursion relations (for two dimensions
only). Our findings and the physical conclusions to
which they lead are summarized in Sec. VII.

-II. SCALING THEORIES OF LOCALIZATION

Renormalization-group techniques were applied,
with quite remarkable success, in theoretical studies
of critical phenomena and the Kondo problem. ' The
basic ingredients of a systematic RG procedure can
be summarized as follows. One starts with a system
with'a large number (N) of degrees of freedom,
characterized by some Hamiltonian H. The property
that one ~ants to calculate is then related to that of a
new system, with N'=Nb ~ & N degrees of freedom.
The new system is characterized by a new Hamiltoni-
an H'; in addition, all lengths L associated with the
original problem get rescaled by b, the space rescaling
factor, i.e. , L'=L/b The mappin. g H H' consti-
tutes an RG transformation or recursion relation.

While in almost all cases of interest carrying out an
exact transformation is practically impossible, it is im-
portant to at least define an underlying exact pro-
cedure. Once this is done, approximate derivations of
the transformation can be actually performed. In
Sec. III we will present a procedure designed to study
the problem of localization for the Anderson model,
that incorporates the above-mentioned ingredients of
an RG method.

Various other workers have constructed and carried
out RG procedures to tackle the localization problem,
some of which we proceed to review, in order to
point out the differences and similarities with respect
to our approach. We start by discussing the numeri-
cal finite-lattice calculations of Thouless and co-
workers, " which provided the basis for later
RG studies. They considered changes in the energy
levels of a d-dimensional hypercube of linear size I
caused by a change in the boundary conditions. For
an exponentially localized state the change in the en-

ergy b, E of a particular level should be exponentially
small (-e ') when the boundary conditions are
changed from periodic to antiperiodic. On the other
hand, for an extended state this change is expected to
be much larger, roughly of the order of the spacing
between the levels.

Thouless and co-workers therefore studied the
variation of the dimensionless quantity

dE
dN

(2.1)

g(bI) =f(g(I), b) (2.2)

Notice that Eq. (2.2) implies that the I dependence of
g ( b!) comes entirely through the I dependence of
g(I).

Writing b =1+e, where e is infinitesimal, we can
obtain a differential recursion relation for g by ex-

with the size I. Here hE is the geometric mean of
the energy shift and (dE/dN) is the, mean spacing
between the levels. By treating the change in the
boundary conditions as a perturbation they relate
g (I) to the conductance of the system.

Since dE/dN —I ~, and for localized states
AE —e ', g(I) is predicted to decrease exponentially
with I. For extended states the system exhibits me-
tallic conductivity, and therefore the conductance
should vary as g(I) —I~ '. (This has been pointed
out by Abrahams et al. ; see below. ) The I depen-
dence of g(I) was studied for various energies; pre-
liminary calculations with lattices of size I & 14 in
d = 2 and I & 7 in d =3 indicated the existence of
mobility edges in both two and three dimensions.
However, when I was increased to about 30 for two
dimensions, g(I) was found to decrease with I even
for small o = W'/V. Licciardello and Thouless"
therefore tentatively suggested that all states may be
localized in two dimensions.

Note that these studies were based on direct calcu-
lations with large finite systems. More recently,
Abrahams et al. ' presented a scaling theory based on
the above studies. They consider the size depen-
dence of the conductance g (I) for hypercubes of size
I. For a given randomness the conductance is a func-
tion of cr as well as the size of the cube. Suppose a
large hypercube of size bl is formed by putting to-
gether b~ smaller ones, each of size I. Each of these
small cubes can be considered a single "atom" con-
taining many levels (-I~). The larger cube then
consists of b~ "atoms, " and its conductance will
therefore be a function of the size b and the interac-
tion parameters between the adjacent atoms as well
as the energy levels of the individual atoms. Abra-
hams et al. ' argue that the conductance of the large
hypercube is a function of g (I) only.

From the above assumption it follows that there is
a RG equation for g (bl) given by
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panding both sides of Eq. (2.2) about b =1. This
gives

ding 1 Bf
dlnl g Bb b-&

(2.3)

Note that g ' is a measure of the "degree of ran-
domness" o. in the system. If P(g") =0, g' is a
fixed point of Eq. (2.3). If this fixed point is un-

stable, the system scales to large values of g for
g & g' and to small values for g & g'. Therefore, if
such is the case, a localization edge is predicted.

For small g, g —e ', which yields

lim Pq(g) = In(g/gq)
g ~p

where gq is a constant. On the other hand, as g
(zero randomness), g ~ I~ ' yields

lim P„(g) =d —2
g ~ao

(2.4)

(2.5)

To obtain pq(g) for intermediate values Abrahams
et ai assum. e that p should not have a built-in singu-
larity since it represents the behavior of finite blocks.
Moreover, since more randomness means more local-
ization P should be monotonic in g. This smoothness
assumption automatically precludes the possibility of
a minimum metallic conductivity. Using perturbation
theory they proceed to connect the asymptotics (2.4)
and (2.5). Their conclusions can be summarized as
follows: (i) For d =3 there is a fixed point for finite
g; the divergence of the localization length is charac-
terized by the exponent v' (1. (ii) For d =2, P is al-

ways negative for finite g and goes smoothly to zero
as g ~, implying that all states are localized.

The above results follow from some plausibility ar-
guments based on physical grounds. Without any ac-
tual calculations the theory could not provide any
answers as to the values of critical randomness 0-,
and the exponents.

In order to check the qualitative arguments
presented above, Lee' developed a numerical
position-space renormalization-group procedure. He
studied the 2D problem, for states at the band
center, by two different ways. First, he generates an
ensemble of 4 && 4 random lattices, for which the
eigenstates are calculated; for the six states with en-
ergies closest to the band center the amplitudes on
the cell boundary are stored. Then an ensemble of
systems that constitute 2 x 2 lattices of such cells is

generated. An effective Hamiltonian is constructed
in each corresponding space of 24 states. Any two
sets of neighboring (original cell) states are connect-
ed by 36 hopping elements. Lee chooses the geo-
metrical mean of these to represent an effective hop-
ping. The ratio v of the average effective hopping to
the width of the eigenvalue distribution is used as a
measure of the randomness. As this procedure is re-
peated for increasing size (generating 2 && 2 systems
of the new "cell states") the scaling of v with I is

studied. Lee does find a fixed point, and therefore a
mobility edge, in 2D;

His second method uses a similar strategy in order
to calculate directly the variable g(l) investigated by
Abrahams et al. Results based on this procedure in-
dicate that p(g) vanishes for some finite g", and
stays near zero for g & g'. On this basis Lee conjec-
tures that p(g) may be nonanalytic, with p (0, for
g & g' and P =0 for g & g', which contradicts the as-
sumption made by Abrahams et al. '

Finally, we briefly discuss another recent numerical
calculation by Stein and Krey. ' They also consider
the diagonalization of the' Anderson Hamiltonian for
large (-104 lattice sites) but finite lattices. By using
the I.anczos recursion method' ' they convert the
two- and the three-dimensional problem into an
equivalent one-dimensional chain with on-site and
nearest-neighbor interactions. The ratio of these two
interactions is used as a localization parameter
( W/I'). The scaling properties of this parameter are
then studied by eliminating alternate sites. An im-
portant feature of their method is that the energy
enters as a second scaling variable. They find locali-
zation edges in both two and three dimensions.
More importantly, their calculated values of the ex-
ponents v and v' are found to differ by a factor
$ = —(v'= $v). Usually two different critical ex-

ponents imply two independent relevant scaling
"fields. " Stein and Krey therefore suggested that the
Anderson model may be "multicritical. "

The numerical works of Lee and Stein and Krey
have in common an important feature. Both can be
viewed as rather sophisticated methods to find eigen-
values and eigenvectors for sizable but finite lattices.
If one wishes to study larger lattices, the amount of
computer storage space must be increased. Therefore
both methods differ from the renormalization-group
approach in critical phenomena, where lattices of in-
creasing size are treated exactly on the same footing.
Lee's formalism does not include scaling of the ener-

gy, and therefore he does not study the question
whether the divergence of the localization length is
characterized by the same exponent all along the mo-
bility edge.

Both studies keep track, to some extent, of ran-
domness of the off-diagonal hopping elements, in-
duced by the renormalization group.

It should also be noted, that Stein and Krey apply
renormalization-group methods on the linear-chain
problem only, not directly on the d-dimensional lat-
tice. Since one expects that the physical effects of
randomness will manifest in the effective 1D chain
that is derived, the most important part of the phy-
sics is not treated by a renormalization-group pro-
cedure, but rather, incorporated in a numerical
finite-lattice calculation.

Our method, as discussed in Sec. III, does follow in
spirit the renormalization-group ideas that were used
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successfully in studies of critical phenomena. Lat-
tices of increasing size are treated on thc same foot-
ing. Also, our formalism can be clearly viewed as an
approximation to an exact theory; it contains energy
scaling and was applied both in two and three dimen-
sions.

III. GENERAL RENORMALIZATION-GROUP
PROCEDURE

(cr„)"=(s") = Jl e—"p(e) de

with the normalization

(3.2)

In this section we assume that an RG procedure
can be constructed to treat the Anderson model. %e
define the appropriate parameter space in which the
RG transformation operates, and discuss various
features that can be expected. This is done using
only some symmetry properties of the model and the
general properties of RG transformations. Later (in
Sec. IV} we actually construct a procedure that has all

the properties assumed in this section, and that con-
tains the ingredients essential to qualify as an RG
procedure, that were mentioned in the first paragraph
of Sec. II.

The most direct way to study localization is to
solve the eigenvalue problem for the Hamiltonian
(1.1). A normalized state vector of energy E can be
written

le&=g~~lr), Hle& Ele=&
f

%c note that dividing the eigenvalue equation by V

sets the energy scale of the problem, Jut does not
change the amplitudes a+. Therefore, without loss of
generality we can take V =1. In what follows e
shall consider only hypercubic lattices.

If a state is localized, a localization length L can be
defined in a variety of ways. Since we are dealing
with a random system, only statistically averaged
quantities make sense. Hence, the localization length
L is assumed to be averaged over the ensemble and
is expected to have the following properties. (i) L
depends only on the distribution p(e) of the site en-
ergies and on the eigenvalue E. That is, the ensem-
ble average will be over all states of the same energy
E belonging to different members of the ensemble.
In practice, the spectrum forms a dense continuum
and L (E) would then be defined as the localization
length corresponding to the interval E,E+dE. If, in
addition to the site energies, hopping elements are
also random, then L may be a function of their dis-
tribution as well.

The distribution p(a) can be parametrized by a set
of moments:

Then

L =L(o', , o, , . . . , E) (3.4)

This last relation will turn out to be an important
symmetry of the problem, especially near the band
center, E =0. In the practical calculation p(e) will

be chosen to be a simple distribution, parametrized
by its width cr2, with a.

~ fixed at o-~ =0. From our
discussions so far we can anticipate the possible
phase diagram, shown in Fig. 1. The broken line
corresponds to the bang edges which, for a rectan-
gular distribution of wide a, is given by
E = +(Z + , rr) The—loca.lization length is expected
to diverge as the solid line is crossed from the region
of localized states. In what follows we develop a sca1-
ing theory for the localization length L. Since L is a
function of the moments {cr}and the energy E, these
will be identified as the natural scaling variables.

Lct us suppose that we can construct a RG trans-
formation which maps Eq. (3.1) onto

(3.6)

such that in the new problem described by Eq. (3.6)
all lengths are rescaled by a factor b ) 1, i.e.,
r r = r/b. The new Hamiltonian H' is assumed
to be similar to the old Hamiltonian H in that it can
be expressed in terms of a set of matrix elements
between renormalized orbitals

l
r )

'
whose spatial den-

sity has been reduced by a factor of b~

H'= Xe', l
r )'(r l'

+ —,
'

X (V', lr)'(r l'+H. c.) (3.7)

(ii) If p(a) is chosen to be symmetric, i.e., if
p(e) =p( —a), then all the odd moments vanish. It
is easy to show (see Sec. IV) that a local gauge
transformation

l
r ) —

l r ) leaves the spectrum as
well as the amplitudes of the eigenvectors (apart
from a trivial change in sign) invariant. If we per-
form such a transformation on every other site orbi-
tal the result will be to change the hopping element V

to —V. Let us consider a particular configuration of
the site energies, {e},giving rise to H(e) with eigen-
states ii)) corresponding to eigenvalues E The.
Hamiltonian obtained by flipping the signs of all ~

will be denoted H'. The eigenstates of H', e.g. , lP'),
can be obtained from lP) by flipping the sign of the
amplitude on every other site. The corresponding
eigenvalue will be —E. Since such a sign flip of am-
plitudes does not change the localization length asso-
ciated with lp), and since the configuration {e}oc-
curs with the same probability as {—e}, we have

(3.5}

Jl p(e) da=1 (3.3) %e note that even though in the original problem. the
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E'=g((r, , rr2, . . . , o„,E) (3.9)

where we have suppressed the b dependence of the
functions f; and g.

Furthermore, if the state (P) is localized over a

length L then the state (P)
'

is localized over a length
L'= b 'L since all lengths are rescaled by a factor b.

This yields the following scaling equation for L:

L(o.
, „(r,„.. . , rr i', E') =b L(o(, (rz, . . . , a«;E)'

(3.10)

Let us suppose that for symmetric distributions the
RG transformation treats the states with energy E
and —E on an equal footing. This means that these
two states will give rise to the same randomness (a'}.
Moreover, if the energy E maps onto E' then the en-

ergy —E maps onto —E'. In particular, the band
center (E =0) maps onto itself (E'=0). As we will

show later, for arbitrary E the new randomness (a'}
may be nonsymmetric. However, for the band
center, the new distribution is symmetric. Therefore
the band center maps onto itself under repeated itera-
tion; in other words, the line E =0 is a trajectory of
the RG transformation.

We now look for the fixed-point solutions of the
RG equations

(T, « = fi(rT «, rr «, . . . , o «, E ) (3.11)

E =g(rr«, rr«, . . . , 0 «E ) (3.12)

The general fixed-point structure can be established
from the following considerations. For zero random-
ness, the transformation cannot produce any random-
ness. Therefore, the line a-; =0 for all i is invariant
under the RG transformation. Similarly, for infinite
randomness, the states are localized with L =0, so

off-diagonal matrix elements V, were uniform,
r r

and connected only nearest-neighbor sites, the RG
transformation may generate further neighbor in-

teractions which would, in general, be random.
Thus, in addition to random-site energies and the en-

ergy E, we should also include the probability distri-
butions (e.g. , moments) of the off-diagonal matrix
elements as scaling variables. We suppose that the
moments parametrizing these probability distributions
are included in the set (o }

The new problem is thus characterized by an ener-

gy E' and a set of moments (o.'} which are, in gen-
eral, functions of E and (o.} and the rescaling factor
b. We further assume that the probability distribu-
tions are simple enough so that only a finite number
of moments need be considered. Let us label these
moments by the index i, where i runs from I to n.

We then have the RG equations

(3.8)

that L'=b 'L =0. Therefore the line 0-;=~ is also
invariant. It is obvious that the intersection of any
two trajectories must be a fixed point of the RG
equations. Therefore, the points (rr; =O, E =0) and
(o;-~,E =0) are two fixed points.

For the moment let us confine our attention to the
line E =0. If the localization length L is finite for a

given randomness than by definition L'= b 'L ( L
so that the scaling is toward larger randomness.
Under repeated iterations L' decreases until the fixed
point at cr; = ~ is reached, which is therefore
"stable" or attractive. Suppose that, in addition, the
fixed point at zero randomness (o.; =0) is also
stable, that is, for small randomness the scaling is to-
ward this point. It is obvious that in this case L can-
not be finite, so that the state is extended. The sit-
uation is depicted schematically in Fig. 1 where for
simplicity we consider only one moment, namely, the
width o-. The scaling is indicated by the arrows. It is

clear from the figure that there must be an "un-
stable" or repulsive fixed point for some 0-= 0-, )0
which signals the transition from an extended to a lo-
calized state.

Consider now E &0. The solid curve separating
the two regions of Fig, 1 is called a "critical surface. "
In the localized regime the scaling is again toward
larger randomness since L' & L. We also assume
that in the extended regime the scaling is toward
smaller randomness. The critical surface is a "trajec-
tory" of the RG equations and is unstable since the
flows are away from this surface. In general there
are one or more points on the surface which are
stable for flows along the surface. These points are
called critical points. If a fixed point on the critical
surface is unstable then it is called a multicritical
point. 1t is clear from the (E, E) symmetry —that if
there is only one critical fixed point then it must be
located at the band center. If, on the other hand, the
fixed point at the band center (o„E=0) is doub. ly

unstable, we expect to find a pair of critical points
which are located symmetrically with respect to the
band center.

Any RG procedure (with a few exceptions) pro-
duces a large (sometimes infinite) number of cou-
plings, or parameters in the new Hamiltonian 0'.
For example, in spin systems, even though one starts
with a model that contains, say, nearest-neighbor in-

teractions only, second-neighbor, third-neighbor,
four-spin, etc. , interactions are generated. In practi-
cal calculations one truncates this parameter space
and retains the minimal number of "dominant" ones
needed to represent the important physical variables,
In similar spirit, we will use a procedure that keeps
only single-site energies and nearest-neighbor hop-

ping terms. Furthermore, since we deal with a ran-
dom system, the Hamiltonian is characterized by dis-

tributions of these terms. Here again we proceed in

the spirit of position-space RG studies of random
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spin systems, working with distributions of some
specific fixed form, parametrized by a few low mo-
ments. Obviously, if different fixed-point distribu-
tions exist, one needs a larger space of allowed func-
tions in order not to lose any of these distributions.
For the sake of simplicity we now assume that it is
sufficient to work with one simple distribution and
follow the way its width or second moment o. = 0-q

changes under the RG iterations. Under this a~-

sumption, Eqs. (3.8)—(3.10) reduce to

a'= f(a,E)

E'= g(a, E)

L'=L(cr', E') = b 'L(o, E)

(3.13)

(3.14)

(3.15)

Consider the case of a fixed point at the band
center at (o.",0). As usual, f(o,E) and g(a, E) are
assumed to be smooth analytic functions of their ar-
guments (since as will be shown later, they are
derived from finite cells). The stability properties of
the fixed points can be established by expanding f
and g in powers of the'deviations Acr = cr —0-' and E
as follows

Acr'=b 'ba +a(b)E2+ (3.16)

E =b 2E+ (3.17)

~here the ellipses represent higher-order terms and
we have used the E —E symmetry discussed above
and the fact that there cannot be any term indepen-
dent of E in Eq. (3.17) since E'=0 when E =0.

Since the fixed point is unstable along the band
center, A. ~ & 0. If it is stable along the energy direc-
tion then A.q & 0, i.e., lE'l & lEl. The corresponding
flow patterns are shown in Fig. l. Along the band
center the localization length diverges as

fixed o., we have

L —(E2 —E2) v- (3.23)

Denoting AE = E —E„ this reads

L —AE "(2E, +bE) " (3.24)

a'= f(a) (3.25)

If there is no unstable fixed point at finite 0. then
the fixed point at o =0 must be unstable since at
large a- the states are localized, whereas at a. =0 they
are definitely extended. Expanding in powers of o-

we obtain after the 1th iteration

0'( + ) = b 0 I + a 2 (7~ + (3.26)

For A. )0, a- is relevant and the analysis is as be-
fore. For A. =0 the field is marginal in the linear re-
gion and we have to retain the higher-order terms to
study the RG flow. In this case we can rewrite (3.26)
in differential form

=a ~'
91

(3.27)

As long as 2E, )) bE, one obtains L —(E —E, ) ".
In the regime b E =2E„however, one may (numeri-
cally) find an effective exponent v & v' & 2v. Thus
to obtain the correct exponent v' for finite E, in the
neighborhood of the band center one has to consider
a "critical region" hE much smaller than E,. This,
in our opinion, is the reason why different numerical
estimates of v' show large variations (see Table I).

Finally, we consider a situation which may be irn-

portant for the two-dimensional Anderson model.
Assuming that the critical fixed point is located on
the band center we restrict our attention to the recur-
sion relation

L =Lo{a a")-", — (3.18) We note that a2 )0 since the fixed point is unstable.
Integrating, we obtain

where v = I/h. t. To find the exponent along any oth-
er direction we define the scaling fields '

h~ and h2 by L(o) -exp, o. 01

a20
(3.28)

hi =Ao+pE2

h2=E

with the corresponding RG equations

(3.19)

(3.20) IV. EXPLICIT CONSTRUCTION OF
RENORMALIZATION-GROUP TRANSFORMATION

hI'=b 'h;, i =1,2 (3.21)

L —h (
" = ( cr —cr +pE') v . (3.22)

2A,2so that p=n(b)/(b ' —b ~). The line ht=0 is the
equation for the critical curve separating the localized
from the extended states (Fig. 1). As this line is ap-
proached from the localized regime, L diverges as

We now consider the explicit construction of the
RG mapping and the determination of the functions
g(cr, E,b) and f(a,E.b) Our method i.s an applica-
tion of position-space RG ideas of Niemeijer and van
Leeuwen and is expected to be valid when cr is not
too small.

To establish the mapping we shall use nearly de-
generate perturbation theory. " The Hamiltonian

Usually the existence of a single relevant scaling field
implies that there is a single exponent characterizing
the divergence of L. Approaching the critical line at (4.2)
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is written as a sum of two parts

H =Hp+H) (4.3)

The Hilbert space 0 in which H operates can be
spanned by the vectors lp„). For the Anderson
model the number of such states is equal to the
number of sites W of the lattice. The RG mapping
we are seeking to esta'blish reduces N to N'=N/b"
To achieve this reduction we divide the Hilbert space
0 into two subspaces D and D, containing A" and
N —W' states, respectively.

lf IP& is an eigenstate of H,

HI4& =El') (4.5)

denote by l&D& the projection of lp& onto D, e.g. ,

Then I PD & satisfies the equation

HD Idio) = El bo)

(4.6)

(4.7)

where

HD =Hp+ V (4.8)

The eigenvalues E„and the normalized eigenvectors
of Hp are assumed to be known

(4 4)

that keeping only the first few terms yields a reliable
estimate for HD, depends on our choice of Hp and
the model space D. The eigenvalues and eigenvec-
tors of Hp should approximate those of H fairly
closely so that Hj can be considered a small effect.
For small randomness the eigenfunctions of H will

spread over many lattice spacings; hence those of Hp
should also be fairly extended. A natural choice in

this regime is the plane-wave states for o-=0, labeled

by the momentum q:

(4.12)

The appropriate method in this regime could probably
be some version of the momentum-space renormal-
ization-group methods of Wilson.

In the other regime, when o- is sufficiently large,
the eigenstates of H are expected to be localized.
Hence in this regime the position-space renormal-
ization-group ideas of Nierneyer and van Leeuwen"
are applicable. The amplitude of IP) on a given lat-

tice site will strongly depend on the amplitudes on
nearby lattice sites and only weakly on those far
away. Accordingly, we break up the lattice into small
cells of volume b, and include in Hp all the elements
of (4.1) which connect sites in the same cell. Hop-

ping elements that connect sites of neighboring cells
are included in H~. Hp is thus a sum of uncoupled
cell Hamiltonians which we label by R:

and V solves the operator equation

I —PDV=Hi+Ht V
E —Hp

(4.9) with

Hp= Xha (4.13)

We have thus reduced the problem from that of di-

agonalizing an N x 1V matrix to that of an A'' x A''

one, provided we can calculate the matrix elements
of V in the subspace D. In general this is nontrivial
since (i) V depends explicitly on the exact energy E,
which can only be obtained by solving the original
secular equation and (ii) one has to solve an operator
Eq. (4.9). The first difficulty can be overcome by

noting that for a very large lattice the spectrum of H
forms a continuum, so that for an E within the band
there is a solution. Therefore the energy E can be
used as a parameter in Eq. (4.9).

So far the analysis has been exact. To overcome
the second difficulty, i.e., the calculation of V, we

resort to perturbation theory, and expand V in

powers of H~

V =Hi+HiGHi+HiGHiGHi+ (4.10)

r ER

and

1H)=—
. 2

r, r, tcR

V, ( I
r ) ( r

I
+

I
r ) & r I) . (4.15)

Ri

The eigenstates of the unperturbed Hamiltonian Hp
are obtained by diagonalizing each hq separately.
Each cell will have bd states. Let IRi) be the eigen-
vectors and eR,. the corresponding eigenvalues of the

cell Hamiltonian h-„(i runs from 1 to b~) The.
Hamiltonian H can be expressed in this basis

where

1 —PD

E —Hp
(4.11)

+ —,
' $ $(H, IKi) &R'jl+H. c.)

~I RiR JiR J

where H.c. means Hermitian conjugate and

(4.16)

Whether the series (4.10) converges rapidly, so
Hi, = &RilHilR j)

RiR J
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and is nonzero only when R, R are nearest-neighbor
cells (see Fig. 2).

Now we construct the model subspace D by keep-
ing only a fraction of b~ states in each cell. Since we
want our RG procedure to produce a new Hamiltoni-
an which is similar to the old one, we keep only one
state in each cell. Note that the operator 6 connects
only states which are in the excluded space D; thus if
D contains states with eigenvalues close to F. the per-
turbation theory will converge slowly because of
small energy denominators. %e therefore choose
that state from the cell R, for which IE —e-„,I is

smallest. Denoting this state by IR), the Hamiltoni-

an HD takes the form

by a factor b with-respect to the "old" distance.
The Hamiltonian HD of Eq. (4.19) looks very

much the same as the Anderson Hamiltonian (1.1).
The "site" energies eR, being functions of different
sets of random variables, are themselves random and
independent of each other. Ho~ever, the hopping
elements VR-„, are no longer uniform. They vary

both in sign and in magnitude. As we shall see from
actual calculations, the variation in magnitude I

V'I is
small compared to that of the site energies.

%e proceed, following the ideas outlined in Sec.
III, by replacing the actual V-„'-„r distribution that is

generated by some fixed distribution. First we re-
move all randomness of V „by a replacement

HD = X(ex+ Va a) IR) (RI (4.17)

+-,' X V„'„,(IR)(R'I+H. c.)
RR

(4.19)

where V-„'-„r = (RIHtIR ). The Hamiltonian HD

describes a problem on a lattice with N' =N/b~ sites;
the new distance between two such sites is reduced

+-,' g (V~„,IR)(RI+H.c.) . (4.ig)
RAR

Note that so far the formalism is exact. Ho~ever,
since the operator equation (4.9) cannot be solved
exactly, we must resort to some approximation; As a
first approximation, we keep the first term only, i,e.,
V =Hi. Keeping higher-order terms will generate
higher-order interactions (e.g. , next neighbor); these
could, in principle, be also included in a more elab-
orate RG calculation (see Sec. Vi). To first order in

H, we can ~rite

0»""=Xe-„IK) (RI

Two measures of V,ff were considered; the average
absolute value of V'„, e.g. ,

v. =(Iv-„'„«I)

and the root mean square

V,rr= [((V-„'-„)')1'" .

(4.21)

(4.22)

Most of our calculations were done with (4.21); how-
ever we did check the effect of using (4.22) and
found no qualitative change in our results. By the re-
placement (4.20) we have ehminated both amplitude
and sign randomness of the V-'- . Alternatively,

one can keep track at least of the sign randomness,
by using the replacement

RR (4.23)

where g are independent random variables taken

from the distribution

P (rt„-„,) =pa(~-„,—1)

+(i-p}g(~„,+1) . (4.24)

I I
I I

I
I

FIG. 2. Section of an infinite lattice: each dot represents a
diagonal element of the Hamiltonian (1); solid and dashed
lines represent nearest-neighbor hopping elements, The
hopping elements that connect different cells are indicated

by the dashed lines. 00 contains all intracell operators (dots
and solid lines); Hf, contains the intercell hopping elements.

Within the approximations taken, we now have

Happrox —
(& )y y V

(4.25)

(4.26)

As we will show below, when (4.20) is used, 0' can
easily be put in a form similar to (4.1) and (4.2).
hen (4.23) and (4.24) are used, the new Hamil-
tonian is more general than (4.1); however, further
iterations will leave H in this larger space. In this
case the recursion relations for o- and E must be sup-
plernented by one for p. Note that the simpler choice
(4.20) is contained in the more general case by forc-
ing p -1 (i.e., ~-„=1).

To bring (4.19) to the form of (4.1) and (4.2) we
substitute
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where (ea } is the. mean of the ea's; 1 is the unit ma-

trix, and

H'= g (R}(R(.-„

states of H. Therefore, in order to characterize the
hopping sign randomness in a Hamiltonian, one has
to specify a quantity which is invariant under such
gauge transformations. Such a quantity is the frustra-
tion" ratio of the lattice, q, defined as

+ —,
' g (~„„,[R}(R[+H.c.) . (4.27)

q =Wy/W (4.31)

The state ~PD} [see Eq. (4.7) j satisfies now

H'I AD }= ~'I AD } (4.28)

E' = ( F- —{e-„)) / V,ff (4.29)

~'=((~ ))'" (4.30)

When the replacement (4.23) is used, Eqs. (4.29)
and (4.30) must be supplemented by a third equation
for p, the parameter characterizing the distribution of
the sign variable [see Eq. (4.24)1.

Note that by an appropriate gauge transformation
the sign of any hopping element can be changed.
Thus a Hamiltonian H with all q r =+1 can be
transformed into one where some q are negative.

Such gauge transformations will affect neither the
spectrum nor the localization properties of the eigen-

By subtracting the average value of the eg from the
diagonal elements of HD, we obtained a distribution
of new site energies with zero mean, i.e., {ea}=0.
Thus, the first moment of the new distribution is ad-
justed to be the same as that of the old one [see Eq.
(4.2)].

Equations (4.20) supplemented by one of (4.21)—
(4.24), together with (4.29) constitute the recursion
relation for the energy F., Eq. (3.14).

When (4.21) or (4.22) is used, 8' is of the same
form as H. Since the new site energies eq are com-
pletely independent and random, they can be charac-
terized by a set of moments o-„'. The shape of the

new distribution will depend on the old distribution,
and also on the energy E. For example, if we start
out with a symmetric distribution, the new distribu-
tion is expected to be asymmetric for nonzero E.
This can be seen by considering a state near the band

edge with E large and positive. Since the average
density of cell states is a decreasing function of E, an
asymmetric distribution of eR will be generated.
Whereas for a symmetric distribution the width
o'= ({a&})'~'is a suitable measure of randomness,

for the asymmetric case one should include at least
one odd moment in the parameter space (e.g. , the
third moment). Near the band center, however, we

expect the distribution to be symmetric. In the
present work we study the neighborhood of the band
center (F. =0).and we choose for our scaling variable
the width o.', giving the second RG equation (3.14),
by

where N& is the number of frustrated plaquettes (ele-
mentary squares) and P/ is the total number of pla-
quettes. A plaquette is frustrated if the product of

around it is negative. Thus, if a given set q
is generated by our procedure, we determine q using
(4.31) and determine the distribution of the rt
variables by the relation

(4.32)

Equations (4.31) and (4.32) together with (4.29)
and (4.30) constitute the set of RG recursion rela-
tions used when the replacement (4.23) is made.

To conclude this section, note that we have con-
structed RG recursion relations that are approxima-
tions to an underlying exact procedure. At each step
of renormalization b~ lattice sites are replaced by a

single site, all lengths are scaled by b, and a mapping
in the space of Hamiltonians is obtained. Thus all
basic ingredients of a valid RG procedure are con-
tained in our method.

V. NUMERICAL METHOD, AND RESULTS OF
FIRST-ORDER CALCULATION

In this section we describe our numerical procedure
and analyze the results obtained therefrom, The RG
equations (4.29)—(4.32) were studied extensively for
a square (d =2) and simple cubic (d =3) lattice.
The cell sizes were chosen to be bd with b =3.

The numerical procedure consisted of the following
steps. (i) A sample of matrices corresponding to cell
Hamiltonians hR was created. This was done by

selecting the diagonal elements from a Gaussian dis-
tribution with zero mean and width o-. For the pro-
cedure that neglects the sign randomness of the hop-
ping terms, all off-diagonal elements were set to be
+1. %hen the sign randomness was also studied, the
off-diagonal elements were ch'osen from the distribu-
tion (4.24), for various values of p. The cell matrices
were numerically diagonalized; the b eigenvectors
and the corresponding eigenvalues were stored. This
meant diagonalizing 9 & 9 matrices in d = 2 and
27 && 27 matrices for d =3. Altogether, a sample of
900 cells were created for the square and 512 for the
simple cubic lattice for a sequence of values of a and
p. (ii) The 900 cells in two dimensions were ar-
ranged to form a 30 &30 supperlattice. To generate
the recursion relations for any value of E, the state
whose eigenvalue. was closest to E was picked from
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FIG. 3. Histograms showing the distribution of the renormalized energy in (a) two dimensions for p =0 and o. =1.0 and (b)
in three dimensions for p =0.5 and o. =7.0.
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FIG. 4. Histograms sho~ing the distribution of the new

sions for the values of the parameters shown,
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hopping elements &, in (a) two dimensions and (b) three dimen-
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each cell, and the distribution of the corresponding
eigenvalues was studied. In three dimensions a simi-
lar procedure was carried out by forming an 8 x 8 & 8
superlattice. (iii) The new hopping elements

r r

were calculated from the equation

900"

800-
d=2
p=0
g = I.O
E =00

(a)

V—= X~Rlaa»r r R i
(5.1)

700—

where aR,. is the amplitude of the chosen state at the
site i on a surface (or an edge in d =2) of the cell R,
a- . is the amplitude at the corresponding point i on

R i

the adjacent surface of a neighboring cell R . For the
procedure that neglects sign randomness all q; =1;
when sign randomness was studied, q; were also gen-
erated from the distribution (4.24). In this latter
case, the number of frustrated squares (plaquettes)
was then easily calculated by multiplying together the
V—,around an elementary square and counting

R R

only those squares for which the product was nega-
tive. The frustration probability q' was then given by
Eq. (4.31); and p' was determined using (4.32). o'
and F.

'
were determined from Eqs. (4.30) and (4.29).

This numerical program was carried out for several
values of o. in both two (0.1 ~ o. ~ 20) and three
(0.75 ~ o. ~ 10) dimensions for 0 ~ p ~ 0.5. For
the study of the energy scaling, four energies were
chosen near the band center in each case. Since the
band center should map onto itself, the calculated
values of E' for E =0 were taken to be a measure of
statistical error. The superlattices were constructed in

five different ways in two dimensions and four ways
in three dimensions, in order to improve accuracy
and provide an estimate of the statistical error.

Histograms were compiled for the distribution of
the eigenvalues eR as well as the hopping elements
V--r and their absolute values

l
V--il. Typical his-

tograms are shown in Figs. 3—5. The distribution of
V—r was always found to be symmetric, with a max-

imum at the center accompanied by a sharp drop and
a long tail. For V,ff we chose the arithmetic mean of
the absolute values of V-„- . %e checked and found

that using the root mean square did not qualitatively
change our results.

Examining the histograms for the site energy distri-
butions (Fig. 3) we see that the new distribution is
symmetric about the origin for E =0. This remains
valid for other values of E near the band center. The
values of E', cr', g' were calculated from Eqs.
(4.29) —(4.31), respectively, and are shown in Tables
II and III for E =0 along with the corresponding
values of cr, q, V,ff and the standard deviation of the
absolute values of V-„

The first striking feature that emerges from an exam-
ination of the tables is the rapid flow of the frustra-
tion probability q to its fixed-point value q =0.5.
The line q =0.5 is therefore a trajectory of the RG

600-

O
& 500-
LIJ

LIJ~ 400-

300-

200—

IOO-

0
0

Olo 9-

d =3
p =05
cr = I.O
EROO
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4 x O. I053

(b)

70
LLI

CX
LLI

K 5-
4-

2-
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4 x 0.1053

FIG. 5. Distribution of the absolute values of the hopping
element in (a) two dimensions and (b) three dimensions for
the values of the parameters shown.

equation, and is stable against perturbations along the
q direction. According to the discussions in Sec. III,
this implies that the localization properties will be
determined by the critical value p'= q'=0. 5. More-
over, the values of other quantities (a', V,rr, etc.)
are found to be quite insensitive to the variation of q.
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TABLE II, Calculated values of o.', q', and
dimensions.

Veff for given values of o-, q, and for E =0 in two

Veff

1.0

2,0

3.0

4.0

5.0

10.0

20.0

0.0
0.5
0.0
0.5
0.0
0.5
0.0
0.5
0.0
0.5
0.0
0.5
0.0
0.5

0.164 + 0.003
0.155 + 0.002
0.148 + 0.001
0.159 + 0.002
0.129 + 0.002
0.128 + 0.004
0, 116 + 0.002
0.117+0.003
0.104 + 0.005
0.102 + 0.002
0.071 + 0.005
0,073 + 0,002
0.058 + 0,003
0.053 + 0.004

1.256 + 0.023
1.757 + 0.023
2.168 + 0.025
2.350 + 0.038
3.295 + 0.068
3.584 + 0,112
5,433 + 0.082
4.985 + 0.129
7.313 + 0.347
7.336 + 0.303
21.91 + 1.75
22.61 +0.79
58.86 + 3.22
64.10 + 4.94

0.448 + 0.010
0.506 + 0.005
0.485 + 0,015
0.494 + 0.014
0.490 + 0.018
0.497 + 0.015
0.471 + 0.013
0.499 + 0.023
0'.481 + 0,008
0.05 + 0,021

0.498 + 0,020
0.502 + 0.015
0.494 + 0.014
0.500 + 0.010

This is in accord with the results obtained by Theo-
dorou and Cohen and Antoniou and Economou"
who found that the neighborhood of the band center
is insensitive to off-diagonal randomness as far as lo-
calization properties are concerned.

To establish the localization properties we need to
study the function o' =f(o,E). Tables IV and V
contain the values of o-' for different values of o- and
E for q =0. Figures 6 and 7 are the plots of cr' vs o.

for q =0 and 0.5 as evaluated for E =0. Note that

the function shown in Fig. 6 that was derived with

q =0 constitutes the recursion relation based on the
procedure (4.21) (i.e. , neglecting sign randomness of
V„„). Figure 7 describes the recursion relation for
o- along. the invariant subspace E =0, q =p =0.5 for
the procedure defined by (4.23), (4.24), and (4.31).
The fixed point is determined by the point where the
curve for o-' vs a crosses the straight line o-' = o-. In
two dimensions we have not found a fixed point,
whereas in three dimensions there is a fixed point at

TABLE III. Calculated values of o.', q', and Veff for given values of a. and q for E =0 in three
dimensions. Asterisk represents values of q' calculated for E =0.5.

V«f q'

0.75
1.90
2.0
3.0

4.0

5.0

6.0

7.0

8.0

10.0

0.0
0.0
0.5
0.0
0,5
0.0
0,5
0.0
0.5
0.0
0.5
0.0
0.5
0.0
0.5
0.0
0.0

0.110 + 0.002
0.095 + 0.002
0.087 + 0.003
0.080 + 0.001
0.079 + 0.001
0.070 + 0.002
0.072 + 0.001
0.063 + 0,002
0.065 + 0.002
0.057 + 0.002
0.058 + 0.002
0,054 + 0.004
0,053 + 0.002
0.046 + 0.002
0,048 t 0.003
0.040 + 0.002
0.041 + 0.002

0.551 + 0.011
1.220 + 0.021
1.487 + 0.057
1.952 + 0.028
2.08 + 0.041

2.808 + 0,095
2.784 + 0.045
4.027 + 0,118
4.244 + 0.097
5.779 + 0,231
5.320 + 0.154
6.796 + 0.367
6,767 + 0.522
8.969 + 0.309
8.256 + 0,446
14.56 + 0.87
12.97 + 0.75

0.497 + 0.016
0.489 +0.007
0.499 + 0.012"
0.473 + 0.024
0.497 + 0.005
0.517 + 0.015
0.508 + 0.022
0.490 + 0.010
0.487 + 0.014
0.499 + 0.010
0.494+ 0,013
0.494 + 0.016

0.495 + 0.017
0.504 + 0.017
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TABLE I&. Calculated values of o-' and E' for various o-

and F. and for q =0 in two dimensions.

I I I I
l

I I I I -/ I

ll

E' 20—

1.0

2.0

3.0

5.0

0,0
0.4
0.8
1.2
0.0
0.4
0.8
1,2
0.0
04
0.8
1.2
0.0
0.4
0.8
1.2

—0,045
0.154 + 0.001
0.006 + 0.000

—0,052 + 0.004
—0.004

0.071 + 0.001
—0.072 + 0.001
—0.144 + 0.002

0.036
0.217 + 0.003
0.219 + 0.003
0.134+0.002

0.176
—0.208 + 0.019

0.404 + 0.030
0.320 + 0.017

&.256 + 0.023
1.419 + 0.163
1 ~ 565 + 0.023
1.345 + 0.010
2.168 + 0.025
2.122 + 0.020
2.158 + 0.022
2.165 + 0.017
3.295 + 0.068
3.372 + 0.059
3.571 + 0.051
3.736 + 0.054
7.313 + 0.347
7.372 + 0,666
7.466 + 0.565
7.661 + 0.417

l5—

IO—
2D

TABLE V. Calculated values of o.' and E' for various a.

and F. and for q =0 in three dimensions.

~ i/= &0

E. oi'
0

t I I I I & I

5 IO

1.9

3.0

4.0

5.0

6.0

7.0

8.0

10.0

0.0
0.5
1.0
1.5
0.0
0;5
1.0
1.5
0.0
0.5
1.0
1.5
0.0
0.5
1,0
1.5
0.0
0.5
1,0
1.5
0.0
0.5
1.0
1.5
0.0
0.5
1.0
1.5
0.0
0,5

1,0
1.5

0.097
—0.094 + 0.001
—0.017 f 0.000

0.023 f 0.000
0.081

0,056 + 0.001
0.057 + 0.001
0.126 + 0.004

0.072
0.057 + 0.001
0.313 + 0.003
0.184 + 0.007

0.065
0.031+0.001
0.027 + 0.000
0.504+ 0.005

0.059
0.235 + 0.010

-0.034 + 0,000
-0.054 + 0.001

0.058
0.122 + 0.003

—0.026 + 0.001
0.236 + 0.005

0,048
—0.186 + 0.009

0.640 + 0,046
0.553 + 0,020

0.042
—0.186 + 0.009
—0, 164 + 0.002
-0.232 + 0,012

1.220 + 0.021
1.279 + 0.023
1.395 + 0.013
1.437 + 0.044
1.952 + 0.028
1.966 + 0.060
1.913 + 0.039
2.289 + 0.076
2.808 + 0.095
2.724 + 0.076
2.758 + 0,026
3.021 + 0.020
4.027 + 0.118
3.993 + 0.113
3.897 + 0.062
4.241 + 0.047
5.779 + 0.231
5.468 + 0.247
5.732 + 0.068
5.782 + 0.195
6.796 + 0.367
6.903 + 0.209
7.291 + 1,178
7.067 + 0.156
8.969 + 0.309
9.739 + 0.506
9.168 + 0.673
9.355 + 0.345
14,56 + 0.87

14.705 + 0.71.9
15.107 + 0.177
14.745 + 0.775

FIG. 6. 0-' vs o- in two and three dimensions for E =0.
Results based on representing the hopping elements by uni-

form Vcff i.e., for p =G. In two dimensions no fixed point
is found„while in three dimensions there is a fixed point at

o, =7.0.

o., =7.0. Similar results hold for other values of the
energy E =0.5, 1.0, 1.5 for d =3 and E =0.4, 0.8,
1.2 for d =2,

From Tables IV and V it is apparent that the ener-

gy scales toward the band center in both two and
three dimensions for all values of cr considered. For
an estimate of the error involved, we have also listed
the largest value of the renormalized energy E' corre-
sponding to the band center E =0. In Figs. 8 and 9
we show the plot of E' vs E for various values of o-

in two and three dimensions, respectively. The solid
lines correspond to E'= E. The points at the origin
are rough measures of the statistical error. From
these graphs it is clear that E' & E in all cases, i.e. ,
the fixed point at the band center is stable against
perturbations in the energy direction. This in turn
tells us that the fixed point is a "critical" fixed point
and that there is only one independent exponent
characterizing the divergence of the localization
length.

To calculate the exponent we have to obtain the
slope of the curve a' vs a at aq =7.0. By Eq. (3.16)
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0.5-

E

l5—
O.O y

IO— 2D -05
0.0

I

0.5
I

l.o l.5

5
b,

~J' g

0 5

5D

I

IO

this slope s is equal to b". Since v =1/A. , we have

lnbV=
lns

(5.2)

FIG. 9. E' vs Ein three dimensions for various values of
o. and p =0.0. The points at the origin can be taken as a
measure of statistical error. The straight line corresponds to
E'= E.

FIG. 7. cr' vs o- in two and three dimensions. Results
based on hopping elements with random signs [Eqs. (56c)
and (56d) with p =0.5j. No fixed point in two dimensions;
in three dimensions a, =7.0.

Because of the statistical uncertainty a precise deter-
mination of v was not possible; values of 1.25 ( v

(1.75 are consistent with the data.

VI. FINITE-LATTICE APPROXIMATION

0.5-

-0.5
0.0 0.5

I

l.5

FIG. 8. E' vs E in two dimensions for various values of
cr and p =0. The points at the origin can be taken as a sta-

tistical error. The straight line corresponds to E'= E. .

In Sec. IV we presented a general framework for a
renormalization-group treatment of a quantum-
mechanical problem. The actual calculation summa-
rized in Sec. V is based on a first-order approxima-
tion to the exact procedure. This is the quantum
equivalent to the first-order cumulant approximation
used in position space RG treatments of classical
models. The quantum-mechanical equivalent has
also been used by various authors, especially to study
d-dimensional quantum-spin problems that are relat-
ed to d +1-dimensional classical ones.

A different approximation method, which was used
extensively and with remarkable success for classical
spin systems, is the finite-lattice approximation. ' In
this approach the effective couplings between a group
of neighboring cells are calculated exactly; however,
only for a finite lattice that contains the group of cells
being studied. The basic physical idea behind this ap-
proach is the belief that couplings between neighbor-
ing cells will be only slightly affected by the presence
or absence of more distant cells.

To our knowledge this finite-lattice approximation
has not been applied previously to quantum systems.
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In the language of a perturbative approach to the ex-
act equation for the effective-cell Hamiltonian, e.g. ,
Eqs. (4.9) and (4.10), this approximation is equiv-
alent to summation to infinite order of a selected
subset of the operators that constitute'the perturba-
tion H j. To be more specific, in order to calculate
the effective hopping between two neighboring cells,

V„, the part of H~ that connects these two cells is

summed to infinite order. As an example, consider
the four cells of Fig. 2. After each cell Hamiltonian
is diagonalized, one state, ~R ), from each cell, is as-

signed to the model space D. All matrix elements
V „,= (R ~ V

R') in the space of these four states,

are then calculated by solving the operator equation
(4.9) exactly In or.der to see how this is done, note
that (4.9) can be written as an algebraic equation for
the matrix elements

V- —t =H)
R R /

R R

ite clusters that contain two cells only. These two
cells were chosen at random from a population of 400
cells, and the corresponding matrix elements V--

R R

we' re calculated. We created 300 such pairs to gen-
erate a distribution of V- — . Again, the off-

R R

diagonal elements were treated as in Sec. IV, to yield

ff. The diagonal elements form a distribution
whose second moment determines 0-'. The resulting
cr' vs cr curve for E =0 and q =0 is shown in Fig.
10. For the sake of comparison we have also includ-
ed the first-order result in the same figure. It is clear
that the two results are identical for a- & 3.0, whereas
for small a., although there is a small quantitative
discrepancy, the two results are in qualitative agree-
ment with each other. In particular the infinite-order
calculation does not produce a localization edge in

two dimensions. We have also checked the energy
scaling in the neighborhood of the band center and
have found that the scaling is always toward E =0.

tI tt
R a

H) V~tt II ~t
R a RR, R a I

e~ tt
R a

(6.1)

where ~R a) is an eigenstate of cell R with eigenvalue
e-„, that was not assigned to D (i.e. , ~Rn) C D)
and H~, ,

=.(R~H~~R n'). Thus, the evaluation of
R,R aV, an element in D, requires the knowledge of all

matrix elements of V between any state in D and
any state in D. The equation for such elements, as
obtained from (4.9), is given by

20-

V, =Hi
Ra, R rRa, R

II tl
R a

H V
Ra, R a t

E —e- rr
R a

(6.2)

Note that matrix elements V- -, of the same kindRa, R

(i.e. that connect D to D) appear on both sides of
this equation, and therefore, V- -, can. be calculat-

Ra, R

ed by solving the set of algebraic equations

lf fr tl rl I ] ~ pRa, R a R a, R Ra,
(6.3)

where

M~ + ll I I 5~
R a, R a R R, aa

H
Ra, R a

R a

(6.4)

Once V- „„areknown, substitution into (6.1)

immediately yields V,. Thus diagonai and off
diagonal elements of the effective-cell Hamiltonian
are obtained 4o infinite order in the unrenormalized
hopping elements that connect the cells in our finite
cluster.

This procedure was carried out in d = 2, using fin-

FIG. 10. ~' vs a in two dimensions for p =0.0. Results
based on the finite-lattice approximation (triangles). For
comparison we include the results of first-order calculation
(solid bars). No fixed point is found.
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VII. SUMMARY AND CONCLUSIONS

In this paper we have developed a scaling theory of
Anderson localization based on the ideas of position-
space renormalization group. Following the methods
used in the studies of critical phenomena, we have
constructed an exact RG transformation which maps
the Hamiltonian onto a new one. The probability dis-
tribution of the Hamiltonian (i.e., of the matrix ele-
ments) and the energy E of an electron eigenstate
emerge as the natural scaling variables. Our method
is closely related to the one proposed by %'egner"
and differs sharply from that of Abrahams et al. '

The diagonal matrix elements were taken from a
Gaussian distribution of width a., whereas the off-
diagonal elements were taken to be +1 or —1 with

probability p and 1 —p, respectively. A sequence of
approximate calculations based on an exact perturba-
tion series were performed to obtain recursion rela-
tions for E, o., and p. To lowest order we found a
fixed point at E =0, p =0.5, and 0., =7.0 in three
dimensions. Along the line E =0, p =0.5 the locali--

zation length L diverges as L —(o —o,) "with 1.25
& v & 1.75. The fixed point is stable with respect to
perturbation in the E and p directions. By using the
symmetry properties of the Hamiltonian and simple
scaling arguments we were able to predict a parabolic
phase boundary E,'(o ) ~ (cr, —o ). To the same or-
der we have found no fixed point in two dimensions
for finite cr implying that'all states are localized.

It is difficult to make direct comparison with the
results derived by other methods, since most ~orkers
use a rectangular distribution of width 0'for the di-

agonal matrix elements. If, however, we associate
with o. a value of 0'that yields the second moment,
i.e., W, = o, (12)'~', our result could be interpreted
as 8', =24. In Table I we have listed values of 0',
obtained by other workers. In particular, Licciardello
and Economou36 quote an upper bound of 24, attrib-
uted to the numerical work of Schonhammer and
Brenig. 3'-

As to the exponent v, the values reported in the

literature correspond to a definition L —(E E, ) "—
with the values v' varying over a wide range. The
existence of a parabolic phase boundary implies that
L (o' —cr~ +PE ) near the crltlcal point, so that
for E, close to zero (band center) v' =2m. Far away

from the band center one obtains v'= v. This ap-
parent discrepancy in the values of the critical ex-
ponent v' is due to the use of the wrong scaling vari-
able (i.e., E instead of E2) and not because of any
multicriticality as suggested by Stein and Krey, '

Mott's notion of minimum metallic conductivity2
which predicts a sharp discontinuity of the dc conduc-
tivity at the mobility edge for zero temperature con-
tradicts the RG theories' ""which assume the

physical quantities scale with a relevant length, in this
case the localization length. This scaling view is also
supported by the percolation picture of Cohen's and
Cohen and Jortner. ' To reconcile this difference
Mott"0 has recently argued that if v'd & 2 the conduc-
tivity has a discontinuity, ~hereas for v'd & 2 the
conductivity vanishes continuously as the mobility
edge is approached from the extended region as
—~E E, ~' —w. here the exponent s is related to v'.

Because of the ambiguities in the definition of the
exponent v' it is difficult to test the Mott hypothesis.
It would be more appropriate to replace v' by v in the
Mott condition. Since the present work is based on a
scaling theory, our value of v does not agree with the
existence of such a criterion.

The absence of a fixed point in two dimensions im-

plies that there is no mobility edge for any finite o-.

This is in agreement with the results of Abrahams
et al. '6 The approach taken by these authors is very
different from ours and is based on a numerical cal-
culation of Licciardello and Thouless which antici-
pates the absence of a mobility edge. Since the first-
order perturbation theory breaks down for low o- it
was necessary to study the effects of higher-order
terms. To this end we have used a finite-lattice ap-
proximation which allo~ed. us to sum the perturba-
tion series to all orders. Within this approximation
no qualitive change was found in d =2; in particular,
the inclusion of the higher-order terms does not
delocalize the states and induce a transition for finite
0. in two dimensions.

The experimental situation is some~hat clouded.
Earlier experiments ' indicated the existence of a
mobility edge and of minimum metallic conductivity.
Recent experiments on dirty metal films by Dolan
and Osheroff and on inversion layers by Bishop
et al, ' seem to be in support of the scaling and locali-
zation picture.

A very important question that remains unanswer-
ed concerns the role of electron-electron interactions
particularly in view of the suggestion of Altshuler,
Aronov, and Lee4' that the observed behavior in re-
cent experiments" can be explained within the
framework of an interacting system without resorting
to localization.
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