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A Fermi surface with a square cross section and slightly rounded corners, which results from

perpendicular sets of weakly coupled one-dimensional chains, is found both experimentally and

theoretically to lead to a strong enhancement of the low-field magnetoresistance, and a loga-

rithmic dependence on the magnetic field, b, p(H)/p(0) ~ H lnHO/H for H & Ho, where Ho is a

characteristic effective field. The logarithmic dependence is observed for Hg3 &AsF6 in a series

of new high-sensitivity experimental results for 0.5 ( H (40 Oe at a temperature of 4.2 K.
Analysis of the data leads to a value for the weak interchain coupling (b, E/EF = 6 x 10 ).
Hall-effect data are presented for the temperature range 4.2 ( T ( 100 K, and fields up to

4.5 kOe. At low temperatures, the measured Hall coefficient is in agreement with the anisotro-

pic three-dimensional Fermi surface determined earlier by de Haas —van Alphen measurements.

The smaller Hall coefficient above 10 K suggests the possibility of a crossover to localization

onto families of parallel one-dimensional chains.

I. INTRODUCTION II. EXPERIMENTAL TECHNIQUES AND RESULTS

The unusual results of electrical transport studies
of the linear chain conductor Hg3 &AsF6 have been of
considerable interest. ' In spite of the presence of a
high concentration of structural defects4 in a quasi-
one-dimensional structure, the resistivity is strongly
temperature dependent, decreasing monotonically
with decreasing temperature in a metallic fashion,
with no indication of residual resistivity even at the
lowest temperatures. The enhanced magnetoresis-
tance observed in Hg3 qAsF6 has been attributed to
the unusual Fermi surface which results from the
perpendicular sets of relatively weakly coupled linear
Hg chains. 4' In particular, low-field studies' showed
that hp(H)/p(0) approached quadratic behavior only
for H —1 G. In this paper we present galvanomag-
netic data; more extensive and accurate low-field-
magnetoresistance data are reported, the Hall-effect
results are reported here for the first time. We show
that the magnetoresistance at low magnetic fields
varies as Ap(H)/p(0) ~ H'lnHo/H where Ho is a
characteristic effective field (we find Ho = 130 Oe).
The lnH factor results directly from the structure of
the cylindrical Fermi surface with a nearly square
cross section. ' New high sensitivity experimental
results are presented in the range of 0.5 (H (40 G
which confirm the logarithmic dependence. The
low-temperature Hall-effect results are consistent
with the Fermi-surface model of Razavi et al. ' at low
temperatures. On the other hand, Hall effect data
above 10 K suggest a three-dimensional (3D) to one-
dimensional (1D) crossover in electronic structure.

A. Low-field magnetoresistance

In our previous experimental studies, ' we noted
that even at low fields (H & 10 6), d p(H)/p(0) H2

was not constant. In order to determine the field
dependence with more accuracy we have carried out
additional low-field magnetoresistance studies at 4.2
K using a high-sensitivity contactless mutual induc-
tance apparatus designed to allow measurements to
the lowest magnetic fields (H & 1 G).

A schematic diagram of the electronics and
Hartshorne bridge circuitry is shown in Fig. 1. The
electrical conductivity is determined by the off-
balance signal of the bridge, induced upon inserting
the sample into one of equivalent secondary (S)
coils. In this experiment, in order to extend the
measured magnetoresistance to the lowest possible
fields, it was necessary to separate the small field-
dependent change in the conductance of the sample
from the large field-independent background. Before
applying the dc magnetic field, the bridge was bal-
anced with the sample in the secondary coil Sl and a
copper ring in S2. The shape and size of the copper
ring were modified until a good balance of both the
real and imaginary parts of V,„,were achieved with
the apparatus at 4.2 K. The magnetoresistance of the
copper balance ring was measured separately at high
magnetic fields, The results imply a change of less
than 10 ' in 1 G. Thus the output of the balanced
system was due entirely to the magnetoresistance of
the single-crystal Hg3 qAsF6 samples. The signal-to-
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FIG. 1. Schematic diagram of the electronics and Hartshorne bridge. I' are the primary coils, S1 and S2 are the secondary
coils, and L and R are for adjusting the complex impedance to obtain balance ( &,«=0).

noise ratio was such that the minimum detectable
change was d p(H)/p(0) = 5 x 10~.

The main source of short as well as long term
noise was thermal fluctuations of the 4He bath.
Temperature stability is especially important in this
case since the low-temperature resistivity of
Hg3 sAsF6 varies approximately at T3.2 ~ s Conse-
quently, thermal fluctuations of order 10 4 K set a
value of about 0.5 G as the lower limit on the dc
magnetic field.

The experimental results are shown in Fig, 2 where
we plot Ap(H)/p(0)H' vs lnH at 4.2 K for several

values of the ac driving field (/I„). For comparison,
the four sets of data were normalized (at H =g 6) to
the data from h„=0.86 G. The results shown in Fig.
2 confirm the unusual field dependence'found ear-
lier' and demonstrate that the functional dependence
of Ap(H)/p(0) is H'IlnH

I above 2 6, saturating to
quadratic behavior at lower fields.

B. Hall effect

Hall-effect measurements were carried out using the
generalized Montgomery method developed by Spal. '
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FIG. 2. Ep(H)/p(0)H at 4.2 K as a function of lnH. The logarithmic dependence [Eq. (9)] is evident above 2 G.
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was sealed into a can containing helium exchange
gas. The dc measurements covered the magnetic
field range 0 &5 kG.

The ab plane Hall coefficient, RH, of Hg3 &AsF6

was measured as a function of magnetic field at 4.2 K
as shown in Fig. 3. Rp appears to saturate above
0 = 2 kG at a value RH = +1.7 x 10 "0 cm/G
=1.7 x 10 3 cm'/C. The temperature dependence
(T ( 100 K) at 4.5 kG is shown in Fig. 4. RH is

constant above 20 K, remaining constant at
0.25 x 10 ' cm'-/C up to about 100 K at which point
the signal is lost in the increasing noise. The Hall

constant increases abruptly below 15 K to +1.7 & 10
cm3/C below 5 K. The sign is positive indicating that

RH is dominated by positive charge carriers over the
entire temperature range.

0 I I I

2 3 4 5

MAGNETIC FIELD ( kG )

III. LOW-FIELD MAGNETORESISTANCE
OF Hg3 &AsF6'. THEORY

FIG. 3. Hall coefficient (RH) vs magrietic field at 4.2 K.

A well-faceted single crystal was cut with dimensions
8.9 & 8.9 & 1.1 mm', the top and bottom planes of the
samples were coincident with the crystallographic ab
plane. All sample handlirig and mounting were done
in a high-quality controlled-atmosphere dry box filled
with argon. After mounting, the sample assembly
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We consider a Fermi surface consisting of
cylinders with cross section described by planar
sheets and circular corners of radius hk (as sketched
in Fig. 5), and calculate the magnetoconductivity ten-
sor and the magnetoresistance. Within the planar
part (Fig. 5) we assume

20 ~CORNER

PLANAR
~SECTION

I

O

IO—

27K
c

k F

00 o0 00
0

00
I I

50 I OO

TEMPERATURE (K)

FIG. 4. Hall coefficient (RH) vs temperature at 4.5 kG.

FIG. 5. Cross sections of the Fermi-surface cylinders at

k, =0 and k, =2m/c where c is the cylinder axis. The ef-

fect of the weak interchain coupling goes to zero at

k, =2m/c because of the symmetry of the band structure.
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~here i =x,y; whereas in the corner regions

g'[[k„—(1 -y)k, ]'+ fk, -(1—y)k, ]'}
, (lb)

2m'y

where kF is the one-dimensional Fermi wave vector
defined by [Eq. (1)] EF =fr'k+/2m" where E+ is the
Fermi enc'rgy. The effective mass, m', is assumed
constant over the Fermi surface. The weak inter-
chain coupling is described by the small parameter

y =—hk/kF, which describes the "sharpness" of the
corner. We note explicitly that hk(k, ) is a function
of k, (z is the cylinder axis). From the symmetry of
the crystal structure' we obtain an effective tight-

binding matrix element' proportional to cos(k, c'/2).
Thus

k, =2a'/c and takes on the maximum value d, ko at
k, =0 (see Fig. 5).

In a magnetic field, the local cyclotron frequency
can be defined as the angular rate of change of the
group velocity

co, (k) —=

dt

By this definition, co, (k) =0 on the planar sections,
whereas at the rounded corners, k = (d k cosW,
4k sin%) + ko,

=q v(k) xH, ghk fh=kcu, (k)dk
dt dt

so that

k, c'
Ak(k, ) = hk'cos fr m'——,&k, & —,

c c
(2a) Cu k = =GJH v

hk '
Ak

or

kg'c'
Ak(k, ') = Akosin (2b)

where k,'c'= m' —k,c' and c' is the distance between

parallel chains (along c); i.e. , c'= —,c where c is the

lattice constant. Note that 4k(k, ) goes to zero at

where o),'= qH/m'.
The dispersion relations, Eqs. (la) and (lb),

describe the two-dimensional limit of the three-
dimensional model considered by Allgaier and Perl. '0

%'e assume in addition a two-relaxation-time model;
r~ on the planar part and v, in the corner regions.
The magnetoconductivity tensor can be written"

a'tl = X a'lJ (H) (I,J =x,y )
n 0

a'g (H)~2
3

H I vi 'r v& v&

r

(vier) — d k
Bfo

(4)

where f a is the Fermi distribution function, q is the
electron charge, v, (1/k) Ba/Bk„and the magnetic
field is assumed to be along the z direction. Using
Eq. (3), we find

I

inant contribution to a, only r~ occurs in Eqs. (5)
and (6). The other components are calculated in a
similar manner. Since all derivatives vanish on the
planar sections,

4w3 Ba ' 4n3'guF
{2) q 02~3 ~2

4 8

4 ~3/2 corner

dl
dk

Bk. t.,"
where vF is the Fermi velocity and dl is'an element
of length along the Fermi surface in the xy plane.
Substituting from the dispersion relations [Eq. (1)]

=(—1) H2 3 v2 „dk,
4m3E2 «ne m y AvF

d~") = dn (5) Thus, using v„=vF cost and dl = ykFdP

where dn = (4k'/4w3) dk, is the number of electrons
in the differential cross section centered at k„and
m'vF =EkF. Integrating along k,

(0) Ng V'P

AX
Nf

~here n is the tot}al number of electrons. Since the
planar parts of the Fermi surface provide the dorn-

2

da ' = dn '—(cu,—r —)
y m

where do. ") is the contribution to a ( ' from the dif-

ferential cross section centered at k, . Note that
da' ~ is enhanced by the factor y

' = kF/hk. For a~

()) q 2 ~&y dl
o'@, — 0 v„v,v„de

4~3& corner
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and

3

4m3t ' m'

Again, do-~' represents the contribution from the
differeritial cross section centered at k, . Thus

This expression holds only in the weak-field regime
defined by H (Ho where Ho= (/), k /kq)(2m'/qr, )

At low magnetic fields the magnetoresistance is
enhanced and varies as Hr~ lnH ~. For comparison
with experiment it is useful to rewrite Eq. (11) in the
following form:

2

m'
b p(H)
p(o) H'

( ) 3
q vp ~ kF

lnm' 2hko
2 Ak, (12)

c ~c kF

Note that for o-~, the enhancement factor is can-
celed by the smallness of the corner.

In a weak magnetic field, the magnetoresistance
can be written in terms of the magnetoconductivity
components

Ap (H)

p (0)

(2)
xx

(0)
0xx

(1)
0xy

(0)
XX

Comparing Eqs. (7) and (8), for the Fermi surface
shape of Fig. 5 (y ((1)

ap (H)

p (0)

or

z'min) = F c c (10)

Thus, to complete the calculation

/), p(H)
p(0) (0)

When ru, (k,') r, » 1, the magnetoresistance deviates
from the weak-field behavior. From Eqs. (2) and

(3), this always occurs near k,
' =0. Experimentally,

we find' that the magnetoresistance becomes approxi-
mately linear in H, when H exceeds the weak-field
limit. For the small magnetic fields we are concerned
with here (H —10 Oe), both the number of elec-
trons for which cu, (k,') r, » 1 is very small, and the
contribution to do- " has a weaker field dependence.
We can therefore evaluate Eq. (10) by ignoring con-
tributions from sections for the Fermi surface so
close to k,

' =0 that cu, (k,') r, » 1;

d p(H) 1 ~t~~~' (2)

p(0) a (0) "k,',.„
where k,'(min) is the value for which co, (k,') 7, =1; i.e.,

where 7p is the scattering time appropriate to the flat
planar sections which make up most of the Fermi
surface and thus determine the conductivity in zero

magnetic field. ' Equation (12) implies an enhance-
ment factor

~p(H)
p(0)H' (pr)'

) 3

r((H) =, —ln
kF 7'c

2hk0
2 Ak0

c ~c kF0

(13a)

(13b)

IV. DISCUSSION: THE TWO-RELAXATION-TIME
MODEL AND THE INTERCHAIN COUPLING

The lnH dependence predicted by Eq. (12) is clear-
ly evident in Fig. 2 for magnetic fields above about
2 G. Equations (12) and (13) imply

( )

i),p(H) H,
p(o)H'

where p, r = (qr~/m') is the transport mobility in the
ab plane. 7'he enhancement was noted earlier. '
However the enhancement factor given in Eqs. (12)
and (13a) differs from that obtained earlier as a
result of the importance of including the dependence
of hk on k, (and the explicit dependence on r, )
This leads to the lnH dependence which is a principal
point of this paper (see Fig. 2). The physics leading
to the logarithmic dependence was not included in
our earlier work, nor in that of Allgaier and Perl. '

The extension of the theory to more than one band
is straightforward. However, since the de Haas —van
Alphen results6 imply a series of cylinders along c
with similar values for hko/kq on each, the single
band surface of Fig. 5 should provide an adequate
starting point.

r

2 . kF i) kF (~~r, )
k

' =—arcsins, min r ~k0 c c ~k0

The replacement of the arcsine by its argument is valid
in the low-field limit. Thus, carrying out the integra-
tion

1 2 1

~p(H) ~c q "c kF
1 2

m" Ako

p(0)Ht r~ . m' 2dka qHr, kF

where

and

kF v,
2bk0

1

Ak0 2m'
0

r

~C
AH0= —P, T

Vp

(14a)

(14b)

(14c)
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From Fig. 2, one obtains A =4 x10' cm /V s' and

Ho -—130 Oe. Thus, from Eq. (14b) (with r, —2
x 10 "s as determined below and m'=0. 35m, ) one
finds hko/kF = 6 x 10 '. Then, from Eq. (14c) (with
transport mobility' Iw, r =4.5 && 104 cm~/V s), we ob-
tain (r, /re) —1. The ratio of relaxation times is

much closer to unity than the estimate inferred' ear-
lier from the high-field magnetoresistance, suggesting
that magnetic breakdown is important at high mag-

netic fields.
The logarithmic dependence down to 2 6 implies,

through Eq. (10), that Ak(k, ;„)/kF = 10 4; the
corners of the Fermi surface are extremely sharp at
this value of k, implying the existence of a true cusp
(in the physical sense). This is apparently the first
time that a singularity of this kind has been observed
in a Fermi surface. The existence of a low-field
cutoff for the lnH dependence can be understood as a
result of thermal smearing of the Fermi surface.
When the field becomes so small that 4k (k, ) ( 2vr/I

where l = vF v„ the corner becomes smeared, and the
lnH dependence is arrested. Thus, from Eq. (10),
the saturation occurs when

p mh
O)ere (

F rc
(15)

Using the experimental cutoff (-2 G) and taking

E~ 3 5 eV i2 one finds ~c 2 x10-&2 s This value
should be compared with the corresponding scattering
time, v~, appropriate to the flat planar sections which
make up most of the area of the Fermi surface, and
thus determine the conductivity in zero magnetic
field. '- From the measured dc conductivity, making
use of the number of carriers derived from the dHvA
measurements we obtained p, T

=4.5 x 10 cm /V s
for the mobility' at 4.2 K. Assuming an effective
mass m'=0. 35m, implies that v~ =10 "s at 4.2 K.
Thus (re/r, ) —1, consistent with the results ob-
tained from Eq. (14c).

The low-field data presented here, therefore, imply
that a single relaxation-time model is adequate, and
that v, = v~ is uniformly long over the entire Fermi
surface. Note that the relaxation time r(k„kF) is a
function of both the initial and final values of k.
Thus v~ represents primarily backscattering processes,
where an electron scatters from the +kF to the —kF
planar sheet; v, included in addition perpendicular-
chain scattering appropriate to values of k near a
corner (Fig. 5). Evidently, such interchain scattering
processes are weak.

The value obtained for the interchain coupling
(hE/EF =6 x 10 ) is surprisingly small given that
the point of closest approach of nearest-neighbor per-
pendicular chains is only 3.1 A. 5 Thus, the low-field
magnetoresistance implies extremely weak interchain
coupling (even somewhat smaller than earlier esti-
mates2) and provides an independent measure of the
quasi-one-dimensionality of the electronic structure

1RH=
(nt, —n, )qc

(16)

The result, RH(theory) =2.5 & 10 ' cm3/C, is in

reasonable agreement with the low-temperature ex-
perimental value, RH(expt) =1.7 && 10 3 cm'/C. If
we include also the 8 and n bands observed by Raza-
vi et al. , ' the number of carriers is somewhat larger
(by-about 50%) giving a still closer agreement with

the experimental value of RH.
The field dependence of RH implies saturation at

about 2 kG. Saturation should occur when cu, v & 1

so that the carriers can sample the full Fermi surface.
Since the full orbit is involved, r ' = y7, '+(1 —y)
x re ' = re ' where y = 5k /kF is the fraction of the
surface in the corner regions. Thus, from Fig. 3,
co, v~ ) 1 at 2 kG. Using the effective mass aver-
aged over the Fermi surface as obtained by Razavi
et al. ,

6 m'=0. 35m„we find cuo(2 kG) =10" and

Tp ) 10 " at 4.2 K, in agreement with the value es-
timated from the magnitude of the resistivity at
4.2 K (re —10 "s).

The Hall coefficient decreases from RH =+1,7
x10 ' cm'/C at the lowest temperatures to RH

of Hg3 &AsF6.
Rice" has suggested that the long scattering time

and correspondingly large mean free path in this
quasi-1D system may result from many-body correla-
tions due to electron-electron interactions such that
(g~ —2g2) & 0 where g2 and g~ are the forward and
backward scattering amplitudes, respectively. In this
case it has been shown that impurity backscattering
goes to zero with decreasing temperature. '" Alterna-
tively, Weger' has noted that in the case of a long-
range potential backscattering is small compared to
processes that can carry an electron around the Fermi
surface (by several small steps) in three dimensions.
The bare potential, Vo(k), due to a defect outside
the chain may have a long range compared with

(2kF) '. Metallic screening would be expected to
shorten the range and also reduce the magnitude, so
that V(k) may be weak for k —2kF. We note that a

similar suppression of residual resistance has been re-
ported recently for the quasi-one-dimensional con-
ductor (TMTSF)2PF6. '6 " More work is needed to
settle this important question.

In spite of this very weak interchain coupling we

expect that at sufficiently low temperatures (weak
scattering) the wave functions will be coherent over
many chains in the ordered 3D crystal structure,
leading to a 3D band structure. Indeed, the results
of Razavi et al.6 confirm the existence of several elec-
tron and hole bands generated by Bragg scattering
from the 3D crystal structure. From the energy-band
structure deduced from the de Haas —van Alphen
studies we can calculate the hole and electron
densities: nI, =3.0 x10 ' cm and n, =0.5 x10 '

cm '. At high enough magnetic



LOGARITHMIC DEPENDENCE OF THE LOW-FIELD. . . 5999

=+0.25 x 10 ' cm'/C above 15 K. Since R~ at 4.2 K
is rather strongly field dependent (Fig. 3), it is possi-
ble that we have a classical strong-field —to —weak-
field transition; at strong field, Eq. (16) is valid,
while in weak fields

2 2
&/r P g &eP e

H
qc (naut, + n, p, )',

(17)

( ~ rbak ) tg = h

&p (

akim

) = tt
F

(1ga)

(18b)

In Eq. (18) we have explicitly written r = r~ where r~
is the temperature-dependent scattering time associat-
ed with the individual mercury chains. Note that for
crossed chains, a given value of t& has a much small-

er effect in destroying the one-dimensional nature

At 4.2, we can reach the strong-field value at a field
of 2 koe, since 7- is long. Above 15 K, we cannot
reach this limit since 7 is much shorter. The high-T
value is consistent with p,,/p, t= 2, which is not un-

reasonable. Note that the positive carriers still dom-
inate.

An alternative explanation to the large change in

R~, is a 3D to 1D crossover resulting from "localiza-
tion" of wave functions onto 1D Hg chains. A simi-

lar increase was observed in HMTSF-TCNQ's near 40
K. As a result of the localization onto 1D chains, the
wave functions change from'3D Bloch states, with

quantum numbers (k„k~,k, ) at low temperatures to
ID, with quantum numbers (x,k~, z) at high tem-

peratures, where y is the chain direction. The
changeover occurs at tq~ = h, where tq is the inter-
chain transfer matrix element and v is the appropriate
electron-phonon relaxation time.

The situation for Hg3 ~AsF6 is different because of
the two perpendicular families of chains. In this
case, the Bloch states (k„,k~, k, ) are defined as long
as k can be localized to the corner region of size Ak.

This requires that the wave function be coherent over
N = (a Ak) ' parallel chains, where a is the lattice
constant; an electron-phonon relaxation on any one
of these chains will destroy the coherence and re-
move the electronic state from the corner region.
Note that in the coherent-to-diffusive transition,
there are two stages; first the smearing Sk & b, k
where 4k is the size of the corner and second,
hk ) n/a. For hk ( rr/a, the electrons are not lo-

calized on individual chains, but on groups of N
parallel chains where N —(a 8k) '. To estimate the
criterion for the first stage, we note that the probabil-

ity that a carrier will not scatter in a time t it there-
fore given by exp( 1Vt/r) so that the—effective
scattering time is r/N =r(a 6k). Therefore in the
case of interest here, the condition for a transition
from a 3D Bloch state to localization onto 1D chains
is given by

than for parallel chains. For crossed chains the
relevant quantity is tq /Er, while for parallel chains, it

is t~. This feature also exists in the 315 supercon-
ductors. '

Above 20 K, in the region of 1D transport implied
by the above analysis, the Hall coefficient remains
positive. A straightforward analysis assuming four
chains per unit cell with each AsF6 ion taking one
electron leads to an electron density ne'= 2.6 x 10
cm or to a hole density n~ =4.7 x 10 ' cm '.
Since the Hall effect is positive and the 1D Fermi
surface' (FS) is simply connected, we expect Rtt
=+(n„~q ~c) ' = 1.3 x 10 ' cm'/C whereas the mea-

sured value is R~ =0.25 x 10 cm /C. Alternatively,
using the experimental value implies a carrier density
of 2.5 x10 cm approximately equal to the electron
density. It appears that although the sign is positive
the magnitude of R~ is determined by the density of
electrons in the 1D regime above 20 K.

In a purely 1D metal with chains in the x direction,
o~ =0, and oyy =0. Therefore the Hall coefficient

a ~/H
2

oxxoyy + oxy

is not defined. However, for slightly nonplanar FS,
neither ~~ nor o.~ vanish, and the classical value of
the Hall coefficient is obtained (for a single relaxa-
tion time). This is the situation in the organic metals
of the tetrathiafulvalene-tetracyanoquinodimethane
(TTF-TCNQ) family. From experimental studies of
parallel-chain materials, HMTSF-TCNQ'0 and TTF-
TCNQ, 2' it has been demonstrated that the IIall con-
stant has the classical value Rtt = (I/n, c)(pt, —p, )/
(p, t, +p,,) even for diffusive conductivity between
chains. (In these systems, n, = nt„because the
number of holes on the donor chain must equal the
number of electrons on the acceptor chain to
preserve charge neutrality. ) For crossed chain sys-

tems, as in Hg3 &AsF6, o.~ still vanishes when there
is no coupling between the chains, but o-~ does not.
Therefore the Hall constant should vanish when
there is no coupling between orthogonal chains. In
the Hg3 AsF6 case, there is some coupling. Unfor-
tunately, there does not exist a detailed understand-
ing regarding a system of crossed chains in the dif-
fusive regime.

V. SUMMARY

As a result of the unusual Fermi surface associated
with the two sets of perpendicular chains in

Hg3 &AsF6, the low-field magnetoresistance is
enhanced and a InH dependence for hp(H)/p(0) H
is predicted. The lnH dependence has been observed
in high sensitivity low-field experiments described in
this paper. Analysis of the results indicates that a
single relaxation-time model is adequate and provides
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an estimate of the interchain coupling AE/EF
=6 x 10 3. The value for rr/r, is of order unity;

considerably smaller than the estimate obtained from
the high-field magnetoresistance' suggesting that
magnetic breakdown is important at high fields. The
sign and magnitude of the low-temperature Hall ef-
fect are consistent with the 3D band structure in-

ferred from de Haas —van Alphen measurements.
However, above 20 K, the results are anomalous; the
sign of RH is positive, but the magnitude appears to
result from the density of electrons in the 1D band
structure.

The low-field galvanomagnetic studies, therefore,
lead to a picture of weakly coupled chains
(AE/EF ( 10 ) qualitatively consistent with the
linear chain structure of Hg3 ~AsF6. However, the
extremely small coupling is surprising given that the
point of closest approach of nearest-neighbor perpen-

0
dicular chains is only 3.1 A, since at this distance the
transfer integral between two Hg atoms is estimated
to be greater than 1 eV. ' A more detailed theory of
the band structure, including the effects of incom-
mensurability of the wave functions, may be re-
quired.

The absence of residual resistivity remains an im-
portant aspect of the problem. The suggestion that
this might be the result of many-body correlations in
one dimension (g~ —2g2 )0) with the implication of
triplet superconductivity at lower temperatures is of
particular interest.

Note added in proof Ou.r value of AE/Er depends
on the measured value of co, in high magnetic fields
(H =4.5 T), where magnetic breakdown may lead to
some large orbits. If the cross-sectional areas of the
Fermi surface in small fields are smaller, co, in small
fields will be larger, and AE/EF will as a result be
larger too.
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