
PHYSICAL REVIE% B VOLUME 23, NUMBER 11 1 JUNE 1981

Magnetism in transition metals
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By using the Hubbard tight-binding-type Hamiltonian and the cluster Bethe-lattice approxima-

tion we calculate for Fe the Curie temperature T& =2250 K and the temperature dependence of
the magnetic moments and the magnetization. Moreover, we show how previous theories for
itinerant magnets may be extended to include short-range spin correlations.

I. INTRODUCTION

For many years magnetism in transition metals has
been studied intensively. Nevertheless, there remain
important problems which have not been solved sat-
isfactorily. The open problems arise from the fact
that some of the magnetic properties of transition
metals, like the non-half-integral atomic moments,
can be accounted for by band theories and other
properties, such as the Curie temperature, can be ex-
plained only by means of localized models.

Recently, several authors, ' ' have used an ap-
proach to itinerant magnets in which local moments
are assumed to exist on each lattice site in both the
magnetically ordered and the paramagnetic state.
They have shown that the Stoner paramagnetic state
underestimates the entropy of the system and there-
fore overestimates the Curie temperature. Thc
results obtained indicate the significance of short-
range spin correlation effects and of quantum effects.
For example, Hubbard5 calculated for Fe a Curie
temperature T~, in a mean-field model. He obtains
Tq of thc order of 2000 K and a temperature depen-
dence of the magnetization corresponding to spins
s = ~. In the following we present a theory which al-

lows us to include spin correlations. This theory is
similar to the one described in Ref. 3. The main
difference is that this is a finite temperature calcula-
tion. %c calculate for Fe the Curie temperature and
the temperature dependence of the magnetization
and of the local magnetic moments.

IE. THEORY

where t» denotes the hopping integral for electronic
transitions between lattice sites i and j, o. is the spin
index, U is the Coulomb integral and c, , c; are the
usual creation and annihilation operators for elec-
trons on site i with spin o-. %e assumed that the
magnetic moments exist on each lattice site and that
they point up (+) or down (—) along a specified
direction. Then the system of atoms with moments
p,+ and p, can be treated like a binary alloy where
the lattice sites are occupied either with p, + or p, .

We denote by p "(ij =+, —) the probability of
finding two moments p, ; and p& as nearest neighbors.
Then, the single-site probabilites p arc given in
terms of the p»by

pi Xpij
J

(2.2)

Two magnetic order parameters can be defined in
terms of the probabilities; a short-range order param-
eter

2 ( p+- +p-+)

and a long-range order parameter

(2.3)

(2.4)

In the complete magnetically ordered state the order
parameters take the values q =1 and g = 1 and in the
paramagnetic state one finds q =0 and g AO. By us-
ing Eqs. (2.3) and (2.4) and the normalization condi-
tion, it is possible to write the probabilities p» and p'
in terms of g and q.

Thc relative average magnitude of thc magnetic
moment is given by

%c use the Hubbard Hamiltonian in the unrestrict-
ed Hartree-Pock (UHF) approximation

H= Xrjctc~ +XU(n; }n, —XU(a;t}(It(t}

I (T) p'p++p lipI-
p, (O) I (O)

(2.5)

(2.1)
where the magnetic moments p, + and p, pointing
parallel and opposite to the direction of the magneti-
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zation are given by

p,,= (ttt)' (—n, )', p, = (nt)- —(nt) ,-(2.6)

Here, (tt )' gives the average number of electrons
with spin o at an atomic site with magnetic moment
p, l. Thc magnctlzatlon ls glvcn by

p't +(T)+p t (T)-
M(T) =

(
(2.7)

It is worth noticing that the symbols + and —refer to
sites with moments up and down, respectiveiy, and t
and j refer to the spin of the electrons.

To calculate

tions y& are determined by solving a fourth-order
equation. This is not the case for /=1, 7t =1 and for
/ =0, rt=0, where the y/J are obtained by solving a
second- and third-order equation, respectively.

Due to tY'anslatlonal lnvarlancc lt ls ncccssary to.
have charge neutrality at all atomic sites. This is
achieved by modifying the energy levels of the elec-
trons at sites with magnetic moment pointing in the
down direction by the amount a U/2. Thus, the en-
ergy levels of the electrons are given by

(n )'= —
J 4mimG(g, (~)f(t»), (2.g)

we determine the local Green's function 600 for o-

spin electrons at a site with magnetic moment i by

fl p, +at tl+p, +e
U, ot = U . (2.13)

2
'

2

= —tGoo —(z —1)t(p'"+Gto, +p'" G2o,

(t» —a )G(g,
(2.10)

(t» o)—G' =1 zt( p'"'G' —+p"'JGJ ) (2 9)

and the Glo are given by

(~ —a+) Gi'o.

= —tG+ .—(z —1)t ( p &+&+G+ .+p t+t-G;, .),

III. RESULTS

Here, we present results including only long-range
order. Thus, we take into account only site probabil-
ites. The parameters used are p, (T =0) -2.3,
U=0.98 eV, the bandwidth H'=4. 0 eV and n =7.7
electrons, which correspond approximately to iron.

In Fig. 1 we present results for the local density of
states at sites with magnetic moments p, + and p, for
three different situations, corresponding to q = 1,0.4,
and 0, respectively. The values for p,+ and p, are
obtained in a self-consistent manner, once the values
obtained by

f"F
t += Jl (p~ pi)4~—

tGo+o ~ (z ——1)t(p—' '+G2+o ~ +p G~o, e) ~

p~ p~ dM

and those used in Eqs. (2.13) do not differ. Here,

=-tG;, .-(.-1)t(pt-& G;..+p&-t-G;, ,.) .

P ""-=P"J'P ' (2.11)

Equations (2.10) can be solved in the Bethe-lattice
approximations by defining the four transfer func-
tions for each o..'

yiJ=G'o, &G(.-tto, (JJ=+,—) . (2.12)

In the general case (g W 0, rt WO) the transfer func-

Here z is the coordination number, the %annier
Green's function 6„'0 refers to lattice sites n and 0
and the probabilities p ~'~J are defined by

(3.2)

A similar self-consistent loop is carried out to guaran-
tee charge conservation; i.e.,

p p~ +p p~ dip =
I p pt +p. p~ d

(3.3)

In Fig. 2 we show results for p, + and p, as a func-
tion of the long-range order parameter q. %e find
th« It -I dec«ases always as «un«ion «n in con-
trast to the results published by Hasegawa, " which
violate charge conservation.

In Fig. 3 we present results:for the internal energy
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FIG. 3. Results for the internal energy difference 4&(q).

(c) LDS

difference AE =E(ri=0) —E(ri) The rt d. epen-
dence is slightly different from the q2 dependence
characteristic of phenomenological theories of
order-disorder phenomena.

To find the equilibrium value for the order param-
eter, we minimize

l
t

I

F = hE —.- TS

where

S = —kN(p+lnp++p lnp )

(3.4)

(3.S)

p.+= p. = I.76

FIG. I, Results for the electronic density of states p+ and

p for different values of q, JM, +, and p, . «F is the Fermi

energy.

with respect to q. In Fig. 4 we show the results for
the relative average magnetic moment, and for the
relative magnetization defined by Eqs. (2.S) and
(2.7), respectively. We obtain for the Curie tempera-
ture of Fe the result T~ =2250 K.
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FIG. 2. Results for p,+(q) and p, (q).

FIG. 4. Results for the temperature dependence of the
magnetization m = M ( T)/I ( T =0) and the average mag-
netic moment p, .
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One expects on general physical grounds that in-

cluding short-range spin correlations, e.g. , g WO, will

decrease Tc towards the experimental value. In
phenomenological theories, for example, the Curie
temperature calculated in the Bethe approximation is
about 10'lo of the one calculated in a mean-field
(Bragg-Williams) theory. 9 Similarly, for g W 0 better
agreement with experimental results for m (T) is ex-
pected. However, note that our results for m ( T)

agree much better with experimental results than
m(T) calculated by Hubbard. ' Further improvement
of our results is expected from using a more realistic
density of states p~ (&«).

ACKNOWLEDGMENT

Helpful discussions with Dr. P. Schlottmann are
gratefully acknowledged.

On leave of absence from: Departamento de Ffsica,
Centro de Investigacion y de Estudios, Avanzados del
IPN, Apdo. Postal 14-740, Mexico 14, D.F., Mexico,

'M. Cryot, Phys. Rev. Lett. 25, 871 (1970).
2V, Korenman, J. L. Murray, and R. E. Prange, Phys. Rev.

B 16, 4032, 4048, 4058 (1977).
3S. H. Liu, Phys. Rev. B 17, 3629 (1978),
H. Hasegawa, J, Phys. Soc, Jpn. 46, 1504 (1979).

5 J. Hubbard, Phys. Rev. B 19, 2626 (1979); 20, 4584 (1979).
L. M. Roth, in Transition Metals 1977, edited by M. J, G.

Lee, J. M. Perz, and E. Fawcett, IOP Conf. Proc. No. 39
(IOP, Bristol and London, 1978), p. 473.

7D, G. Pettifor, J. Magn. Magn. Mater. 15—18, 847 (1980).
R, C. Kittler and L. M, Falicov, Phys. Rev. B 18, 2506

(1978),
9C, Domb, Adv. Phys. 9, 149.(1960).


