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The statistical mechanics of two classes of two-dimensional domain walls including the honey-

comb structure is discussed. Particular attention is focused on their structure factors, free ener-

gies, and phonon dispersion relationships, Relevance of these to recent developments on- the

commensurate-incommensurate transition is pointed out. The possibility of a dislocation un-

binding transition in the incommensurate phase close to the commensurate-incommensurate

transition is discussed.

I. INTRODUCTION

Recent work in the commensurate-incommensu-
rate transition (CIT) has revived interests in the sta-
tistical mechanics of domains walls. These walls are
created at the onset and characterize the nature of
the incommensurate phase. A model of a one-

dimensional array of domain walls (see Fig. 1) (called
the "striped phase") was discussed by a number of
authors recently' using a path integral method first
discussed by de Gennes in the context of polymers. '
While this model may under some instances be the
experimentally relevant one, 3 a two-dimensional net-
work of domain boundaries seems to have been ob-
served in experiments involving various rare gases on
graphite. 4 There are two different classes of two-

dimensional domain walls that have been discussed.
The first class, which we call type A, is a straightfor-
ward generalization of the striped phase and consists
of intersecting stripes such that the statistical
mechanics of one kind of stripes is independent of
that of the other kind [see, for example, Fig. 2(a)].
There is an energy of intersection (Eo) of the stripes
of course but this energy is independent of the fluc-
tuation of the stripes. This has been discussed re-
cently by a number of authors. 5 The type-3 domain
walls differ topologically from the honeycomb struc-

ture [see Fig. 2(b) 1, which is predicted6 to be the
zero-temperature configuration for rare gases on gra-
phite. The statistical mechanics of this type of
domain boundaries (type 8) has not been looked at
and is the main focus of the present paper.

Let us review briefly some of the results for the
striped phase. From now on we shall use the nota-
tion of the CIT even though. domain boundaries can
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FIG. 1. A schematic illustration for a one-dimensional ar-

ray of domain boundaries (the striped phase).
FIG. 2. (a) Type-A domain boundaries. Note that it just

consists of crossing stripes. (b) Type-8 domain boundaries.
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occur in different contexts and our treatment will be
applicable to those situations as well. Most models of
the CIT approximates the epitaxy as an isotropic elas-
tic medium with an atomic spacing a in a periodic
static two-dimensional external potential of period b

exerted by the substrate. ' For the striped phase, the
x and the y coordinates are assumed to be decoupled.
At T =0, for a large enough difference in the spacing
b —a, a CIT wi11 take place with the creation of
domain boundaries (misfit dislocations). These
domain boundaries interact with each other with
short-range potential of the form A exp( —Br), where

A, 8 are constants and r is the distance between
them. Because the repulsion is exponentially short
ranged, the equilibrium interwall spacing i is a loga-
rithmic function of b-a. The phonon spectrum has
also been worked out7 and is shown schematically in
Fig. 3(a). It consists of a linear gapless part with a
sound velocity c proportional to exp( —BI) plus an op-
tical branch with a gap. The acoustic branch comes
from the collective motion of the domain boundaries,
hence the form exp( —Bi). Note that c is extremely
small at large i. This should be contrasted with the
phonon dispersion in the commensurate case, illus-
trated in Fig. 3(b), which has a gap.

The physics is quite different at finite temperatures
for the striped phase. The domain boundaries can
wander and bend, the effective range of their mutual
interaction is increased. The statistical mechanics of
this problem can be treated by the path integral (or
transfer matrix) technique in which each wall is
viewed as a phase-space trajectory of a quantum par-
ticle. The mathematics is recapitulated in Appendix
A ~here some new results and some of the subtleties
are also presented. (For example, most previous
treatments force the quantum particles to be fer-
mions, this is actually not necessary even though it
makes little difference to the final result. ) The
results are summarized in Table I. The dependence
of the density of domain walls (1/I) on Ip ahas been—
much emphasized in the past and will not be bela-
bored here. There are some interesting facts that
have escaped attention, however. The phonon spec-
trum now exhibits no gap separating the optical and
acoustic branch. Furthermore, the sound velocity is
drastically changed. It goes to zero much more slow-

ly as the CIT is approached. Instead of proportional
to exp( —Bi) it is proportional to 41/I (I ~ as the
CIT is approached). This is illustrated in Fig. 3(c).
The density. autocorrelation function, which exhibits
a 8-function peak at T =0, becomes much broader at
T Wo. Previous calculations, ' assuming only a
hard-core potential between the ~alls, indicates that
the wall autocorrelation function C(q) exhibits a
weak logarithmic divergence of the form
(C/T) in[(q —2m/I)/2m/I]. As we discussed in the
Appendix, when the residual short-range interactions
V =He s' between the walls are included, C(q) ex-

(a)

FIG. 3. (a) A frequency vs wave vector plot for phonons
in an incommensurate phase at zero temperature. (b) A

frequency vs wave vector plot for phonons in a commensu-
rate phase. Note the existence of the gap at q =0. (c) A

frequency vs wave vector plot for phonons in an incom-
mensurate phase at finite temperature. Note that c is much
larger than C, Note also that there is no gap separating the
optical from the acoustic branch.
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TABLE I. A table summarizing the functional dependences of the physical properties of different classes of domain boun-
daries on its density or distance away from the'CIT.
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type-A boundaries
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i/2
b —a

T
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2
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Eq. {I)

5q ———2m
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A gap
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Structure factor
S (q) of the
epitaxy near

=2mq=
l

s(q —qp) (q —qp)&
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in Eq. (4)

s(q —qp)

S(q) =- f(5q)2 ftL

Bq +IM,

sinhq/p, (~ )+

f(5q) 0 as I 0

l

(Pya + l/2)
See Eq. (16) for details.

hibits a power-law divergence of the form

C
AT

2m"
Qx

2'
d

q„—2'/d—1 when
" (& 1

2n d

n is approximately given by

—sinn(1 —I/I) V/ya' when V/y ((1
2(1 —exp[ —(2 —2/I)]} when V/y )) 1 . (1)

i

Here y js the elastic modulus of the walls. [See Etl.

(Al) for a precise definition. l Note that at the on-
set of the CIT the above divergence is significant
only over a very narrow range of q. The structure
factor S(q) of the epitaxial atoms is not simply relat-

ed to C(q) however. As is indicated by Villain'

s(aq+qg) = J dx '*"expAd

where qp is the position of the Bragg peak. For the
striped phase, qo= (2n/a (1+1/I), 0). F(x) is related
to the equal time correlation function of the domain
walls by

Fix) = —q,'*' J d(ii —u') I (iipiu)spi '&)

4
A'2 sin'(qx/2) (5p, gp, ) /q'

where Sp is the change in the number of walls at po-
sition u, viz. , Sp = p —(p); p(u) = $5(u —x;). z is

the net displacement caused by a single domain wall.
Unlike C(q), the singular behavior of F(x) and
hence S(q) is unaffected when the short-range repul-
sion between the walls is introduced because it is
dominated by the correlation function (Sp, gp r) for
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small q; the singular behavior of the latter is not af-
fected by the short-range repulsion. As is shown in
Ref. 1, S exhibits a power-law behavior with an ex-
ponent

In the conclusion, some subtleties of the present
calculations will be discussed.

p = —I + b'/2rr'a' (4) II. TYPE-8 TWO-DIMENSIONAL INCOMMENSURATE
STRUCTURES

Let us next turn our attention to two-dimensional
(2D) domain walls. For type-»I boundaries, walls of
one orientation does not affect the fluctuation of the
walls of a different orientation. The results for the
striped phase can be essentially carried over. For
type-8 boundaries, the physics is different. This is
discussed in detail in Sec. II. Our results are also
summarized in Table I. The speed of sound is pro-
portional to v'I/I at both finite and zero temperatures
in this case. In addition, C(q) now exhibits gaplike
behavior. $(q) consists of a sum of two terms. One
of these is Lorentzian in shape with width I/I; the
magnitude of this peak dies off as one goes away
from the phase boundary; the other is a peak of
width 1/I. The static properties such as the free ener-

gy agree with the qualitative conclusions reached by
Bak et al. (see Ref. 1).

In Sec. III, a new issue concerning the possibility of
a dislocation unbinding transition near the CIT is dis-
cussed. The magnitude of the interaction between
dislocations is determined by the elastic constants of
the system. These elastic constants are proportional
to the sound velocity of the phonons at iong wave-

lengths. In the commensurate phase, because of the
existence of the gap in the phonon spectrum, disloca-
tions interact with each other with a short-range po-
tential. In the incommensurate phase, however, there
now is a logarithmic part to the interaction between
dislocations.

Dislocations with opposite Burger's vectors will un-
bind if the coefficient E of this interaction becomes
small enough compared with the temperature. As
the CIT is approached this coefficient goes to zero
(from Table I, all the sound velocities go to zero),
however. Thus we expect dislocations with opposite
Burger's vectors to unbind if one is close enough to
the CIT.

%e wish to show that the partition function of the
network of domain boundaries of type B can be relat-
ed to the S matrix of an interacting electron gas with
the strength of the interaction a function of the den-
sity of the domain boundaries. Even though this ap-
proach appears similar to the type-3 case, there are
many differences. Our main focus is the large-I limit,
near the CIT. There are three equivalent ways of
describing the structure in Fig. 2(b). For example,
one can specify the configuration of the stripes
(A,B,C, ) and then the position of the rungs

A;Al+~, CIC;+~, etc. This is topologically the same as
the configuration shown in Fig. 4 which is easier to
visualize. The other two equivalent descriptions are
obtained by a rotation of 120' and are also topologi-
cally the same as Fig. 4. In Fig. 4 the lengths of all
the rungs in a single ladder are the same (called l~),
rungs of different ladders need not have the same
lengths. The sum of all the different rung lengths,
Xl;, must be equal to L». In Appendix B, the
equivalence of these configurations is discussed in
detail. If the rungs were absent, then we get back
the striped phase. Because of the presence of the
rungs, the fluctuation of the stripes is reduced in that
they like to be more regularly spaced. However,
these rungs can move horizontally so that there can
be large regions with no rungs present and the fluc-
tuation may be quite large. Note that if one has
crossing domain boundaries as in Fig. 2(a) then the
horizontal and vertical stripes can move independent-
ly of each other and the kind of effect that we are
talking about is then absent.

One can describe the configurations of the stripes
as the space-time configuration of one-dimensional
quantum particles with the rungs representing the in-
teraction between them. There are certain re-

C)
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FIG. 4. Another type-B domain boundary.
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strictions on the rungs. For example: (a) in between
two rungs on the same ladder, there must be rungs
for the neighboring ladder; (b) the density of rungs
for each ladder is the same;. and (c) the rungs can

bend and one has to take care of that. Ii turns oui
that these are not serious restrictions as we shall

show in a moment. Now the mathematics.
For ease of presentation, let us focus on the con-

figurations in Fig. 4. The partition function Z can be
written approximately as

Z= Jl II+ISI

= J) ff dy& Jf gd2rZ([r, ,y&}) g V(r&„) exp(PEO)
J I I &m

%here Eo is the energy of the domain boundaries at
T = 0 (Refs. 1 and 6) Z ( (ry;}) is the n-point func-

tion. of the stripes such that at T =0, the ladders are
at [y,}. lt is also the n-point function of an electron

gas (AppelldlX A). ff(~I V(l'y) is tlm N-Point fullC-

tion of the rungs. The prime on the integral sign

reminds us of the constraints (a) and (b) that we just
mentioned. By writing the partition function in this

manner, we have ignored the possibility in which the
interior of the rungs can bend so that they touch the

stripes as in Fig. 5. %e note that the root-mean-

square displacement 5u of a point in the interior of a

rung of length I is of the order of Ji. 1n order for
the process in Fig. 5 to occur Su has to be of the or-
der of /. In the limit of large / this is not likely.

By using the notation g«I V(r~&) we have also as-

sumed that the interaction among the rungs in a sin-

gle ladder does not produce a significant effect, This
can bc estimated as follows. The statistics of thc
rungs inside a single ladder can again be calculated
using the path-integral idea with the rungs of a single
ladder playing the roles of the stripes in the stripe
phase (see Appendix A). The problem is mapped
into that of an electron gas. In an interacting elec-
tron gas, onc normally encounters an infrared diver-

gence with the divergent parameter in(E„/E/) ~ The
density of the rungs is of the order of 1/I. This

FIG. S. This figure illustrates the possibility of bending
side ~alls in a type-8 network.

determines the Fermi energy and hence the upper-
limit cutoff F.„. The lower-limit cutoff E~ is deter-
mined by the average lengths of the rungs, and is of
the order of 1/I as well. 1n(E„/E~) is thus of the or-
der of unity and there is no infrared divergence.
Furthermore in the low-density large-/ limit, the in-
teraction between the rungs only provide correction
terms proportional to 1/I' to the ground-state energy
and are insignificant. V(r&), in the path-integral
language, is then essentially the single-particle
Green's function from r;=(y;, I) to rI—- (y&, I'+I).
Explicitly lt is

V = v'rr/yI exp —(y, —yI)'/4yi [exp(I —I')'yp] . (6)

The first factor comes from the single-particle
Green's function, the second, from the Boltzman fac-
tor relating thc elastic energy of changing the length
of a rung. Note that y becomes the time variable for
the edges; hence ~ has a cutoff in time of the order
of /. The rungs can thus be simulated by an attrac-
tive interaction keeping the walls at a distance /apart.
The width of this potential is of the order of (Py) 'I'

[Eq. (6)]. This is very small compared with i for large
/, hence it is a good approximation to replace it by a
static 8 function UI of. the form UB(IxI —II).

%e wish to identify Z with the 5 matrix of an elec-
tron gas. The 5 matrix for the interacting electron
problem for imaginary time can be written as

S(U) = X (-U)"S. .

In general, this series is dominated by a particular n

value, say N. This is exactly analogous to the fact
that one can describe the thermodynamics of a sys-
tem either in the grand canonical ensemble by speci-
fying the chemical potential IA, (e s"= —U) or in the
canonical ensemble by specifying thc density
p(p=iV/L„L~). Thus

(8)

With the approximations that we have stated„S ( UI)
is essentailly of thc form Z& except for the constraints
(a) and (b). Note that one is in generai interested in
lnZ/AI for large N. Any constant of proportionality
not diverging like exp (const && N) is irrelevant.
Hence those contributions to S' that violates (a) and
(b) not on a scale of the order of N is irrelevant.
Those contributions that violate (a) and (b) on a
scale of the order of N corresponds to a density
change in a macroscopic portion of the system. As is
well known the fluctuation in density dies off as
N ' where N is the number of rungs in this portion,

Our justification is now completed. The next issue
is to determine the effective interaction U of thc fer-
mion system. Even though the range of U is deter-
mined by V, the magnitude of U is determined not
by V but by the density of the rungs. More precisely
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in the limit of large L„, we have'

[exp —L,Ea(y&) ] Q( (y, f G(y, ) ) )'&y, /a
~w~~w-r~ ''' ~~i

(9)

where E~ is the ground-state energy of the interact-
ing electron gas. From thermodynamics, the average
number of rungs N is given by

0E'a (y) )
J

8UJ
(10)

Equation (10) provides an implicit relationship
through which U can be determined in terms of
N/L„L», the density of the rungs.

Note that the range of the potential is always the
same as the interparticle spacing. Previous calcula-
tions for the interacting electron gas assumes a
short-range potential and is not directly applicable
here. Fortunately it is not difficult to solve for the
ground state of the present problem. This is dis-
cussed in detail in Appendix C. Let us recapitulate
the results here briefly. The two-particle bound-state
wave function $(x, l) is given by

fCsinhKlxlxc. Ixl «

I

cause the boundary condition is automatically satis-
fied (see Appendix C).

In principle, S is given by Eq. (9) for all possible
distributions of the y s. However, subjected to the
constraint that y~ —

y~ =L», it is easy to see that (see
Appendix C) Ea(y, ) is a minimum (called Ea) when
the yi 's are uniformly distributed, and only this term
dominates in the limit L„~. Hence we have
S = exp( —L„Eao)( (y, f

G)]'. From now on we shall
therefore set yi+f y, = 1, = ( in our calculation.

Combining Eqs. (1 la), (12), and (10), we get the
following equation:

4PyK2(1+cothKI)(1+cothKI —KI/sinh2KI) ' =1/Ia

In the limit of large (a solution of this equation is
given by

4PyK'= or e=, Ea = ' . (14)I 1 Ly

(Ia) 2la 2I2a

Note that the partition function Z is related to S~ by

where

K =4—e/2Py, (I la)

V
Z = S& —expEO

U

N —1

gd (=x„+, x„,) ( )'— —
i 1

(13)

with Ea =L»e/I.
That P is indeed the ground state comes about be-

e is the ground-state energy. E is related to U by the
equation

K (1 +cothKI) = U/2 py (12)
The many-particle wave function P(x~ x~), in

the region x»~ ( x»2 ( x»~ (P is any permutation
of the indices) is simply given by

= exp(EO+ L„Ea)—V

Since Eo, EG is of the order N', the free energy F is

just T(EO+L„Ea).—Note that both Eo and Ea con-
tains terms of the order of I//2, as has been pointed
out by previous authors. '

Because of the formation of bound states in the
ground state, we expect the density autocorrelation
function C(q) to exhibit a gap. The structure factor
S(q) can also be computed by using Eqs. (2) and
(3).

In Appendix C, we show that

1 r

2~2

S(gq„+q„o)=— t 2
exp — I —e 'cos —sin~a' —+ +exp 1 — f, (16)

Pq2 + +2 (p p p Pq Pq2 + +2 (p (p

where

p, =IK /(I +I K /2)

From Eq. (14), we know that K =I/(pyla)'I', hence
Ktl =1/Pya and p, = 1/(Pya +I/2). As one goes
away from the CIT phase boundary, (p, decreases and
the strength of the first term is reduced, the second
term is basically a sharp peak of width p, .

Let us next turn our attention to the sound veloci-
ty of the epitaxial atoms due to the collective motion

I

of the domain boundaries. At zero temperature the
effective elastic force between two boundaries is just
(I/I) y(x —I)2 per unit length of the boundary. This
is basically the elastic energy to compress the rungs.
Thus even at T =0 we expect cv ~ 4y/Iq ~e expect
this result not to be changed very much for finite T
since, as we have shown, the fluctuation of the
"lines" is of the order of K '(~ Kl). This is still
much smaller than the mean spacing (. Hence even
at a finite T we expect cu~ cc 4y/Iq.
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III. DOMAIN-WALL MELTING

In this section, we shall discuss the possibility of a
dislocation unbinding transition near the commen-
surate-incommensurate transition. Dislocations in-

teract with each other with an interaction of the form

tj
V=K X b(r) b(r')ln

I af/f

b(r) (r r)b—(r') (r r)—
lr-r'l'

It is believed that dislocations will begin to unbind at
a temperature T~ related to Kby K/T~=m. K is in
general a function of the elastic constants of the sys-
tem. For example, for an isotropic elastic medium

4a'p, (p, +Z)
2)x+ X

where A, , p, are the Lame coefficients. An estimate
of the elastic constants can be obtained from the
sound velocities since they are proportional to each
other. (The interaction between the dislocations is

basically due to the exchange of phonons. ) Near the
commensurate-incommensurate transition we expect
the effective interaction between dislocations to have
a logarithmic character for distances x & /. Further-
more, the strength of this interaction goes down as I

increases. For example, for both type-A and type-8
domain boundaries we expect K "y/I. Hence
T~cxy/I. Thus at a large enough i, the dislocations
would unbind. It is not clear if this has been ob-
served experimentally.

IV. DISCUSSION

The results of this paper are already summarized in
Sec. I and Table I and will not be recapitulated here.
There are two minor points that we want to discuss.

The first is with regard to the structure factor, we
have used the notation of the "brick-wall" model il-

lustrated in Fig. 4, which is anisotropic. As we dis-
cussed in detail, this is basically the same as the
honeycomb network, which has a higher rotational
symmetry. Our structure factor should then be inter-
preted as corresponding to one with a wave vector
along one of the symmetry directions.

The second deals with the rotation of the network
of domain walls. In order to rotate the whole net-

work, a macroscopic energy is required. If this ener-
gy is negative, then the system is unstable. The en-
ergy required to rotate a part of the network is ex-
pected to be proportional to the square of the local
shear. This can be absorbed in the phenomenological
energy that we have used.

Note addedin Proof. After this paper was submit-
ted for publication, I noticed that J. Villain and P.
Bak (report prior to publication) and Coopersmith
et al [Phy. s. Rev. Lett. 46, 549 (19gl)] have arrived
at conclusions similar to those discussed in Sec. III.

APPENDIX A

In this appendix the mathematical details of the
statistical mechanics of stripes will be recapitulated.
There have been two treatments' that I think are ba-
sically different. Here I follow the discussion in Ref.
1 since it seems more appropriate.

The geometrical arrangement of the walls is illus-
trated in Fig. 1. It was discovered that this geometri-
cal arrangement can be interpreted as the imaginary
time-space trajectories of A' particles. A certain elas-
tic energy H~ is required to bend these walls, viz. ,

(Al)

This corresponds to the kinetic energy required to
bend the trajectories of the particles. If the walls can-
not cross then in the path-integral picture no two par-
ticles can occupy the same site. In previous treat-
ments, to take this into account the particles are as-
sumed to be fermions. This is not strictly correct and
we will come back to it in a moment. The free ener-

gy of the two-dimensional problem becomes the
ground-state energy of the fermion problem. The
partition function is mapped into the S matrix with
the transfer matrix mapped into the time develop-
ment operator e'"~'.

Mathematically, suppose at some y, the walls occu-

py a configuration lx~(y), x2(y) ) the probability
P that it will occupy a different configuration
lx~', x2' ) at y+gy is given by the Boltzmann fac-
tor

(x1 IP lxi ) =exp —$(x( —x)'— (A2)
I I

Note that what we have written down is just the
transfer matrix. The partition function Z is given by

z =)) ff dx;(0)de'(e)dxk'(2e) ' ' ' (x(0)IPlx'(e)) (x'(e)lPlx"(2e))
ij,k

(A3)

This expression is proportional to the path integral of a gas of quantum particles in one dimension as we have
stated. Up to now the statistics of the particles have not been specified. To evaluate Z the largest eigenvalue of
the transfer matrix P is required. I' possesses the permutation symmetry. The eigenfunction of P must belong to
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an irreducible representation of the permutation
group S~ but it need not belong to the antisymmetric
representation. The excluded volume effect can be
taken into account in some other irreducible
representation as well. For examplt;, the hard-core
bosons also satisfy this requirement. If only the hard
core is present then both the fermions and the hard-
core boson possess the same spectrum in one dimen-
sion and the above point is academic.

Note that a zero-ranged excluded volume potential

between steps is easily taken into account by using

fermions in this mapping. For finite-range potentials

between walls, there is a "leftover" of interaction
between the fermions and an interacting fermion gas
is required.

This is how the power-law result for the correlation
function C(2n/1) quoted in Sec. I comes about. It is

straightforward to show that in this picture the Fermi
wave vector kF of the "particles" is just n/i hwere i

is the average spacing between the domain walls.

C(2m/I) then maps into the density correlation func-

tion at momentum transfer 2kF. It is known from
renormalization-group-type calculations using a flat-

band approximation that for a short-range interaction
V between the particles, this correlation function ex-
hibits a power-law divergence with an exponent a
given by a = V/2n vF where uF is the Fermi velocity.
Futhermore, this divergence is important only if

[q —2kF~/2k'. (( 1. Straightforward application of
this result to the present problem leads to difficulties

near the CIT when vq is very small and the flat-band

approximation is not applicable. Fortunately, a simi-

lar problem has been solved9 recently for a nearest-

neighbor interaction V using the exact solutions with

the Bethe ansatz and hence bypassing the flat-band

approximation. From this calculation we concluded
that

—sine V1 ——2 . ]
m' I

when V/ya2 & I

2 —1 exp2 1 —— when V/ya' » 1 . (A4)
1

I

(I,'+I,), (u, u,)-, . (A5)
M+~2

The sound velocity mentioned in Sec. I can be ob-

tained in the following way. Because of the anisotro-

pic nature of the striped phase, we are talking here, of
the velocity of sound propagating perpendicular to

the walls. (It is conceivable to have crossing stripes

such that the statistical mechanics of the stripes of
one orientation is independent of that of a different
orientation. In that case the sound velocity may be
isotropic. )

Let u (R) denote deviation of the at'om at R from

its equilibrium position then
~ t/2

2M'

u (x) can also be related to the fluctuation of the
domains in the long-wavelength limit since we have
approximately in that case

u(O, y) —u(xy) =z Jt dsgp(s, y)

The proportionality constant z is determined by the
net displacement caused by a single-domain boun-

dary. p is the density operator of the domain walls

(and hence that of the fermion gas). From this, it is

not difficult to show that

(iu, i') =—,x(w =O, q) (A7

where X is the density response function of the elec-

tron gas. In the noninteracting case, near q =0 g is

given by

1 T t

(g'/2m) k,
(Ag)

dy2m ~
m z

In the presence of a shor't-range interaction, X will

be modified by an amount of higher order than I/l
The free energy of the domain walls is proportional

to the ground-state energy EG of the ferrnion gas. In

the absence of any interactions FG is given by

3
1 A2 1 2m 1

uo+ +0-
l 2m '3 I I4

(A9)

(Aio)

~here the first term comes from the reference energy

of the fermions, the second term is just the kinetic

energy, This form has been exploited to discuss the

critical behavior of the CIT. One might wonder how

this will be changed in the presence of any residual

interaction between the fermions. A perturbation ex-

pansion in terms of this residual interaction can be
written down. For any short-range interaction V, the

expansion parameter is V/l so that for l large enough

V/l can be quite smail. Beciuse the direct term can-

cels a large part of the exchange term, there are no

terms proportional to I/lz and the critical behavior of
the CIT remains unchanged.

APPENDIX 8

Here we explain equivalence of the configurations
in Fig. 2(b) to that in Fig. 4. The 'zero-temperature
configurations have the same number of degrees of
freedom. The configurations in Fig. 4 at zero tem-
perature are specified by the vertical positions yI of
the ith straight line (edge) as well as the horizontal
positions x(i,j) of the jth rung between the ith and
the (i + I) th straight lines. The same. amount of in-
formation also specifies uniquely the configurations
in Fig. 2(b). This latter point is not as obvious but
can be seen in the construction indicated in Fig. 6.
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B2

3
I

A~ 42

H, =py(of+ 0,') + US(tx, -x, t-l) .

The solution for the bound state is, for x )0

(Cl)

presence of a hard core, there actually is a critical
value of U at which binding occurs. The Hamiltonian
02 is given by

FIG. 6. An illustration showing that the configurations in

Fig. 2(b) and Fig. 4 have the same number of degrees of
freedom.

e
—kl

Csinhkx . , x & t
sinhkI

Ce ", x)l (c2)

In this figure, we first specify the horizontal position
of the rungs (indicated by the horizontal positions of
the solid lines) and the initial position of the edge
(indicated by A, B, . . . ). The whole configuration
can then be constructed from it as follows. Draw a
line at 30' to the horizontal upwards from A. This
intersects the next rung at A ~. Now draw a line
downwards, this intersects the next rung at A 2 and so
on. Now repeat the same procedure starting at B. In
this way the whole configuration is constructed.
There is one point that needs attention. If A and B
are too close, then 8~ will come under A~ and our
procedure will not work. As we shall see, those con-
figurations contribute very little to the partition func-
tion and hence are insignificant. Obviously one can
specify the mean position of an edge instead of the
initial position of the edge,

To establish the equivalence at a finite T, we have
to show the following. Let the deviation in positions
from a ground-state configuration in Figs. 4 and 2(b)
be denoted symbolically by vectors hr, 5 r, respec-
tively. We want to show that the mapping from Sr
to 5r is one to one. Furthermore the energy mea-
sured with respect to the T =0 configuration corre-
sponding to Fig. 2(a) when expressed in terms of Sr
should have the same functional form for that corre-
sponding to Fig. 4. This latter condition ensures that
the calculation we performed for one configuration
can be directly applied to the other configuration.
This energy consists of the elastic energy to bend the
edges and the rungs as well as energy to stretch the
rungs. It is obvious that our criterion is satisfied.

APPENDIX C

In this Appendix, the many-particle problem with
the interaction U= U $»&8(tx; —xzt —I) will be
discussed.

First let us discuss the two-body problem since, as
it happens, the many-body problem is closely related
to it. In the present case no two particles can sit on
top of each other so that there is actually an infinitely
repulsive hard core as well. In the absence of this
hard core, it is well known that a bound state will
form whenever the interaction is attractive. In the

where k = v' —2ePy, C is a normalization constant de-

fined by ' x dx =1. It is given by

C =ke"'[(coshkl —1)/sinhkl+1] ' (c3)

Note the factor of 2 multiplying Py. This is due to
going to the center-of mass reference frame. From
the requirement of the continuity of the logarithmic
derivative, the following equation for k in terms of U
is obtained

k(1+cothkl) = —U/(2Py) (C4)

To investigate the critical value of U for binding, take
the limit k 0. We get

k = ( —U/2Py —1/I) (CS)
Note that k is positive. Thus no solution exists for
—U, /2py (1/I. Note that as I ~, U, 0 as one
would have expected from the non-hard-core result.

The mean spatial extent x is given by

(x) =I 1— 1

(1 +cothkl) sinhkl

l(1+e

As T 0, k ~, (x) I. The domain walls slight-

ly expand as the temperature is increased.
Let us now focus our attention on the many-

particle problem. It is not difficult to write down the
ground-state wave function P(x, . . . , x~) in the re-

gion xp &xp &xp It is just

y=(-) Q P(x, , l, ) .
i~1

(C7)

It is trivial to verify that P is indeed an eigenfunc-
tion of ltt]. What makes the present problem simple is

that the boundary condition is satisfied as well.
Clearly there are different boundary conditions that
give rise to the same spectrum in the thermodynamic
limit. Here we picked one that the mean size of the
system is I at T =0. It is obvious that our wave
function satisfies this condition.

Note that because of the presence of the hard core,
the binding energy is larger the larger I; is. This
is very clearly illustrated in Eq. (C5). Because of the
constraint that X,I, =L», I, cannot be infinite. Thus



23 STATISTICAL MECHANICS OF TWO-DIMENSIONAL DOMAIN. . . 5991

we expect the binding energy to be largest when

Ii =L„/N = I for all I T. o illustrate, consider the limit
in Eq. (CS), then k)+k2= —U/Py —(/)+/2}//)(2. It
is obvious that for I) + /2 =2 I, ( I) + /2) /I, l2

=2(/l)(2( —I)) is largest when I) =(2=(. Hence
k~+k2 is largest in that case also. The general case

is more tedious to show. However, since this is
physically obvious, the details will not be presented
here.

Let us next calculate the structure factor of the epi-
taxial atom. We need to calculate (p(u) p(u') ) [see
Eq. (3)]. For u & u', this is given by

m-1
(p(u) p(u') ) = XJl qi(utu) )di(u, u, ), . . . , i(i(u. u') g du, c'u & u, & u, , . . . , u

N i 1

I X(d, (s})~ ds es(u —u ) C'
2 7P I

The normalization constant C' is determined from the constraint that Jl du'(p(u) p(u') ) =N'. The Laplace
transform $(S) can be easily evaluated as

(CS}

P(S) =—exp( —k +S}I/(k —S) +exp( —k/) [ [exp(k +S)I —1]/k +(q + [exp( —k +S)I —1]/k —S]/sinhkl +c c.
C
2

In the limit of large I, $(S) is given by

d, (S) k2/(k2 S2)e si—
The sum over m can be easily performed and one gets

i

( ( ) ( ')) =C' ~("" " "k' (k' —S') 1 —"
I 2'

(C9)

(C10)

The integral of the right-hand side can be written as a sum of two terms, the first one is independent of u —u';
viz. ,

(p(u) p(u') = C'k2 Jt est" ~ —) (k —S —k coshS(+sinhS/k2)
I 2%'I

I c2—C'k2 ) dS es(u -u I) S (2-k2 S2+S(k2
2% I 2

I

2nilk S S+Ik /1+0 I /2

C' t' 2 sinq (u —u' —I) 1 ~/' e' t"
dg ——

„li dq
I q / J

q +//k~/(1+k I /2)

I

[2w +2m exp[ —(u —u' —I) ] Ik2/(1 + k2/~/2) )
I

(C 1 1)

Note that in the second integral, the contour of integration is clockwise, hence the sign change. From the fact
that

(p(u) p(u') } &p(u)) (p(u')) 1/I'

We get C'=1/2e(. Thus for u & u'

(Sp(u) Sp(u') ) =—
z exp[ —(u —u' —I) ]Ik2/(1+ l2k2/2) =1/(~exp( —p( u —u'() (c12)

where

/. = Ik'/(1+ /2k'/2) . (c13)

Note that p, decreases as one approached the CIT. Hence the fluctuation in density is enhanced. F(x) as is de-
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fined in Eq. (3) can be easily obtained and we get small, we write

F(x) =—q jz' exp( —p,x)
Ip,

Substituting back into Etl. (2) we finally obtain

2+2

$(Sq + q) = J)dxl'oo exp — exp( —izx) . (C14)
Ip,

Equation (C14) can be evaluated approximately as
follows. Split thc region of integration into two, viz. ,
IpxI &1 and

I pxl (1. For px ) 1 exp( —xy) is

cxp
2g2 g 2g2

exp( —px) = 1 — exp( —px') . (C15)
Ip, Ip,

For px (1 px is small, exp( —px) =1 —px, we write

r T r 1 r2@2/2/2
exp — exp( —px) =exp — exp-

Iv Ip,

2 2

I
x

(C16)
Performing the integration, which is now trivial, we get

&(Sq+qo) = » exp — i —e cos-2p qoz, Sa qoz

(Sq )'+ (u)'

28q qoz qozsin~' —+
z &

+exp — e
p, Sq (Sq)'+(p)' lp, ip.

(C17)

As py/qozz' becomes small, the approximation [in Eq.
(C15)1 is no longer applicable.

Only those x larger than xo = (lnqoz'/ly)/
(Sq'+ y') contributes to the integral. For this case
we gct

slnSqxo slnSqxo28q cosSqxo2y
2

+
Sq Sqz+ y2 Sqz+yz

I

The first term of Eq. (C17) has now disappeared.
The evaluation of time-dependent quantities re-

quires the knowledge of excited states which we have
not investigated here. However, because of the ex-
istence of bound states for the ground states, we ex- .

pect an energy gap to exist in various time-dependent
density autocorrelation functions.

'J. Villain, in Ordering in Strongly Fluctuating Condensed

Matter Systems, edited by T. Riste (Plenum, New York,
1980); A, Luther, J. Timonen, and V. Pokrovsky, in

Proceedings of the Erice Summer School on Phase
Transitions in Surface Films, 1979 (in press). P, Bak, D.
Mukamcl, J. Villain, and K. %entowska, Phys. Rev. B 19,
1610 {1979),

2P. G. de Gcnnes, J. Chem. Phys. 48, 2257 {1968). Actual-
ly, the treatment by Luther et al. does not make usc of
this. Ho~ever, there are gaps in all the published account
of Luther's approach. They made use of a mapping into
an electron-gas problem, the details of which we disagree
with. See S. T. Chui and J. %'. Bray, Solid State Com-
mun. 32, 1155 (1979).

3For the anisotropic but essentially three-dimensional com-
pound 2H-TaSe2, a striped phase is reported. R. M. Flem-

ing, D., E. Moncton, D. B. Mc%'han, and F. J. DiSalvo,
Phys. Rev. Lett. 45, 576 (1980).

~P, %. Stephens, P. Hciney, R. J. Birgeneau, and P. M.
Horn, Phys, Rev. Lett. 43„47 (1979).

5V. L. Pokrovskii and A. L. Talapov, Zh. Eksp. Teor. Fiz,
78, 269 (1980) tSov. Phys. JETP 51, 134 (1980)]; H. J.
Schulz (unpublished}; T. Nattermann (unpublished).

The most detailed calculation is by H. Shiba, Tech. Rep.
I.S.S.P. 1, 940 (1978).

7F. C. Frank and J. H. Van der Merwe, Proc. R. Soc. Lon-
don 198, 205 (1949); S. C. Ying, Phys. Rev. B 3, 4160
(1971).

SSce, for example, Yu A. Bychkov, L. P. Gorkov, and I. E.
Dzyaloshlnsk11, Sov. Phys. JETP 23, 489 (1966).

S. T. Chul (unpublished}.


