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Vortex excitations and specific heat of the planar model in two dimensions
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The density of vortex excitations and their contribution to the specific heat are discussed for

the Villain planar model. Exact results are derived for the low- and high-temperature limits,

and a renormalization-group interpolation scheme is developed for intermediate temperatures.

I. INTRODUCTION

(1.lb)

The planar model is relevant to experiment in that
it describes superfluid behavior in systems. of 'He."
Furthermore, the planar model in two dimensions is
the prototype of a model exhibiting topological long-
range order and a novel type of phase transition. For
details the reader is referred to the pioneering work
of Kosterlitz and Thouless' and recent reviews. ' '
There are two types of elementary excitations in the
planar model: spin waves and vortices. In the low-

temperature phase, spin waves coexist with bound
vortex-antivortex pairs and the system exhibits topo-
logical long-range order, The phase transition is as-
sociated with the unbinding of vortex pairs and, in

the high-temperature phase, free vortices are present.
The purpose of this paper is to study the statistical
thermodynamics of the vortex excitations and, in par-
ticular, to calculate as a function of temperature their
average density, n, and contribution to the specific
heat, c.

The calculation is performed for the Villain planar
model, in which the spin-wave and vortex excita-
tions decouple. The' thermodynamic properties of the
model can be investigated exactly in the low- and
high-temperature limits. This is discussed in Secs.
II A and II B. Approximate results over the full tem-
perature range are then obtained by a renormal-
ization-group (RG) procedure, which is described in

Sec. II C. The temperature dependence of the ther-
modynamic quantities discussed here is of experi-
mental interest. However, we note that the detailed
features of the curves are model dependent and,
therefore, the calculation predicts only the general
behavior of the quantities. A discussion of the
results and further comments are presented in Sec. III,

For the purpose of establishing notation, some basic
results for the Villain planar model on a square lattice
are reviewed. The partition function for the model is '
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where the Green's function is defined by

X ($; —PJ) = $q;Gg 'q i (1.3)

The continuous field, P;, describes the spin-wave ex-
citations and the set of integers, m;, the vorticity of
the vortex excitations. For large lattices the diagonal
elements of the Green's function, G;;, diverge. This
imposes the restriction that only configurations with

g&m& =0 contribute to Eq. (1.2b). The reduced

lattice. CJreen's function G& =27r(G;; —GJ) behaves
for large r like

G,g
= ln(r, j/ao) + C (1.4)

and assumes the value C = rr/2 for rj = a(), where ao
is the lattice spacing. With this approximation the
vortex-gas contribution (1.2b) becomes'
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This partition function is equivalent to that of a two-

dimensional Coulomb gas of positive and negative
charges, m, , with X,.m&=0, and a temperature-

controlled fugacity y. It is often useful to consider K
and y in Eq. (1.5a) as independent parameters. The
planar model is then recovered by imposing Eq.
(1.5b) .

Here K ' is the dimensionless temperature parame-
ter. The partition function (1.1) decomposes exactly
into spin-wave and vortex-gas contributions,
Z ZswzvG~

7

+ d@J
Z, = g ' exp —

—, Kg/;G;, )$, , (1.2a)
J 27T I'J

23 6008



23 VORTEX EXCITATIONS AND SPECIFIC HEAT OF THE. . . 6009

The partition function (1.2) determines the re-
duced free-energy density

f = lim —lnZ
l
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from which the thermodynamic quantities of interest
are obtained by means of derivatives,
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The derivative in Eq. (1.7a) is taken at constant K,
while the derivatives with respect to K in Eq. (1.7b)
are taken along the locus (1.5b). The spin-wave con-
tribution to the specific heat is c/ks = T. The vortex

contributions are discussed below.

II. STATISTICAL THERMODYNAMICS OF
VORTEX EXCITATIONS

A. Limit of low temperatures

0
0.5 K '
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K

FIG. 2. Specific heat of the vortex excitations for the Vil-

lain planar model in two dimensions from an approximate
renormalization-group approach (full curve) and comparison
with exact low- and high-temperature results (dashed and
dotted curves, respectively). The transition occurs at

K, ' = 1.33. The asymptotic behavior at high temperatures
1

ls C/kg= ~.

In this section, a low-temperature approximation to
the partition function (1.5) is developed. ln this limit

the fugacity, y, is small and the corrections to the
ground state with mj =0 are due to pairs of vortices
of equal and opposite vorticity, mj = +1. Since these
excitations form a dilute gas of neutral pairs, their in-

teraction is neglected and the grand canonical parti-
tion function in independent pair approximation ob-

tained,
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p y'
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in terms of the canonical partition function for one
pair,
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This yields for the free energy in the limit K

fip=y (K —n ') ' (2.3)

8. Limit of high temperatures

The results for the density of vortex excitations, n,
and specific heat, c, obtained according to Eq. (1.7)
are shown as dashed curves in Figs. l and 2.
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In this section, the partition function for the vortex
gas is calculated for high temperatures. It is con-
venient to rewrite ZvG as

Zvo = g X exp —
—,
' (2m)'K

J m -ooJ

FIG. 1. Average density of vortex excitations for the Vil-
lain planar model in two dimensions from an approximate
renormalization-group approach (full curve) and comparison
with exact low- and high-temperature results (dashed and
dotted curves, respectively), The transition occurs at
K =1.33.
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K is zero on the locus (1.5b) and increases slowly
with decreasing y at constant K.

In the limit of very high temperatures all vortex
pairs are dissociated and the Debye-Huckel approxi-
mation applies. ~ The corresponding partition func-
tion can be evaluated exactly. It is obtained from Eq.
(2.4a) by replacing the sums over integer m's by in-

tegrals, thus neglecting the "quantization" of vortici-
ty. The free energy in this approximation is

fur =foH+f (2.8)

with f of Eq. (2.7) yielding the leading corrections to
the asymptotic result foH of Eq. (2.5). Results for n

and c up to the same order in X along the locus K =0
are shown as dotted curves in Figs. 1 and 2.

error in his fourth-order coefficient is corrected.
In summary, for high temperatures the free energy

of the vortex gas is given by
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where Eq. (2.5b) follows by integrating over a circu-
lar Brillouin zone of radius a =2Jvr and using the
small-q approximation for the Fourier components of
the Green's function, G-, =(4 —2cosq„—2cosq~) '

= q . The Debye-Hiickel specific heat is constant,
1

c/ks = —.2'
Corrections to the Debye-Hiickel approximation

can be obtained via a high-temperature series expan-
sion. Applying to Eq (2.4). the Poisson summation
formula and the mathematical steps that led to the
factorization of the original partition function into Eq.
(1.2), one finds Zvo = ZnHZ with

C. Interpolation for intermediate
temperatures

In this section, an interpolation formula for the
free energy at intermediate temperatures is
developed, which improves an earlier calculation by
Berker and Nelson. The phase transition of the
planar model being associated with the onset of dis-
sociation of vortex pairs, the interaction among vor-
tices is crucial in that temperature region. Koster-
litz" first proposed an RG method for treating these
effects to order y' in a small-y expansion. The ap-
proach used the Coulomb-gas representation (1.5a)
including approximation (1.4). Our interpolation pro-
cedure requires, at high temperatures, an expression
for the free energy to which the RG result can be
matched. For that purpose Eq. (2.8) is used, which
results from Eq. (2.4) without approximation (1.4).
Therefore, we employ recursion relations for the
parameters K ' andy,

J p --~
J

dK ' = 2m4y2K,
N

y =2y'(2-~K),
dl

(2.9a)

(2.9b)
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where p extends over all integers and 6&
' is defined

by Eq. (1.3).
When K=0, Eq. (2.6) i's the partition function of

the solid-on-solid or discrete Gaussian model with

coupling constant I/K. 'a Therefore, the strong-
coupling expansion for that model"' can be used to
generate high-temperature corrections to the Debye-
Hiickel behavior. The expansion parameter is
x=exp( —K ').

When n ) 0 but small, the partition function (2.6)
can be expanded in terms of K. The coefficients are
certain correlation functions of the solid-on-solid
model that can also be evaluated by the strong-
coupling expansion in X. To fourth order in X and
first order in K we obtain

f= (2x +4x +4x ) + —,K 'K(40x +96x'+24x4)

(2.7)

For K =0, Swendsen's' result is recovered when an

that follow from the sine-Gordon representation of
the Villain model by means of a momentum-space
RG procedure. " " To order y' the Villain and sine-
Gordon models are equivalent. Other treatments' '
lead to equations dK '/dl =4m3y2h(K ') with dif-
ferent functions h(K '), all of which assume
h(n/2) = I at the Kosterlitz-Thouless point. The re-
cursion relation for the free energy to order y' is"

f(K.y) =e "f(K(I"),y(I"))

+ dl e "go(y(l))

go(y) =2~y'

(2.10a)

(2.10b)

This expression describes in the standard line integral
form' the scaling properties of the free energy
between two points, (K,y) and (K',y'), along an RG
trajectory.

The- flows generated by the recursion relations
(2.9) are shown in Fig. 3. The relationship (1.5b)
defines the initial locus. There exists a critical value
K, such that flows originating in the physical sub-
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FIG. 3. Renormalization-group trajectories for the Villain

planar model in two dimensions from Eqs. (2.9). The medi-

um heavy lines separate regions with different flow proper-
ties and the heavy line is the locus of initial conditions, Eq.
(1.5b). The critical point is indicated by a dot. The flows

are terminated and the thermodynamic quantities matched

to their high-temperature values when y reaches y'=0. 15.

III. DISCUSSION OF RESULTS

The statistical thermodynamics of vortex excita-
tions in the Villain planar model in two dimensions
has been obtained. The partition function for this
model factorizes exactly into spin-wave and vortex
parts. The background spin-wave contributions have
to be corrected at low temperatures for quantum ef-
fects neglected here.

space (1.5b) iterate towards y =0 when E ' «K, ',
and towards large values ofy when K ') E, '. The
dissociation of vortex pairs begins at K ' =K, '.
When E ' (K, ', Eqs. (2.9) and (2.10) determine
the free energy completely since y(l) tends to zero
for large I. When K ' & K, ', y(/) eventually in-

creases and begins to move outside the domain of
validity of Eqs. (2.9). For sufficiently large (E,y)
the high-temperature series expansion of the previ-

ous section applies. Our interpolation consists in us-

ing the RG equations (2.9) and (2.10) up to such
values and then matching the RG and high-

temperature results. Roughly, the high-temperature
approximation will be valid for temperatures above
which the dissociation of vortex pairs is completed.
A simple estimate of the mean separation between
vortices in a pair indicates that the process of dissoci-
ation which begins at K, ' continues to about 2K, '.'
We choose y(l") =0.15 as matching locus, thus en-
suring that E '(/") & 2K, '. The actual matching is

performed for the internal energy, E = Bf/BK, and-
vortex density, n = 8f/8 lny. Then one numerical
differentiation is sufficient to obtain the specific heat.
The results are shown as full curves in Figs. 1 and 2.

The density of vortex excitations, shown in Fig. 1,
increases smoothly as a function of temperature. At
the transition temperature, K, ' =1.33, only 0.3% of
the lattice sites are occupied by such excitations.

The specific heat, shown in Fig. 2, exhibits a pro-
nounced maximum at a temperature larger than the
transition temperature. The maximum is caused by

the dissociation of more and more tightly bound vor-
tex pairs with increasing temperature. At sufficiently
high temperatures, when all vortices are unbound,
the specific heat reaches the constant Debye-Huckel
value, c/ks = —, . At low temperatures the specific

heat rises exponentially and passes without an ob-
servable signature through the transition point at

K, '. The RG approach predicts an essential singu-

larity at the transition. ' The agreement between the
specific heats in the independent pair approximation
and the RG interpolation is very good almost up to
the critical temperature, K, , where it is within 13/ii.

About 10% below K, ' the specific heat begins to rise
more steeply until it reaches a maximum value about
30% above K, '. When most pairs are dissociated the
interpolation follows the exact high-temperature
behavior. The precise height, shape, and location of
the specific-heat maximum are nonuniversal features
that depend on the choice of model (i.e. , the Villain

interaction or a more general periodic interaction that
allows for spin-wave vortex couplings) and details of
the recursion relations (i.e. , contributions of higher
order in y', choice of cutoff function, '6 etc.). It is

nevertheless safe to expect the peak to be located
from 10 to 40% above the transition temperature.

Our RG interpolation scheme is in the spirit of an
earlier calculation by Berker and Nelson. The results
for the specific heat agree below the critical tempera-
ture, However, the choice of a different matching
locus and an improved high-temperature theory lead
to a better description at higher temperatures.

Monte Carlo simulations ' of the statistical
thermodynamics of the planar model, 8 =E

Xt g) cos ( 81 OJ), yielded results for the specific

heat with the same general features as Fig. 2, but
sharper peak profiles and peak locations only 15%
above the critical temperature. The two-dimensional
Coulomb gas of unit charges has also been investigat-
ed by Monte Carlo techniques. " The results are
most reliable for low temperatures, and we found
them to be in excellent agreement with the indepen-
dent pair approximation on a lattice, Eq. (2.2).
Swendsen' pointed out that the discrete Gaussian or
solid-on-solid model with quadratic interactions pro-
vides for a more efficient simulation. The exact
equivalence between this model and the Villain
planar mode17' would make possible a detailed com-
parison with the results of the RG calculation
presented here over the full temperature range. So
far, simulations have been performed only for a
10 && 10 lattice. '~
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