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Magnetism of nickel
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A previously developed theory of the magnetism of iron, based upon notion of a randomized

exchange field, has now been applied to calculate the properties of nickel. We obtained a Curie

temperature of 1200 K, about twice the observed value. The magnetization curve, the paramag-

netic susceptibility (a Curie-Weiss law), and the distribution of spin lengths are also calculated.

Both similarities and differences from the results of the iron calculations are noted.

I. INTRODUCTION

In two previous papers' we discussed the calcula-
tion of the magnetic properties of iron on the basis of
a randomized exchange field model using the formal-
ism developed by Schrieffer et al. ' and Cyrot. 4 In
particular it was shown that this model could at the
same time give reasonable values for both the satura-
tion moment and the Curie temperature, which had
not been possible with the more usual itinerant or
Heisenberg models. Indeed this model provides a

kind of synthesis of the latter models. Other proper-
ties of iron were also calculated and found to be in
moderately good agreement with experiment. The
question then naturally arises as to whether similar
results would be obtained by the application of the
method to nickel.

Whereas iron might be thought the best candidate
among the transition metals for the application of the
localized model, it has long been supected that nickel
might be markedly more itinerant in its character,
although the good Curie-Weiss law observed for the
paramagnetic susceptibility in nickel calls this into
question. The randomized exchange field model al-

lows one to investigate this question. It makes no as-
sumption that requires the atomic-spin length to be
constant (and merely rotated from Its ground-state
value), but allows the possibility of variability of both
the spin length and direction, as would be required
by very itinerant behavior. In fact, in the iron calcu-
lations we found that the atomic-spin magnitude
remained almost constant over a wide range of tem-
perature in spite of this freedom in the theory. In
the nickel calculation we found something different.
The atomic-spin magnitude did change with tempera-
ture, decreasing as one approaches the Curie tem-
perature, mimicing in some degree the temperature
behavior of the exchange splitting observed by East-
man et al. ' However, while the mean spin magnitude
changes, the variance of the atomic-spin magnitudes
about their mean is not particularly greater than that
calculated for iron, a result not especially in keeping
with a very itinerant model for nickel. We also ob-

tained a paramagnetic susceptibility which fitted very
well to a Curie-Weiss law, a feature characteristic of a
localized model. On the whole the results we obtain
for nickel are very similar to those for iron apart
from one or two striking differences such as that just
meritioned.

In Sec. II we will give one or two details of the
method of calculation (basically the same as that used
in the iron calculations2). In Sec. III we discuss the
results in a little more detail and draw some tentative
conclusions.

II. METHOD OF CALCULATIONS

The method of calculation was exactly the same as
that used in the iron calculations' (with the
Coulomb-field corrections described there), but with
different parameters. The band structure used was
derived from that calculated by Callaway and Wang
using a Kohn-Sham-Gaspar exchange potential. ' We
combined their up and down spin densities of states
to obtain an average density of states and then chose
the Fermi energy and exchange splitting to give the
correct number of d electrons (9.4) and ground-state
moment (0.6); the exchange splitting required was
0.79 eV (compared to 2 eV in Fe). These figures
correspond to an exchange interaction parameter
K =1.32 eV (in the notation of Ref. 2) compared to
K =0.9 eV for iron.

Convergence of the self-consistent equations [Eq.
(22) of Ref. 2] was considerably more difficult than
in the iron case, particularly for temperatures near
T&. This may be because antibound states (generat-
ed in the majority spin band by the random exchange
potential) cross the threshold into the band at these
temperatures.

III. RESULTS AND CONCLUSIONS

As in the case of iron, 2 our basic calculation was of
the function E(v) which gives the average energy of
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an atom with an exchange field v and depends upon
the temperature T. In Fig. 1 we compare the ground
state (T =0) E(V) of iron and nickel for v of the
form v = (0, 0, v, ) (the z direction is that of the mag-
netization). They are markedly different in shape as
well as magnitude. The Ni curve shows no shoulder
of the kind found for iron; indeed, it rises more
sharply in the corresponding region, and closely
resembles a parabola slightly compressed on the right.
In the case of iron' we found that E(v) could be
well fitted by a formula of the kind

E(v) = Eo(v) +A v,
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where v = ~V~. No such simple fit for E(v) couid be
obtained in the nickel case for T & Tc.

FIG. 1. Ground state F. (v ) for iron and nickel plotted as
a function of v, for v of the form v = (0, 0, v, ).
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FIG. 2. E(v ) contours for nickel at several temperatures; the contours are labeled in eV.
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In Fig. 2 we show the contours of E(v) in the
v„v, plane at several temperatures [the E(v) are
symmetric under rotations about the magnetization
direction]. Above T =1200 K the contours become
symmetric about the origin, so we take this to be the
Curie temperature, T~ =1200 K. This is about 88%
higher than the observed Curie temperature (the cor-
responding figure for iron was 75'ro). As in the iron
case, all refinements of the theory are expected to
reduce this estimate. It may be noted that, although
the ratios of the Curie temperatures, the exchange
splittings and ground-state moments of iron and nick-
el are all different, the model has given a good value
for the Curie-temperature ratio. At the higher tem-
peratures the E ( v ) contours look very different
from those for iron; in particular they do not show an
annular valley for T ) T~ found in the iron case;
E(v) simply increases monotonically with increasing
v. This is exemplified in Fig. 3 where we compare
the E(v) for iron-and nickel in the paramagnetic re-
gion [above Tc E(v) is a function of v only]; the
E(v) for nickel has no minimum.

In Fig. 4 we compared the magnetization curve cal-
culated for nickel with the similar calculation for iron
and the experimental curve for nickel. While the cal-
culated curve is in poor agreement with experiment,
it is distinctly better than the fit for iron. On the oth-
er hand, the experimental curves for iron and nickel
are closely similar. It is clear that the present model
throws no light on this point.

The paramagnetic susceptibility was calculated us-
ing the methods described in Ref. 2. As in the iron
case we obtained a very good fit to the Curie-Weiss
law

2effX=—
3 T —Tc

for nickel we find m, ff=0.49@,q. This m, ff is substan-
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FIG. 4. Calculated magnetization curves for nickel and
iron compared with the experimental curve for nickel.

tially less than the ground-state moment, quite dif-
ferent from the iron case where we obtained a m, ff

greater than the ground-state moment. Ho~ever it

agrees well with our calculated value for the atomic-
spin length in the paramagnetic region (see below),
which was not the case for the corresponding iron
calculation.

We also calculated the root-mean-square average
((S') )' ' of the atomic-spin length. In the iron case
this quantity hardly changed from its ground-state
value over the whole temperature range studied.
However, in nickel we found that this average de-
crease by about 25% as T increased from T =0 to T~,
but was nearly constant (increasing very slightly) in

the paramagnetic region (see Fig. 5). This behavior
mimics that of the exchange splitting observed by
Eastman et af.5 in nickel, although he saw a 40% drop
in the splitting, and exact connection between his ob-
servations and the atomic-spin length is not clear.

0.30

0.20

0.10

0.00 I
t

/

t
/

i
r

/
/

/

r
r'

/

S{T)
S{0)

-0.10—

0.0
I

1.0

v (eV)

0.0 I

O. O 0.5 1.0
I

1.5 2.0

FIG. 3. E(v) vs v= (v) for nickel and iron in the
paramagnetic region.

FKJ. 5. Root-mean-square atomic-spin magnitude calcu-
lated for nickel as a function of the temperature T.
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The change in the atomic-spin length with tem-
perature is inconsistent with a localized Heisenberg
model, but easily accommodated in an itinerant
theory. In the latter type of theory one would expect
a large variability of the spin length which might well

lead to a reduction of the mean spin with tempera-
ture. Indeed, in Stoner theory the atomic spin disap-
pears altogether above the Curie temperature. It is
therefore of interest to investigate the distribution of
atomic-spin lengths as we did in the iron case, espe-
cially in the paramagnetic region. In Fig. 6 we com-
pare the calculated atomic-spin distributions for iron
and nickel in the paramagnetic region. %e see, in

fact, that the two curves have very much the same
shape. It is simply that the peak of the nickel curve
has moved away from the ground-state value whereas
that of iron remained on the ground-state value.
Otherwise there is little difference; in particular the
nickel curve shows no evidence that the spin length
is randomly distributed between 0 and some finite
upper limit.

%hat conclusions might one draw from these
results? First we note that, as in the iron case, we
have been successful in obtaining at the same time
the correct value for the ground-state moment and a
Curie temperature of the right order of magnitude, a
feat which has proved impossible in the ordinary
itinerant theory. The ratio of the calculated Curie
temperatures for the two metals is about the same as
that observed, suggesting that the discrepancy
between the calculated and observed Curie tempera-
tures may be of the same origin in both cases
[perhaps a consequence of the use of approximations
(see Ref. 2) which are equivalent to mean-field
theory from the point of view of a localized morsel].
On the whole the results for nickel are very similar to
those for iron. Basically we seem in both cases to be
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FIG. 6. Distribution functions f(S) for the atomic-spin
lenghts calculated for iron and nickel in the paramagnetic re-

gion; S(0) is the ground-state atomic spin.

dealing with something like a localized spin model
but with some itinerant aspects grafted on. The latter

aspects are a little more pronounced in the nickel

case, e.g. , in the variation of atomic-spin length with

.temperature.
Clearly some improvements are needed in the gen-

eral theory. In particular one needs to account for
the factor of 2 difference between the calculated and
observed Curie temperatures and for the failure of
the theory to give good magnetization curves. In
connection with the latter it may be remarked that
part of the trouble lies with the fact that the theory as
formulated in Refs. 1 and 2 treats the atomic spins as
classical rather than quantum mechanical. The effect
of this can be clearly seen in Fig. 4, which shows the
calculated ratios M(T)/M(0) emerging from T=O
with a finite slope rather than the zero slope required

by spin-wave theory.

Deceased. Note added in proof: Additional results on nickel,
calculated by a different method, are to be found in
Hubbard's contribution to the Taniguchi International Sym-
posium on Electron Correlation and Magnetism in Narrow
Band Systems, Susono, Japan, November 1—6 1980
(Springer, Berlin, in press).
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