Excitons in cuprous oxide under uniaxial stress

H.-R. Trebin,* H. Z. Cummins, and J. L. Birman
Department of Physics, The City College of the City University of New York, New York, New York 10031

(Received 10 March 1980)

Abstract

The energy levels for excitons in $\mathrm{Cu}_{2} \mathrm{O}$ under uniaxial stress have been calculated under the assumption of strong mixing between the yellow and green exciton series. The reversal of the order for the strain-split levels of the $2 S$ yellow exciton with respect to the $1 S$ yellow exciton is explained by two different and competing splitting mechanisms. The results agree well with resonance-enhancement measurements of Waters et al. The level assignment as proposed by Agekyan and Stepanov and Fröhlich et al. is confirmed.

I. INTRODUCTION

The excitons in $\mathrm{Cu}_{2} \mathrm{O}$ have attracted much interest due to some special features of this compound's band structure. Because conduction- and valence-band states are of the same parity, the S excitons are accessible only by quadrupole and two-photon transitions in the absence of external fields. Compared to the case of Ge, the spinorbit split Γ_{7}^{+}and Γ_{8}^{+}valence bands are reversed in their order. Their energy difference is so small that the exciton series, to which they contribute, are strongly mixed. Whereas the dipole active P states of the yellow series follow the $1 / n^{2}$ Rydberg law, the level assignment of the S and D states has been controversial. A very weak line at $17247 \mathrm{~cm}^{-1}$ was accepted as a " $2 S$ " exciton and a strong line at $17381 \mathrm{~cm}^{-1}$ as a " $3 S^{\prime \prime}$ exciton. The D states and their splittings were investigated by the Strasbourg group. ${ }^{2}$ Speculations arose about the physical origin of the strange level spacings of S and D states, ${ }^{2,3}$ the extremely small oscillator strength of the " $2 S$ " exciton, ${ }^{4}$ and the large oscillator strength of the yellow " $3 S$ " and D excitons. ${ }^{5}$ In 1975 Agekyan and Stepanov ${ }^{6}$ studied the exciton levels in absorption under an electric and strain field. Owing to the unexpectedly small strain splitting of the " $2 S$ " exciton, they assumed this state to be the $1 S$ level of the green exciton series, without presenting, however, a quantitative analysis to justify their conjecture. The displacement of the reassigned $n S$ levels, $n \geqslant 2$, to energies above the $n P$ levels, was attributed to the exchange splitting of orthoand paraexcitons. Recently Waters et al. ${ }^{7}$ investigated the yellow series by resonanceenhanced Raman scattering in uniaxially compressed crystals. By tuning the laser through the exciton energies, the states were excited by the quadrupole interaction. The Raman shift was caused by a $109-\mathrm{cm}^{-1}$ phonon of Γ_{3}^{-}symmetry. The po-
sition of the exciton line was determined at maximum resonance. The symmetry of the excitons could be established by polarization analysis of incident and backscattered light. But the results increased the confusion about the level assignments, since no regularity could be found in the splitting patterns of successive levels. The " $3 S$ " yellow exciton at $17381 \mathrm{~cm}^{-1}$ showed an extremely large strain splitting and a reversal of the order of the split levels as compared to the yellow $1 S$ exciton. The D states did not split and were of large oscillator strength. The " $2 S$ " exciton at $17247 \mathrm{~cm}^{-1}$ was not seen. A conventional perturbative approach to the diagonalization of the effective-mass Hamiltonian, neglecting the mixing of different exciton series, could not explain the data.
Considerable progress towards a solution of the puzzle was made by observations and proposals of Fröhlich et al. ${ }^{8}$ In two-photon absorption the group detected the weak " $2 S^{\prime}$ " line at $17247 \mathrm{~cm}^{-1}$ in the unperturbed crystal. Following Agekyan and Stepanov ${ }^{6}$ they assigned this line to the $1 S$ green exciton. The unusual level spacing was explained by the strong exchange interaction between the $1 S$ green and the $2 S$ yellow exciton which had been previously labeled " $3 S$ ". The energies were calculated by diagonalization of the effective-mass Hamiltonian for the manifold of the Γ_{6}^{+}conductionband and Γ_{7}^{+}and Γ_{8}^{+}valence-band states in its spherical form. ${ }^{9,10}$ Based upon this information we have reinterpreted the data of Waters et al. In Sec. II we describe the model Hamiltonian and some technical details used to solve the eigenvalue problem. A connection between the present methods of solution and the perturbation theory applied previously ${ }^{7}$ is made. In Sec. III the numerical solution is presented and compared with the measurements of Waters et al. ${ }^{7}$ The results and the material constants determined are discussed. Predictions are made for the exciton energies under stress parallel to the [111] direction, for which no experimental data exist.

II. MODEL HAMILTONIAN AND EIGENVALUE PROBLEM

A. Invariant expansion

According to the discussion of Fröhlich et al. ${ }^{8}$ it is necessary to treat carefully the coupling between the yellow and the green exciton series. Therefore in the hole kinetic energy T_{h} of the ef-fective-mass Hamiltonian the entire manifold of the spin-orbit split Γ_{5}^{+}valence-band states has to be taken into account. T_{h} and the corresponding strain Hamiltonian are presented, for instance, in Ref. 11 as a polynomial in the components k_{l} of the hole momentum vector, in the $I=1$ angular momentum matrices I_{l}, and the Pauli matrices $\sigma_{l}^{h}, l=1,2,3$. For the following symmetry analysis of the excitonic states an important remark has to be made concerning this expansion. The valence-band states transform according to the representation $\Gamma_{5}^{+} \times \Gamma_{6}^{+}=\Gamma_{7}^{+}+\Gamma_{8}^{+}$of the point group O_{h}, where Γ_{6}^{+}is the representation for the internal spin. Since $\Gamma_{5}^{+}=\Gamma_{2}^{+} \times \Gamma_{4}^{+}$, and since Γ_{4}^{+}and Γ_{6}^{+}result from a reduction of the irreducible representations D_{1}^{+}and $D_{1 / 2}^{+}$of the orthogonal group $O(3)$, we can use the representation matrices.

$$
\begin{align*}
& \Gamma_{2}^{+}(g) \times D_{1}^{+}(g) \text { for } \Gamma_{5}^{+}, \tag{1}\\
& D_{1 / 2}^{+}(g) \text { for } \Gamma_{6}^{+}
\end{align*}
$$

where $g \epsilon O_{h} \cdot{ }^{12} T_{h}(\overrightarrow{\mathrm{k}})$ is a 6×6 perturbation matrix in a basis of the zone-center valence-band states and must be invariant under any cubic symmetry operation acting on these states and the \vec{k} vector. This implies the relation

$$
\begin{align*}
{\left[\Gamma_{2}^{+}(g)\right.} & \left.\times D_{1}^{+}(g) \times D_{1 / 2}^{+}(g)\right] T_{h}\left(g^{-1} \overrightarrow{\mathrm{k}}\right) \\
\times & {\left[\Gamma_{2}^{+}\left(g^{-1}\right) \times D_{1}^{+}\left(g^{-1}\right) \times D_{1 / 2}^{+}\left(g^{-1}\right)\right] } \\
& =\left[D_{1}^{+}(g) \times D_{1 / 2}^{+}(g)\right] T_{h}\left(g^{-1} \overrightarrow{\mathrm{k}}\right)\left[D_{1}^{+}\left(g^{-1}\right) \times D_{1 / 2}^{+}\left(g^{-1}\right)\right] \\
& =T_{h}(\overrightarrow{\mathrm{k}}) . \tag{2}
\end{align*}
$$

$\Gamma_{2}^{+}(g)$ cancels $\Gamma_{2}^{+}\left(g^{-1}\right)=\Gamma_{2}^{+}(g)^{-1}$, since it is a c number. Thus the invariant expansion of T_{h} is identical to that for a valence-state manifold transforming according to $D_{1}^{+}(g) \times D_{1 / 2}^{+}(g)=\Gamma_{4}^{+}(g) \times \Gamma_{6}^{+}(g)$, $g \in O_{h}$. Whenever an eigenstate is analyzed for its symmetry in this pseudospin formalism it must be remembered that the basis functions transform like an $(I=1) \times\left(S_{h}=\frac{1}{2}\right)$ angular momentum state multiplied by a function of Γ_{2}^{+}symmetry. ${ }^{12,13}$
The current data on band parameters for $\mathrm{Cu}_{2} \mathrm{O}$ are rather uncertain. Hence we restrict ourselves to the most important terms of the effec-tive-mass Hamiltonian which adequately describe the features of the excitonic spectra. Apart from the \vec{k}-independent spin-orbit interaction and the exchange interaction all spin-independent terms
are omitted; for the hole kinetic energy only the spherical terms are retained. For the relative electron-hole motion, then, the following Hamiltonian remains:

$$
\begin{align*}
& H_{x}=H_{0}+H_{\mathrm{ex}}+H_{d}, \\
& H_{0}=\frac{1}{3} \lambda\left(\overrightarrow{\mathrm{I}} \cdot \vec{\sigma}^{h}\right)+\frac{1}{\vec{\hbar}^{2}}\left[p^{2}-3 \mu\left(p^{(2)} I^{(2)}\right)\right]-\frac{2}{r}-q \delta(\overrightarrow{\mathrm{r}}), \\
& H_{\mathrm{ex}}=\frac{1}{2} c\left(1-\vec{\sigma}^{e} \cdot \vec{\sigma}^{h}\right) \delta(\overrightarrow{\mathrm{r}}), \tag{3}\\
& H_{d}=x_{h}+\left\{\begin{array}{l}
-\sqrt{6} x_{u} I_{0}^{(2)} \text { for stress } \|[100] \\
-\sqrt{6} x_{u}^{\prime} I_{0}^{(2)} \text { for stress } \|[111] \\
-\sqrt{6} x_{r} I_{0}^{(2)}-x_{n a}\left(I_{2}^{(2)}+I_{-2}^{(2)}\right) \\
\text { for stress } \|[110] .
\end{array}\right.
\end{align*}
$$

Atomic units are used, i.e., the energy is measured in effective Rydbergs,

$$
R=\frac{m_{r} e^{4}}{2 \hbar^{2} \epsilon_{0}^{2}}
$$

and the length in effective Bohr radii:

$$
a=\frac{\epsilon_{o} \hbar^{2}}{m_{r} e^{2}}
$$

Here $m_{r}^{-1}=m_{e}^{-1}+\gamma_{1}^{h} / m, m_{e}$ denoting the conductionband mass, m the free-electron mass, and γ_{1}^{h} the mean inverse valence-band mass. ${ }^{9} \lambda=\Lambda / R$ is the spin-orbit splitting, $\mu=\left(\gamma_{1}^{h} m_{r} / m\right) \mu_{h}$ the reduced valence-band splitting parameter μ_{h}. For the definition of the second-rank spherical tensors $p^{(2)}$ and $I^{(2)}$ see Ref. 14. The central cell correction is simulated by a contact potential of weight $q>O$. The analytic exchange interaction is an invariant expansion ${ }^{15}$ of the form derived by Denisov and Makarov, ${ }^{16}$ where $c=C / R a^{3}$ and

$$
\begin{equation*}
C=4 \pi e^{2} \sum_{\overrightarrow{\mathbb{K}} \neq 0} \frac{\left.\left|\left\langle\Gamma_{1}^{+}\right| e^{i \overrightarrow{\mathrm{~K}} \cdot \overrightarrow{\mathrm{r}}}\right| \Gamma_{5}^{+}\right\rangle \mid}{K^{2}} \tag{4}
\end{equation*}
$$

is an interband matrix element between the S-type Γ_{1}^{+}conduction-band state and one of the D-type Γ_{5}^{+}valence-band states, $\overrightarrow{\mathrm{K}}$ denoting a reciprocallattice vector. In the strain Hamiltonian H_{d} the dimensionless strain constants are defined as

$$
\begin{align*}
& x_{h}=\left(s_{11}+2 s_{12}\right)\left(C_{1}-D_{1}\right) T / R, \\
& x_{u}=\frac{2}{3}\left(s_{11}-s_{12}\right) D_{u} T / R, \\
& x_{u}^{\prime}=\frac{1}{3} s_{44} D_{u}^{\prime} T / R, \tag{5}\\
& x_{r}=\frac{1}{4}\left(x_{u}+3 x_{u}^{\prime}\right), \\
& x_{n a}=\frac{3}{4}\left(x_{u}-x_{u}^{\prime}\right) .
\end{align*}
$$

T is the external stress (negative, if compressive), $D_{u}=\frac{1}{2} D_{2}, D_{u}^{\prime}=\frac{1}{2} D_{3}$, and $C_{1}-D_{1}$ are deformation potentials for shear and hydrostatic strain ${ }^{11}$; s_{11}, s_{12}, s_{44} denote the cubic elastic compliance constants.

B. Method of solution

1. Hamiltonian without strain

H_{0} and $H_{\text {ex }}$ are invariant under rotations. Therefore for H_{0} the components of angular momentum $\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{L}}+\overrightarrow{\mathrm{J}}$ are constants of the motion, where $\overrightarrow{\mathrm{L}}$ $=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}$, and $\overrightarrow{\mathrm{J}}=\overrightarrow{\mathrm{I}}+\frac{1}{2} \vec{\sigma}^{n} . H_{0}+H_{\text {ex }}$ commutes with the components of $\overrightarrow{\mathrm{G}}=\overrightarrow{\mathrm{F}}+\frac{1}{2} \vec{\sigma}^{e}$. Hence we expand the exciton wave function Ψ_{x} as

$$
\begin{equation*}
\Psi_{x}=\sum f_{L J F G G_{z}}(r)\left|L J F G G_{z}\right\rangle \tag{6}
\end{equation*}
$$

The kets denote eigenfunctions of G^{2}, G_{z}, coupled from eigenstates of $L^{2}, I^{2},\left(\sigma^{h}\right)^{2},\left(\sigma^{e}\right)^{2}$ in the following way:

$$
\begin{equation*}
\left|L J F G G_{z}\right\rangle \equiv\left|\left(\left(L,\left(I, \sigma^{h}\right) J\right) F, \sigma^{e}\right) G, G_{z}\right\rangle . \tag{7}
\end{equation*}
$$

H_{x}, being of even parity, only connects states of $\Delta L=0, \pm 2, \pm 4, \ldots$. For the even-parity excitonic states the following kets contribute to Ψ_{x} :
$G=0, F=\frac{1}{2}$:

$$
\left|0 \frac{1}{2} \frac{1}{2} 00\right\rangle, \quad\left|2 \frac{3}{2} \frac{1}{2} 00\right\rangle ;
$$

$G=1, F=\frac{1}{2}$:

$$
\left|0 \frac{1}{2} \frac{1}{2} 1 G_{z}\right\rangle, \quad\left|2 \frac{3}{2} \frac{1}{2} 1 G_{z}\right\rangle ;
$$

$$
\begin{align*}
G= & 1, F=\frac{3}{2}: \\
& \left|0 \frac{3}{2} \frac{3}{2} 1 G_{z}\right\rangle, \quad\left|2 \frac{3}{2} \frac{3}{2} 1 G_{z}\right\rangle, \quad\left|2 \frac{1}{2} \frac{3}{2} 1 G_{z}\right\rangle ; \tag{8}\\
G= & 2, F=\frac{3}{2}: \\
& \left|0 \frac{3}{2} \frac{3}{2} 2 G_{z}\right\rangle, \quad\left|2 \frac{3}{2} \frac{3}{2} 2 G_{z}\right\rangle, \quad\left|2 \frac{1}{2} \frac{3}{2} 2 G_{z}\right\rangle ; \\
G= & 2, F=\frac{5}{2}: \\
& \left|2 \frac{3}{2} \frac{5}{2} 2 G_{z}\right\rangle, \quad\left|2 \frac{1}{2} \frac{5}{2} 2 G_{z}\right\rangle, \quad\left|4 \frac{35}{2} 2 G_{z}\right\rangle ;
\end{align*}
$$

etc. For the radial functions a system of differential eigenvalue equations results

$$
\begin{aligned}
& \sum_{L^{\prime} J^{\prime} F^{\prime} G^{\prime} G_{z}^{\prime}}\left\langle L J F G G_{z}\right| H_{x}\left|L^{\prime} J^{\prime} F^{\prime} G^{\prime} G_{z}^{\prime}\right\rangle f_{L^{\prime} J^{\prime} F^{\prime} G^{\prime} G_{z}^{\prime}}(r) \\
&=E f_{L J F G G_{z}}(r)
\end{aligned}
$$

The matrix elements of H_{x} are radial operators and can be established by standard methods of angular momentum calculus. ${ }^{9,17}$ Since H_{0} couples only radial functions of identical F and G the corresponding matrix separates into blocks of size 3×3 at most. Of these blocks, only those are retained which operate on at least one S-type state, i.e., we truncate series (6) after $G=2, F=\frac{3}{2}$. In the sequence of basis functions as given in (8) the matrix for H_{0} is
for G arbitrary, $F=\frac{1}{2}$:

$$
\left[\begin{array}{cc}
-\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right)-\frac{2}{r}-q \frac{\delta(r)}{4 \pi r^{2}} & \mu \sqrt{2}\left(\frac{d^{2}}{d r^{2}}+\frac{5}{r} \frac{d}{d r}+\frac{3}{r^{2}}\right) \tag{10}\\
\mu \sqrt{2}\left(\frac{d^{2}}{d r^{2}}-\frac{1}{r} \frac{d}{d r}\right) & \lambda-(1+\mu)\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{6}{r^{2}}\right)-\frac{2}{r}
\end{array}\right]
$$

for G arbitrary, $F=\frac{3}{2}$:

$$
\left[\begin{array}{ccc}
\lambda-\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right)-\frac{2}{r}-q \frac{\delta(r)}{4 \pi r^{2}} & \mu\left(\frac{d^{2}}{d r^{2}}+\frac{5}{r} \frac{d}{d r}+\frac{3}{r^{2}}\right) & -\mu\left(\frac{d^{2}}{d r^{2}}+\frac{5}{r} \frac{d}{d r}+\frac{3}{r^{2}}\right) \tag{11}\\
\mu\left(\frac{d^{2}}{d r^{2}}-\frac{1}{r} \frac{d}{d r}\right) & \lambda-\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{6}{r^{2}}\right)-\frac{2}{r} & \mu\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{6}{r^{2}}\right) \\
-\mu\left(\frac{d^{2}}{d r^{2}}-\frac{1}{r} \frac{d}{d r}\right) & \mu\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{6}{r^{2}}\right) & -\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{6}{r^{2}}\right)-\frac{2}{r}
\end{array}\right]
$$

$H_{\text {ex }}$ acts only on $S(L=0)$-like states of $G=1$. The nonvanishing matrix elements are (independent of G_{z})

$$
\begin{aligned}
& \left\langle 0 \frac{1}{2} \frac{1}{2} 1 G_{z}\right| H_{\text {ex }}\left|0 \frac{1}{2} \frac{1}{2} 1 G_{z}\right\rangle=\frac{2}{3} c \frac{\delta(r)}{4 \pi r^{2}}, \\
& \left\langle 0 \frac{1}{2} \frac{1}{2} 1 G_{z}\right| H_{\text {ex }}\left|0 \frac{3}{2} \frac{3}{2} 1 G_{z}\right\rangle=-\frac{2 \sqrt{2}}{3} c \frac{\delta(r)}{4 \pi r^{2}}, \\
& \left\langle 0 \frac{3}{2} \frac{3}{2} 1 G_{z}\right| H_{\text {ex }}\left|0 \frac{3}{2} \frac{3}{2} 1 G_{z}\right\rangle=\frac{4}{3} c \frac{\delta(r)}{4 \pi r^{2}}
\end{aligned}
$$

2. Strain Hamiltonian and symmetries

The eigenstates for $G=0,1,2$ transform according to the irreducible representations D_{0}^{+}, D_{1}^{+}, and D_{2}^{+}of $\mathrm{O}(3)$. Upon reduction to cubic symmetry and multiplication by Γ_{2}^{+}, they describe excitons of the following symmetries:

$$
\begin{align*}
& D_{0}^{+} \times \Gamma_{2}^{+}=\Gamma_{1}^{+} \times \Gamma_{2}^{+}=\Gamma_{2}^{+}, \\
& D_{1}^{+} \times \Gamma_{2}^{+}=\Gamma_{4}^{+} \times \Gamma_{2}^{+}=\Gamma_{5}^{+}, \tag{13}\\
& D_{2}^{+} \times \Gamma_{2}^{+}=\left(\Gamma_{3}^{+}+\Gamma_{5}^{+}\right) \times \Gamma_{2}^{+}=\Gamma_{3}^{+}+\Gamma_{4}^{+} .
\end{align*}
$$

The $G=0$ state represents the optically inactive paraexciton of symmetry Γ_{2}^{+}. The $G=2$ state describes the Γ_{3}^{+}and Γ_{4}^{+}paraexcitons, which are quadrupole and magnetic dipole active. The $G=1$ state is the quadrupole-active orthoexciton of Γ_{5}^{+}symmetry which has been observed by the resonance-enhanced Raman scattering method. The strain Hamiltonian for $T \|[100]$ and [111] is of cylindrical symmetry $D_{\text {oh }}$, whereas the actual point symmetry of the strained crystal is $D_{4 h}$ and $C_{3 v}$, respectively. In Table I the reduction of the O(3) irreducible representations to those of $D_{\infty h}$, i.e., the splitting of the $G=0,1,2$, excitons, together with the corresponding basis functions, is presented. The actual exciton symmetries are obtained by reducing the $D_{\infty_{h}}$ irreducible representations to those of $D_{4 h}$ and $C_{3 v}$ and multiplying the resulting representations by Γ_{3}^{+}and Γ_{2}, respectively. Γ_{3}^{+}and Γ_{2} are subduced from Γ_{2}^{+} when the crystal point symmetry is lowered from O_{h} to $D_{4 h}$ and $C_{3 v}$. According to Table I, the $G=1$ (Γ_{5}^{+}) exciton splits into a doubly degenerate level of ($\Pi_{g}, \Gamma_{5}^{+}, \Gamma_{3}$) and a nondegenerate level of $\left(\Sigma_{g}^{-}, \Gamma_{4}^{+}, \Gamma_{1}\right)$ symmetry (with respect to $D_{\infty}, D_{4 h}$, $\left.C_{3 v}\right)$. Stress $T \|[110]$ causes a deformation of the cubic cell of $\mathrm{Cu}_{2} \mathrm{O}$ to a rhombohedron of symmetry $D_{2 h}$ which is also the symmetry of the strain Hamiltonian. The lowering of the symmetry to $C_{2 v}$ is caused by an asymmetric displacement of the atoms within the cell which cannot be accounted for by the continuum approximation of effective mass theory. Since the strain Hamiltonian has less than cylindrical symmetry, linear combinations of the kets $\left|G, G_{z}\right\rangle$ have to be taken as basis functions. These are presented in Table II, together with the irreducible representations according to which they transform under the operations of $D_{2 h}$ and of $C_{2 v}$. Only states belonging to
the same irreducible representation are coupled by the strain Hamiltonian. A close inspection of Tables I and II shows that for the computation of the exciton energies the system of coupled differential equations is at most of size 8×8. In a very concise notation the shear strain part of the radial Hamiltonian can be written as

$$
\left[\begin{array}{ccc}
0 & x_{1} R_{1} & -\sqrt{3} x_{2} R_{1} \tag{14}\\
x_{1} R_{1}^{+} & -\frac{1}{2} x_{1} R_{2} & -\frac{1}{2} \sqrt{3} x_{2} R_{2} \\
-\sqrt{3} x_{2} R_{1}^{+} & -\frac{1}{2} \sqrt{3} x_{2} R_{2} & \frac{1}{2} x_{3} R_{2}
\end{array}\right],
$$

where R_{1}, R_{2} are the matrices

$$
\begin{aligned}
& R_{1}=\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 0 \\
0 & \frac{1}{5} & \frac{1}{10}
\end{array}\right], \\
& R_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{3}{5} & -\frac{2}{5} \\
0 & -\frac{2}{5} & 0
\end{array}\right] .
\end{aligned}
$$

The sequence of the basis functions is chosen as in Tables I and II and in (8). The strain constants x_{1}, x_{2}, x_{3} for the different states are listed in Table III.

3. Perturbation calculation and exchange-strain splitting

Several authors have solved the effective-mass equations by a perturbation pracedure, and many experiments have been interpreted in the past using this procedure. In order to connect with the present model, we also start out by considering the exchange and strain Hamiltonian $H_{\text {ex }}$ and H_{d} as a perturbation of H_{0}. Within the space spanned by the states of quantum number $F=\frac{1}{2}, \frac{3}{2}$ ($G=0,1,2$), we obtain twelve decoupled eigen-

TABLE I. Exciton symmetries for $T \|[100]$ and [111]. In column 1 the exciton symmetries in the spherical model are listed. In column 2 the splitting into irreducible representations of $D_{\infty h}$ and the corresponding basis functions $\left|G, G_{z}\right\rangle$ are presented. In columns 3 and 4 the exciton symmetries for the actual crystal point groups $D_{4 h}$ and $C_{3 v}$ are given.

Irreducible represent- ations of $\mathrm{O}(3)\left(O_{h}\right)$	$D_{\infty h}$	$D_{4 h}$
$D_{0}^{+}\left({ }^{1} \Gamma_{2}^{+}\right)$	$\Sigma_{g}^{+} ;\|00\rangle$	$\Gamma_{1}^{+} \times \Gamma_{3}^{+}=\Gamma_{3}^{+}$
$D_{1}^{+}\left({ }^{3} \Gamma_{5}^{+}\right)$	$\Gamma_{2}^{+} \times \Gamma_{3}^{+}=\Gamma_{4}^{+}$	$\Gamma_{1} \times \Gamma_{2}=\Gamma_{2}$
	$\left.\Pi_{g} ;\|11\rangle,\|1-1\rangle\right\rangle$	$\Gamma_{5}^{+} \times \Gamma_{3}^{+}=\Gamma_{5}^{+}$

TABLE II. Exciton symmetries for $T \|[110]$. In column 2 basis functions and their symmetry for the rhombohedral strain Hamiltonian are listed. In column 3 the symmetry of the states for the actual crystal point group $C_{2 v}$ is given.

Irreducible represent- ations of $\mathrm{O}(3)\left(O_{h}\right)$	$D_{2 h}$	$C_{2 v}$
$D_{0}^{+}\left({ }^{1} \Gamma_{2}^{+}\right)$	$\Gamma_{1}^{+} ;\|00\rangle$	$\Gamma_{1} \times \Gamma_{2}=\Gamma_{2}$
	$\Gamma_{2}^{+} ;(\|11\rangle+\|1-1\rangle) / \sqrt{2}$	$\Gamma_{2} \times \Gamma_{2}=\Gamma_{1}$
$D_{1}^{+}\left({ }^{3} \Gamma_{5}^{+}\right)$	$\Gamma_{3}^{+} ;\|10\rangle$	$\Gamma_{3} \times \Gamma_{2}=\Gamma_{4}$
	$\Gamma_{4}^{+} ;(\|11\rangle-\|1-1\rangle) / \sqrt{2}$	$\Gamma_{4} \times \Gamma_{2}=\Gamma_{3}$
	$\Gamma_{1}^{+} ;\|20\rangle$	$\Gamma_{1} \times \Gamma_{2}=\Gamma_{2}$
	$\Gamma_{1}^{+} ;(\|22\rangle+\|2-2\rangle / \sqrt{2}$	$\Gamma_{1} \times \Gamma_{2}=\Gamma_{2}$
$D_{2}^{+}\left({ }^{2} \Gamma_{3}^{+}+{ }^{3} \Gamma_{4}^{+}\right)$	$\Gamma_{2}^{+}(\|21\rangle-\|2-1\rangle) / \sqrt{2}$	$\Gamma_{2} \times \Gamma_{2}=\Gamma_{1}$
	$\Gamma_{3}^{+}(\|22\rangle-\|2-2\rangle) / \sqrt{2}$	$\Gamma_{3} \times \Gamma_{2}=\Gamma_{4}$
	$\Gamma_{4}^{+}(\|21\rangle+\|2-1\rangle) / \sqrt{2}$	$\Gamma_{4} \times \Gamma_{2}=\Gamma_{3}$

states of H_{0} :

$$
\begin{align*}
\left|y G G_{z}\right\rangle= & F_{0}(r)\left|0 \frac{1}{2} \frac{1}{2} G G_{z}\right\rangle+G_{0}(r)\left|2 \frac{3}{2} \frac{1}{2} G G_{z}\right\rangle, \\
\left|g G G_{z}\right\rangle= & F_{1}(r)\left|0 \frac{3}{2} \frac{3}{2} G G_{z}\right\rangle+G_{1}(r)\left|2 \frac{3}{2} \frac{1}{2} G G_{z}\right\rangle \tag{15}\\
& +G_{2}(r)\left|2 \frac{1}{2} \frac{3}{2} G G_{z}\right\rangle
\end{align*}
$$

The states were denoted y if their $L=0$ part contained the hole states from the Γ_{7}^{+}valence band ($J=\frac{1}{2}$), and g if from the Γ_{8}^{+}valence band ($J=\frac{3}{2}$).

TABLE III. Coefficients for the strain Hamiltonian (14). The excitonic states are denoted by their transformation properties under the symmetry group of the strain Hamiltonian and the actual crystal point group.

$$
\begin{array}{ll}
T \|[100]: & \\
\left(\Sigma_{g}^{+}, \Gamma_{3}^{+}\right): & x_{1}=-2 x_{u}, x_{2}=0, x_{3}=0 \\
\left(\Sigma_{g}^{-}, \Gamma_{4}^{+}\right): & x_{1}=-2 x_{u}, x_{2}=0, x_{3}=0 \\
\left(\Pi_{g}, \Gamma_{5}^{+}\right): & x_{1}=x_{2}=x_{3}=x_{u} \cdot \\
\left(\Delta_{g}, \Gamma_{1}^{+}+\Gamma_{2}^{*}\right): & x_{1}=x_{2}=0, x_{3}=-2 x_{u} . \\
T \|[111]: & \\
\left(\Sigma_{g}^{+}, \Gamma_{2}\right): & x_{1}=-2 x_{u}^{\prime}, x_{2}=0, x_{3}=0 \\
\left(\Sigma_{\bar{g}}, \Gamma_{1}\right): & x_{1}=-2 x_{u}^{\prime}, x_{2}=0, x_{3}=0 \\
\left(\Pi_{g}, \Gamma_{3}\right): & x_{1}=x_{2}=x_{3}=x_{u}^{\prime} . \\
\left(\Delta_{g}, \Gamma_{3}\right): & x_{1}=x_{2}=0, x_{3}=-2 x_{u}^{\prime} . \\
T \|[110]: & \\
\left(\Gamma_{1}^{+}, \Gamma_{2}\right): & x_{1}=x_{3}=-\frac{1}{2}\left(x_{u}+3 x_{u}^{\prime}\right), x_{2}=\frac{1}{2}\left(x_{u}-x_{u}^{\prime}\right) \\
\left(\Gamma_{2}^{+}, \Gamma_{1}\right): & x_{1}=x_{3}=x_{u}, x_{2}=x_{u}^{\prime} \cdot \\
\left(\Gamma_{3}^{+}, \Gamma_{4}\right): & x_{1}=x_{3}=-\frac{1}{2}\left(x_{u}+3 x_{u}^{\prime}\right), x_{2}=-\frac{1}{2}\left(x_{u}-x_{u}^{\prime}\right) \\
\left(\Gamma_{4}^{+}, \Gamma_{3}\right): & x_{1}=x_{3}=-\frac{1}{2}\left(x_{u}-3 x_{u}^{\prime}\right), x_{2}=+\frac{1}{2}\left(x_{u}+x_{u}^{\prime}\right) .
\end{array}
$$

Their unperturbed energies are denoted $E(y)$ and $E(g)$, respectively. For illustration we treat for tetragonal strain $(T \|[100])$ only the lowest orthoexcitons transforming according to $\left(\Sigma_{g}^{-}, \Gamma_{4}^{+}\right)$and $\left(\Pi_{g}, \Gamma_{5}^{+}\right)$.
(i) For symmetry $\left(\Sigma_{g}^{-}, \Gamma_{4}^{+}\right)$the states $|y 10\rangle$ and $\lg 10>$ interact. The secular matrix is

$$
\left[\begin{array}{ll}
E(y)+h T-\frac{2}{3} J_{y} & \frac{2}{3} \sqrt{2} J-e \sqrt{2} T \tag{16}\\
\frac{2}{3} \sqrt{2} J-e \sqrt{2} T & E(g)+h T+d T-\frac{4}{3} J_{g}
\end{array}\right)
$$

where

$$
\begin{aligned}
& J_{y}=-c F_{0}^{2}(0) / 4 \pi \\
& J=-c F_{0}^{(0)} F_{1}(0) / 4 \pi \\
& J_{g}=-c F_{1}^{2}(0) / 4 \pi
\end{aligned}
$$

and

$$
\begin{aligned}
& e T=x_{u} \int_{0}^{\infty} d r r^{2}\left(F_{0}(r) F_{1}(r)+\frac{\sqrt{2}}{5} G_{0}(r) G_{1}(r)\right. \\
& \\
& \left.\quad+\frac{\sqrt{2}}{10} G_{0}(r) G_{2}(r)\right) \\
& h T=x_{h} \\
& d T=x_{u} \int_{0}^{\infty} d r r^{2}\left[F_{1}^{2}(r)-\frac{3}{5} G_{1}^{2}(r)\right. \\
& \\
& \left.\quad-\frac{4}{5} G_{1}(r) G_{2}(r)\right]
\end{aligned}
$$

(ii) For symmetry $\left(\Pi_{g}, \Gamma_{5}^{+}\right)$the states $|y 11\rangle$, $|g 11\rangle$, and $|g 21\rangle$ interact. The matrix to be diagonalized is

$$
\left(\begin{array}{ccc}
E(y)+h T-\frac{2}{3} J_{y} & e T / \sqrt{2}+\frac{2}{3} \sqrt{2} J & -\sqrt{3 / 2} e T \tag{17}\\
e T / \sqrt{2}+\frac{2}{3} \sqrt{2} J & E(g)+h T-\frac{1}{2} d T-\frac{4}{3} J_{g} & -\frac{1}{2} \sqrt{3} d T \\
-\sqrt{3 / 2} e T & -\frac{1}{2} \sqrt{3} d T & E(g)+h T+\frac{1}{2} d T
\end{array}\right)
$$

The secular matrices become identical to those found by Waters et al. ${ }^{7}$ if $e \cong d$, i.e., if the admix-
ture of D-like terms (G_{0}, G_{1}, G_{2}) is small and $F_{0} \cong F_{1}$, and if we identify

$$
\begin{aligned}
& E(y)=E_{c}^{y}-\frac{1}{2} J_{y} \\
& E(g)=E_{c}^{G}+\Delta-\frac{1}{2} J_{g}
\end{aligned}
$$

The energy eigenvalues resulting from this sec-ond-order perturbation calculation have been formulated in Ref. 7. Here we only cite the energy difference between doublets (Π_{g} symmetry) and singlets (Σ_{g}^{-}symmetry) for the yellow and green strain-split orthoexcitons:

$$
\begin{equation*}
E\left(y \Pi_{g}\right)-E\left(y \Sigma_{g}^{-}\right)=-4 J e T / \Delta^{\prime}<0, \tag{18}
\end{equation*}
$$

where $\Delta^{\prime}=E(g)-E(y)$,

$$
\begin{align*}
& E\left(g \Pi_{g}\right)-E\left(g \Sigma_{g}^{-}\right) \\
& \quad=-\frac{3}{2} d T+4 J e T / \Delta^{\prime}-\frac{3}{2} e^{2} T^{2} / \Delta^{\prime}+\frac{9}{16} d^{2} T^{2}>0 \tag{19}
\end{align*}
$$

Generally we can assume $J<0, e>0, d>0, T<0$ (if the stress is compressive), and, for $\mathrm{Cu}_{2} \mathrm{O}, \Delta^{\prime}$ $=E(g)-E(y)>0$. The yellow doublet and singlet are split by a second-order effect produced simultaneously by the exchange and strain interactions. This exchange-strain splitting, which has been investigated by Elliott, ${ }^{18}$ Kiselev and Zhilich, ${ }^{19}$ and others, places the doublet below the singlet. The splitting for the green exciton is predominantly caused by a first-order effect, namely by the strain splitting of the Γ_{8}^{+}valence band. We expect this splitting to be much stronger than that of the yellow exciton, and the sequence of the split levels to be reversed (doublet above singlet).

III. NUMERICAL SOLUTION AND COMPARISON WITH EXPERIMENT

A. Numerical calculations

Using the quadrupole-dipole Raman scattering technique, involving odd parity phonons, Waters et al. measured the first four dipole-forbidden states of Γ_{5}^{+}symmetry of the yellow series under uniaxial stress T up to 2.5 kbars (Ref. 7) parallel to [100]. They found that the triply degenerate $1 S$ state splits into a singlet and doublet with the singlet energy increasing and the doublet energy decreasing with stress, as first observed by Gross and Kaplyanski. ${ }^{20}$ For the higher quadrupole states, however, the sense of the splitting was reversed from that of the 1 S . The magnitude of the " $3 S$ " splitting exceeded that of the $1 S$ as noted by Agekyan and Stepanov. ${ }^{6}$ Experiments for stress applied along the [110] direction were also reported by Waters. ${ }^{21}$ Here the degeneracy of the Γ_{5}^{+}orthoexciton is completely lifted. Again, as compared to the $1 S$ yellow exciton, the sense of the splitting for the higher excitons is reversed. An attempt was made to interpret the data by
exact diagonalization of the perturbation matrices (16) and (17). Only moderate agreement could be achieved with the experimental results; the level reversal could not be explained. The analysis of the quadratic strain coefficients suggested that the " $3 S$ " yellow exciton may actually belong to the green exciton series or that interactions between yellow and green excitons with different principal quantum numbers may be significant although not included in the theory. Therefore it appeared necessary to solve the radial differential eigenvalue problem (9), as has been done by Fröhlich et al. ${ }^{8}$ for the case of zero stress.
We expanded the S-like radial functions ($L=0$) into exponentials $\exp \left(-\alpha_{i} r\right)$, the D-like radial functions into functions of the form $r \exp \left(-\beta_{i} r\right)$ for a fixed set of parameters α_{i}, β_{i}. The resulting general secular problem was solved numerically. The band parameters and deformation potentials were chosen to yield an optimum fit for the experimental excitonic spectra both under tetragonal and rhombohedral stress, where the zero-stress position of the $1 S$ green exciton was assumed at $17247 \mathrm{~cm}^{-1}$. In Table IV we have listed the exciton energies for zero stress in comparison with experimental values. A notation similar to that of Fröhlich et al. ${ }^{8}$ is used; the previous notations (as presented, for instance, in Ref. 5) are indicated. Apart from the $1 S G$ paraexciton the agreement is excellent up to the $3 S$ excitonic states and is within 1 meV also for the higher states.
In Figs. 1 and 2 the stress data are presented. The theory agrees well with the stress dependence of the level positions, the level reversal of higher excitonic states with respect to $1 S Y$, the large strain splitting of $2 S Y$, and the small strain splittings of $3(S D) Y$ and $3(D S) Y$. The splitting of the $1 S G$ exciton, which has not been seen in the resonance Raman scattering experiments, is surprisingly small, in agreement with the observations of Agekyan and Stepanov. ${ }^{6}$ There are other levels transforming according to Γ_{5}^{+}for tetragonal stress and according to Γ_{1}, Γ_{3}, and Γ_{4} for rhombohedral stress, which arise from the strain-split $\left({ }^{2} \Gamma_{3}^{+}+{ }^{3} \Gamma_{4}^{+}\right)(G=2)$ exciton. Of these only the Γ_{3} branch of the $1 S G$ paraexciton (at $17183 \mathrm{~cm}^{-1}$) has been drawn in Fig. 2, which displays an anticrossing effect with the Γ_{3} branch of the $1 S G$ orthoexciton (at $17247 \mathrm{~cm}^{-1}$) as the rhombohedral stress increases. The Γ_{1} component of all but the $1 S Y$ orthoexciton could not be observed by Waters ${ }^{21}$ for $T \|[110]$ due to technical difficulties.

B. Discussion

The sequence of the strain split components of the $1 S Y$ orthoexciton can be explained by the ex-

TABLE IV. Comparison of calculated energies with experimental values for zero stress. Also indicated is the old notation as presented in Ref. 5.

Present theory	Experiment	Symmetry	New notation	Old Notation
16299	16299	${ }^{1} \Gamma_{2}^{+}$	$1 S Y$ para	
16399	16399	${ }^{3} \Gamma_{5}^{+}$	$1 S Y$ ortho	$1 S$
17183	17160	${ }^{3} \Gamma_{4}^{+}+{ }^{2} \Gamma_{3}^{+}$	$1 S G$ para	
17245	17247	${ }^{3} \Gamma_{5}^{+}$	$1 S G$ ortho	
17251		${ }^{1} \Gamma_{2}^{+}$	$2 S Y$ para	
17377	17381	${ }^{3} \Gamma_{5}^{+}$	$2 S Y$ ortho	$3 S$
17419	17428	${ }^{1} \Gamma_{2}^{+}$	$3 S Y$ para	
17427	17441	${ }^{3} \Gamma_{5}^{+}$	$3(S D) Y$ ortho	$3 D_{1}$
17441	17451	${ }^{3} \Gamma_{4}^{+}+{ }^{2} \Gamma_{3}^{+}$	$3 D Y$ para	$3 D_{2}$
17455		Γ_{5}^{+}	$3(D S) Y$ ortho	$4 S$
17475	17470	${ }^{1} \Gamma_{2}^{+}$	$4 S Y$ para	
17478	17476	${ }^{3} \Gamma_{5}^{+}$	$4(S D) Y$ ortho	$4 D_{1}$
17484	17481	${ }^{3} \Gamma_{4}^{+}+{ }_{2}^{2} \Gamma_{3}^{+}$	$4 D Y$ para	$4 D_{2}^{+}$
17492		$4(D S) Y$ ortho	$5 S$	

FIG. 1. Dependence of the lowest quadrupole active orthoexcitons on stress $T \|[100]$. Triangles denote the experimental data of Waters et al. for Γ_{4} excitons, circles for Γ_{5} excitons. No separation of the two representations was possible for the state at $17430 \mathrm{~cm}^{-1}$. Full lines are theoretical results.

FIG. 2. Energies of orthoexcitions for rhombohedral stress $T \|[110]$. Triangles denote the experimental data for Γ_{4}, circles for Γ_{3}, and crosses for Γ_{1}. Full lines are results of the present theory. The broken line is the Γ_{3} branch of the strain split 1SG paraexciton.
change-strain splitting which is a result of perturbation theory (Sec. II B 3.). To understand the level reversal for the $2 S Y$ orthoexciton attention has to be paid to the strong exchange interaction between the $1 S G$ and $2 S Y$ orthoexcitons which, according to Fröhlich et al. ${ }^{8}$, diminishes the intensity of $1 S G$ by shifting oscillator strength to $2 S Y$. Without this exchange interaction, the eigenvalue problem of the orthoexcitons reduces to that of the paraexcitons. At zero stress the $1 S G$ paraexciton (at $17183 \mathrm{~cm}^{-1}$) is a mixture of 80% green S-type ($L=0, J=\frac{3}{2}, \quad F=\frac{3}{2}$), 2% green D-type ($L=2, J=\frac{3}{2}, F=\frac{3}{2}$), and 18% yellow D type ($L=2, J=\frac{1}{2}, F=\frac{3}{2}$) states. The $2 S Y$ paraexciton consists of 98% yellow S-type ($L=0$, $J=\frac{1}{2}, \quad F=\frac{1}{2}$) and 2% green D-type ($L=2, J=\frac{3}{2}$, $F=\frac{1}{2}$) states. If the analytic exchange interaction is switched on, the following numbers result.

L	J	F	$1 S G$ orthoexciton	$2 S Y$ orthoexciton
0	$\frac{1}{2}$	$\frac{1}{2}$	87%	34%
2	$\frac{3}{2}$	$\frac{1}{2}$	1%	0%
0	$\frac{3}{2}$	$\frac{3}{2}$	9%	33%
2	$\frac{3}{2}$	$\frac{3}{2}$	0%	0%
2	$\frac{1}{2}$	$\frac{3}{2}$	3%	33%

Hence the $1 S G$ exciton has become almost completely yellow ($J=\frac{1}{2}$), whereas the $2 S Y$ orthoexciton is a mixture of yellow S type ($J=\frac{1}{2}$), green S type ($J=\frac{3}{2}$), and yellow D type in equal parts. The strain splitting of the $2 S Y$ exciton will therefore be dominated by the first-order deformation potential interaction, which causes the Γ_{8}^{+}valence band to split and which yields the doublet above the singlet. Of course, this kind of splitting is also caused by a simultaneous action of the exchange and strain potentials, but due to the closeness of the levels and the high amplitude of the wavefunctions at $r=0$ the exchange interaction is a very strong process, not accessible by perturbation theory, upon which the strain interaction is imposed as a weak effect. The smallness of the strain splitting of the $1 S G$ exciton is due to the competition between exchange-strain splitting and band deformation splitting, effects which differ in sign. The $3(S D) Y$ orthoexciton comprises a rather pure yellow $S-D$ mixture with negligible exchange-strain splitting. The $3(D S) Y$ orthoexciton displays band deformation splitting owing to a 10% green S-type admixture.
The following parameters have been used in exciton Hamiltonian (3):

$$
\begin{aligned}
& E_{g}=2.175 \mathrm{eV}, \quad R=0.107 \mathrm{eV}, \quad \lambda=1.19, \\
& \mu=0.4, \quad q=0.15, \quad c=2.11, \\
& x_{h} / T=-0.006 \mathrm{kbar}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& x_{u} / T=0.074 \mathrm{kbar}^{-1} \\
& x_{u}^{\prime} / T=-0.024 \mathrm{kbar}^{-1} .
\end{aligned}
$$

Given the dielectric constant, the conductionband mass and the cubic elastic compliance constants from the literature, the band parameters and deformation potentials of Table V were deduced from these data. The values for gap energy and spin-orbit splitting are very close to those measured. ${ }^{4}$ From γ_{1}^{h} and μ_{h} there follows for the masses of the Γ_{7}^{+}valence band and the Γ_{8}^{+} light holes

$$
\begin{aligned}
& m_{\Gamma_{7}^{+}} \cong m / \gamma_{1}^{h}=0.66 m \\
& m_{\Gamma_{8}^{l h}}^{l n} \cong m /\left[\gamma_{1}^{h}(1+\mu)\right]=0.40 m
\end{aligned}
$$

$m_{\Gamma^{*}}$ agrees well with the cyclotron resonance data of Hodby et al. ${ }^{23}\left(m_{\Gamma_{7}^{+}}=0.69 m\right), m_{\Gamma_{8}^{\prime}}^{\text {th }}$ is about 30% smaller ($m_{\Gamma_{8}^{\prime}}^{\text {lh }}=0.58 \mathrm{~m}$). The analytic exchange constant is an order of magnitude larger than that, for instance, in GaAs^{15}. The shear deformation potential D_{u}^{\prime} differs in sign from D_{u}. Otherwise for rhombohedral stress the Γ_{3} and Γ_{4} branches of each strain-split level would exactly exchange their position, as can be seen from the strain Hamiltonian [(14) and Table III]. A curious consequence of this sign difference, which also exists for CuCl^{25}, is that for stress parallel to the [111] direction the sequence of doubly (Γ_{3}) and nondegenerate levels $\left(\Gamma_{1}\right)$ is reversed as com-

TABLE V. Crystal parameters of $\mathrm{Cu}_{2} \mathrm{O}$ used or derived in fitting the experimental exciton data.

$$
\begin{aligned}
& \epsilon_{0}=7.11 \text { (Ref. 22) } \\
& \epsilon_{\infty}=6.46 \text { (Ref. 22) } \\
& E_{g}=2.175 \mathrm{eV} \\
& \Lambda=0.128 \mathrm{eV} \\
& R=0.107 \mathrm{eV} \\
& m_{e}=0.99 \mathrm{~m} \text { (Ref. 23) } \\
& \gamma_{1}^{h}=1.52 \\
& \mu_{h}=0.66 \\
& a_{a}=\frac{2 m}{\hbar^{2}} \frac{C}{4 \pi e^{2}}=0.276 \mathrm{eV}^{-1} \\
& Q=q R=0.016 \mathrm{eV} \\
& S_{11}=4.169 \times 10^{-3} \mathrm{kbar}^{-1} \text { (Ref. 24) } \\
& S_{12}=-1.936 \times 10^{-3} \mathrm{kbar}^{-1} \text { (Ref. 24) } \\
& S_{44}=8.264 \times 10^{-3} \mathrm{kbar}^{-1} \text { (Ref. 24) } \\
& C_{1}-D_{1}=-2.1 \mathrm{eV} \\
& D_{u}=1.95 \mathrm{eV} \\
& D_{u}^{\prime}=-0.95 \mathrm{eV}
\end{aligned}
$$

FIG. 3. Theoretical results for the orthoexciton levels under stress $T \|[111]$. The order of doublets (Γ_{3}) and singlets (Γ_{1}) is reversed with respect to the case $T \|$ [100].
pared to the case $T \|[100]$. The strain dependence for $T \|[111]$, which has not yet been measured, is presented in Fig. 3.
In our calculations the interaction of the excitons with longitudinal optical phonons (Fröhlich interaction) has been neglected, since the coupling constant is small $(\alpha \sim 0.3)$. The band para-
meters should be considered as polaron parameters.

IV. SUMMARY

We have diagonalized the effective-mass Hamiltonian for excitons in uniaxially stressed $\mathrm{Cu}_{2} \mathrm{O}$ in a nonperturbative approach, following the calculations of Fröhlich et al. ${ }^{8}$ for the zero-stress case. The results explain the data of Waters et al..7,21 The position of the $1 S$ green orthoexciton between the $1 S$ and $2 S$ yellow orthoexciton lines is confirmed. The splitting of the $1 S$ yellow exciton is understood by the mechanism of ex-change-strain interaction. The splitting pattern of the $2 S$ yellow orthoexciton is actually that of a green exciton, i.e., dominated by the deformation potential splitting of the Γ_{8}^{+}valence band and reversed with respect to that of the $1 S$ yellow exciton. This green character is transferred to the $2 S$ yellow exciton by a strong exchange interaction with the $1 S$ green exciton. The exchangestrain interaction and deformation potential interaction compete and almost cancel each other for the $1 S$ green exciton, leading to a marginal splitting, which originally motivated Agekyan and Stepanov ${ }^{6}$ to dispute the traditional level assignment scheme for even parity excitons in $\mathrm{Cu}_{2} \mathrm{O}$.

ACKNOWLEDGMENTS

The help of Dr. R. G. Waters and Mr. J. Wicksted in preparing the data is greatly appreciated. This work was supported by Deutsch Forschungsgemeinschaft, by the National Science Foundation under Grants Nos. DMR77-23788 and DMR78-12399, and by PSC-BHE (CUNY) Grants Nos. 13404 and 11697.
*Present address: Institut für Theoretische Physik der Universität, D-8400 Regensburg, West-Germany.
${ }^{1}$ J. L. Deiss, A. Daunois, and S. Nikitine, Phys. Status Solidi B 47, 185 (1971).
${ }^{2}$ J. C. Merle, C. Wecker, A. Daunois, J. L. Deiss, and S. Nikitine, Surf. Sci. 37, 347 (1973).
${ }^{3}$ V. T. Agekyan, B. S. Monozon, and I. P. Shiryapov, Phys. Status Solidi B 66, 359 (1974).
${ }^{4}$ T. Itoh and S. Narita, J. Phys. Soc. Jpn. 39, 132 (1975).
${ }^{5}$ M. A. Washington, A. Z. Genack, H. Z. Cummins, R. H. Bruce, A. Compaan, and R. A. Forman, Phys. Rev. B15, 2145 (1977).
${ }^{6} \mathrm{~V}$. T. Agekyan and Yu. A. Stepanov, Fiz. Tverd. Tela. (Leningrad) 17, 1592 (1975) [Sov. Phys.-Solid State 17, 1041 (1975)].
${ }^{7}$ R. G. Waters, F. H. Pollak, R. H. Bruce, and H. Z. Cummins, Phys. Rev. B 21, 1665 (1980).
${ }^{8}$ D. Fröhlich, R. Kenklies, Ch. Uihlein, and C. Schwab,

Phys. Rev. Lett. 43, 1260 (1979).
${ }^{9}$ A. Baldereschi and N. O. Lipari, Phys. Rev. B 8, 2697 (1973).
${ }^{10}$ N. O. Lipari and A. Baldereschi, Solid State Commun. 25, 665 (1978).
${ }^{11}$ K. Suzuki and J. C. Hensel, Phys. Rev. B $\underline{9}, 4184$ (1974).
${ }^{12}$ For the notation see G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the ThirtyTwo Point Groups (MIT, Cambridge, Mass., 1963).
${ }^{13}$ See also the discussion by H.-R. Trebin, U. Rössler, and R. Ranvaud, Phys. Rev. B 20, 686 (1979).
${ }^{14}$ H. -R. Trebin, Phys. Status Solidi B 81, 527 (1977).
${ }^{15}$ U. Rössler and H. -R. Trebin, Phys. Rev. B (in press).
${ }^{16}$ M. M. Denisov and V. P. Makarov, Phys. Status Solidi B 56, 9 (1973).
${ }^{17}$ M. Rotenberg, R. Bivins, N. Metropolis, and J. K.
Wooten, The 3-j and 6-j Symbols (Technology Press,

Cambridge, Mass., 1951).
${ }^{18}$ R. J. Elliott, Phys. Rev. 124,340 (1961).
${ }^{19}$ V. A. Kiselev and A. G. Zhilich, Fiz. Tverd. Tela. (Leningrad) 13 , 2398 (1971) [Sov. Phys.-Solid State 13, 2008 (1972)].
${ }^{20}$ E. F. Gross and A. A. Kaplyanski, Fiz. Tverd. Tela. (Leningrad) 2, 2968 (1960) [Sov. Phys.-Solid State 2, 2637 (1961)].
${ }^{21} \bar{R}$. G. Waters, Ph.D. Thesis, City College of CUNY,

New York, 1979, unpublished.
${ }^{22}$ M. O'Keefe, J. Chem. Phys. 39, 1789 (1963).
${ }^{23}$ J. W. Hodby, T. E. Jenkins, C. Schwab, H. Tamura, and D. Trivich, J. Phys. C 9 , 1429 (1976).
${ }^{24}$ M. H. Manghani, W. S. Brower, and H. S. Parker, Phys. Status Solidi A 25, 69 (1974).
${ }^{25}$ T. Koda, T. Murahashi, T. Mitani, S. Sakoda, and Y. Onodera, Phys. Rev. B 5, 705 (1972).

