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The energy levels for excitons in Cu,0 under uniaxial stress have been calculated under the assumption of strong
mixing between the yellow and green exciton series, The reversal of the order for the strain-split levels of the 2S
yellow exciton with respect to the 1S yellow exciton is explained by two different and competing splitting
mechanisms. The results agree well with resonance-enhancement measurements of Waters et al. The level
assignment as proposed by Agekyan and Stepanov and Frohlich et al. is confirmed.

I; INTRODUCTION

The excitons in Cu, O have attracted much in-
terest due to some special features of this com-
pound's band structure. Because conduction- and
valence-band states are of the same parity, the
S excitons are accessible only by quadrupole and
two-photon transitions in the absence of external
fields. Compared to the case of Ge, the spin-
orbit split ~,' and F; valence bands are reversed
in their order. Their energy difference is so
small that the exciton series, to which they con-
tribute, are strongly mi~ed. Whereas the dipole
active P states of the yellow series follow the
1/n' Rydberg law, the level assignment of the S
and & states has been controversial. A very weak
line at 17 247 cm ' was accepted as a "2S"exciton
and a strong line at 17381 cm ' as a "3S"exciton.
The D states and their splittings were investiga-
ted by the Strasbourg group. ' Speculations arose
about the physical origin of the strange level spa-
cings of 8 and & states, 2 3 the extremely small
oscillator strength of the "28" exciton, ' and the
large oscillator strength of the yellow "3S"and
D excitons. ' In 1975 Agekyan and Stepanov'
studied the exciton levels in absorption under an
electric and strain. field. Owing to the unexpec-
tedly small strain splitting of the "2$" exciton,
they assumed this state to be the 1S level of the
green exciton series, without presenting, how-
ever, a quantitative analysis to justify their con-
jecture. The displacement of the reassigned nS
levels, n ~ 2, to energies above the nI' levels, .

was attributed to the exchange splitting of ortho-
and paraexcitons. Recently Waters et al.7 in-
vestigated the yellow series by resonance-
enhanced Raman scattering in uniaxially compres-
sed crystals. By tuning the laser through the ex-
citon energies, the states were excited by the
quadrupole interaction. The Ram an shift was caus-
ed by a 109-cm ' phononof I', symmetry. The po-

sition of the excitonline was determined at maxi-
mum resonance. 'The symmetry of the excitons could
be established by polarization analysis of incident
and backscattered light. But the results increased
the confusion about the level assignments, since no
regularity could be found in the splitting patterns
of successive levels. The "3S"yellow exciton at
17381 cm ' showed an extremely large strain
splitting and a reversal of the order of the split
levels as compared to the yellow 1S exciton. The
D states did not split and were of large oscillator
strength. The "2S"exciton at 17247 cm ' was not
seen. A conventional perturbative approach to the
diagonalization of the eff ective-m ass Hamiltonian,
neglecting the mixing of different exciton series,
could not explain the data.

Considerable progress towards a solution of the
puzzle was made by observations and proposals of
Frohlich et a/. ' In two-photon absorption the
group detected the weak "2S" line at 17247 cm-'
in the unperturbed crystal. Following Agekyan
and Stepanov they assigned this line to the 1S
green exciton. The unusual level spacing was ex-
plained by the strong exchange inter action between
the 1$ green and the 2S yellow exciton which had
been previously labeled "3$". The energies were
calculated by diagonalization of the effective-mass
Hamiltonian for the manifold of the I', conduction-
band and I", and I', valence-band states in its
spherical form. ' " Based upon thih information
we have reinterpreted the data of Waters et al.
In Sec. II we describe the model Hamiltonian and
some technical details used to solve the eigenval-
ue problem. A, connection between the present
methods of solution and the perturbation theory
applied previously' is made. In Sec. III the num-
erical solution is presented and compared with
the measurements of Waters et al. ' The results
and the material constants determined are dis-
cussed. Predictions are made for the exciton
energies under stress parallel to the [111]direc-
tion, for which no experimental data exist.
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II. MODEL HAMILTONIAN AND EIGENVALUE
PROBLEM

A. Invariant expansion

According to the discussion of Frohlich et al.
it is necessary to treat carefully the coupling
between the yellow and the green exciton series.
Therefore in the hole kinetic energy T„of the ef-
fective-mass Hamiltonian the entire manifold of
the spin-orbit split I", valence-band states has to
be taken into account. T„and the corresponding
strain Hamiltonian are presented, for instance, in
Hef. 11 as a polynomial in the components k, of
the hole momentum vector, in the I =1 angular
momentum matrices I„and the Pauli matrices
o"„ l = 1, 2, 3. For the following symmetry analy-
sis of the excitonic states an important remark
has to be made concerning this expansion. The
valence-band states transform according to the
representation I"', x 1",+= I;+ I," of the point
group 0„, where I, is the representation for the
internal spin. Since I,= F2 X~~, and since I'4 and

+
I'6 result from a reduction of the irreducible
representations &, and D,» of the orthogonal
group O(3), we can use the representation ma-
trices.

I (g) xD;(g) for I';,

D;)2(g) for I";,

where geO„.» T„(k) is a 6x 6 perturbation ma-
trix in a basis of the zone-center valence-band
states and must be invariant under any cubic sym-
metry operation acting on these states and the
k vector. This implies the relation

[I';(g) xD;(g) xD;),(g)]T„(g-'k)

x[I'+(g ~) xD'(g ') xD'( (g-~)]

=[D;(g) xD;,(g)]T„(g 'k)[D;(g-') xD;, (g-')]

=T„(l). (2)

I'2(g) cancels I"3(g ') =I';(g) ', since it is ac num-
ber. Thus the invariant expansion of T„ is iden-
tical to that for a valence-state manifold trans-
forming according to D;(g) xD;»(g) = I';(g) x I (g),
geo„. Whenever an eigenstate is analyzed for its
symmetry in this pseudospin formalism it must
be remembered that the basis functions trans-
form like an (I =1) x (S„=-,') angular momentum
state multiplied by a function of 12 symmetry. ~ '

The current data on band parameters for Cu, O
are rather uncertain. Hence we restrict our-
selves to the most important terms of the effec-
tive-mass Hamiltonian which adequately describe
the features of the excitonic spectra. Apart from
the k-independent spin-orbit interaction and the
exchange interaction all spin-independent terms

for stress II[110].

Atomic units are used, i.e., the energy is mea-
sured in effective Bydbergs,

m„e
4

R=2 ", 2-,

and the length in effective Bohr radii:

a=
m„e

Here m„' = m, '+ y", /m, m, denoting the conduction-
band mass, m the free-electron mass, and y," the
mean inverse valence-band mass. ' X=A/R is the
spin-orbit splitting, p, = (y",m„/m) p.„the reduced
valence-band splitting parameter p.„. For the
definition of the second-rank spherical tensors
p"' and I"' see Hef. 14. The central cell correc-
tion is simulated by a contact potential of weight
q &O. The analytic exchange interaction is an in-
variant expansion" of the form derived by Deni-
sov and Makarov, "where c =C/Ra' and

„,.P [&I'I""
I I') I

g2 (4)

is an interband matrix element between the S-type
I', conduction-band state and one of the D-type
I', valence-band states, K denoting a reciprocal-
lattice vector. In the strain Hamiltonian H~ the
dimensionless strain constants are defined as

x„=(s„+2s„)(C, D,)T/R,

x„=—', (s» —s»)D„T/R,

x„'= as„D„'T/R,

x„=4 (x„+3x„'),

x„,=,'-(x„-x„').

T is the external stress (negative, if compres-
sive), D„=,'Dn, D„=2DS, and —C,-D, are deforma-
tion potentials for shear and hydrostatic strain";
s», s„, s~ denote the cubic elastic compliance
constants.

are omitted; for the hole kinetic energy only the
spherical terms are retained. For the relative
electron-hole motion, then, the following Hamil-
tonian remains:

H =Ho+H +Hq,

Ho= &X(I ' o'~}+~ [P2 —3 p (p '2'I'2&)] ———q6(r)

(3)
&,„=~&(l -o' ~ o ~)5(r},

—v 6 x„&'o" for stress Ii[100]

~ + — 6 &„'I~" for stress 111
II
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B. Method of solution

1. Hamiltonian without strain

H p and H,„are invariant under rotations. There-
fore. for H, the components of angular momentum
F = I +J are constants of the motion, where L
= r x p, and J= I + 20". H p+ H,„comm ute s with the
components of G=F+2. Hence we expand the
exciton wave function 4'„as

iO-. —,1G, &,

6=2, F= 2.

O-,' 2G, &,

6=2, F =-2'.

i2-; 2G, ), i
4.",-2G-, &;

(6)

+ =Pfzzzca (r&i~+GGg&. (6) etc. For the radial functions a system of differ-
ential eigenvalue equations results

The kets denote eigenfunctions of O', G„coupled
from eigenstates of L', 12, (d')2, (o')' in the fol-
lowing way: L' J 'F 'O'G'

8'

(L&&GG,
i
H„iL'&' I" ' G' G',&f~, ~,„.g. ~, (r)

=Ef., „,(r). (9)
iLZZGG, &

-=i((L, (f, g")Z)Z, g')G, G,&.

H„, being of even parity, only connects states of
M = 0, a2, + 4, ... . For the even-parity excitonic
states the following kets contribute to +„:
C=0, F=-,'.

i
o-.'-.'oo &, i

2-,'-,'oo&;

6=]. F =—12 ~

lol-,'IG, &

The matrix elements of H„are radial operators
and can be established by standard methods of
angular momentum calculus. ' " Since H, couples
only radial functions of ident:ical E and 6 the cor-
responding matrix separates into blocks of size
3 x 3 at most. Of these blocks, only those are re-
tained which operate on at least one S-type state,
i.e. , we truncate series (6) after G = 2,E = —', . In
the sequence of basis functions as given in (6) the
matrix for Hp is

for G arbitrary, F=-,'.
(d' 2 d 2 &(r)
(dr' r dr r 4vr'

(dr2 r dr j
p, W2i

for Garbitrary, F =2.

d2 2d 6 2&-(1+p), +-———,--dr' r dr r2 r„
(1o)

d' 2 d 2 &(r)-- -2+- ———-qdr2 r dr r 4m'

]
r dr)i

drm r dr

5 d
+ ~ +"dr2 rdr ~r)
2 d 6x- —,+-—-—,--dr r dr

/d' 2 d 6
"i,dr" r dr

+~ ~ +

d 6)
"Idr' ', dr

H, acts only on S(L = 0)-like states of G = 1. The
nonvanishing matrix elements are (independent of

G,)

&~~2 IG.IH.x I
~~-'1G,& = ~ 2 ~

(0-' —' lG, iH„i 02 —1G,&= — c

2. Strain Hamiltoman and symmetries

The eigenstates for 6 =0, 1, 2 transform accor-
ding to the irreducible representations Dp
and D2 of O(3). Upon reduction to cubic symmetry
and multiplication by I', , they describe excitons
of the following symmetries:

(O-.'-.'1G, iH., iO-.' 1G, &=+c
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The ~ =0 state represents the optically inactive
paraexciton of symmetry I',. The G =2 state des-
cribes the I", and I'4 paraexcitons, which are
quadrupole and magnetic dipole active. The C =1
state is the quadrupole-active orthoexciton of
I", symmetry which has been observed by the
resonance-enhanced Haman scattering method.
The strain Hamiltonian for Tll[100] and [Illj is of
cylindrical symmetry B„» whereas the actual
point symmetry of the strained crystal is D~ and

C3 respective ly. In Table I the reduction of the
O(3) irreducible representations to those of D~,
i.e., the splitting of the ~ = 0, 1, 2, excitons, to-
gether with the corresponding basis functions, is
presented. The actual exciton symmetries are
obtained by reducing the D„„irreducible repre-
sentations to those of D4„and C,„and multiplying
the resulting representations by 13 and I;, re-
spectively. I," and I", are subduced from I"',

when the crystal point symmetry is lowered from
0„ to D~ and C,„. According to Table I, the t"=1
(F;) exciton splits into a doubly degenerate level
of (11„ I"„ I',) and a nondegenerate level of
(Z„F», I',) symmetry (with respect to D„„,D
C,„). Stress T 11[110]causes a deformation of the
cubic cell of Cu20 to a rhombohedron of symme-
try D» which is also the symmetry of the strain
Hamiltonian. The lowering of the symmetry to
C,„ is caused by an asymmetric displacement of
the atoms within the cell which cannot be accoun-
ted for by the continuum approximation of effec-
tive mass theory. Since the strain Hamiltonian
has less than cylindrical symmetry, linear com-
binations of the kets ~G, 6,) have to be taken as
basis functions. These are presented in Table II,
together with the irreducible representations ac-
cording to which they transform under the opera-
tions of D» and of C,„. Only states belonging to

the same irreducible representation are coupled
by the strain Hamiltonian. A close inspection of
Tables I and II shows that for the computation of
the exciton energies the system of coupled dif-
ferential equations is at most of size 8 && 8. In a
very concise notation the shear strain part of the
radial Hamiltonian can be written as

x,R, -M3x,x, '
x, A', —ax~Ra —a M3xaRa (14)

.-MSx, a; --,'~3x, a, —.'x~,

3. Perturbation ealeu1ation and exchange-strain
splitting

Several authors have solved the effective-mass
equations by a perturbation pracedure, and many
experiments have been interpreted in the past
using this procedure. In order to connect with
the present model, we also start out by consid-
ering the exchange and strain Hamiltonian H,„'and
H~ as a perturbation of H0. Within. the space
spanned by the states of quantum number +=2,
(G = 0, 1, 2), we obtain twelve decoupled eigen-

where R» R, are the matrices

IiVY 0 0

1 1
5 10~

1 0 0
3 2R2= 0
20-5 0

The sequence of the basis functions is chosen as
in Tables I and II and in (8). The strain constants
x1y %2' x3 for the diff ere nt states are listed in
Table III.

TABLE I. Exciton symmetries for T]~[100] and [ill]. In column 1 the exciton symmetries
in the spherical model are listed. In column 2 the splitting into irreducible representations
of D z and the corresponding basis functions ~G, G,) are presented. In columns 3 and 4 the
exciton symmetries for the actual crystal point groups D4z and C3„are given.

Irreducible repr esent-
ations of O(3) (01,) D„„ D4a C3~

Do ( I'2)

D,' (3rsg

z,'; ioo)

Z,; )IO&

il, ; ~I», [I —1&

Z;; [3O&

r'x I'= r'
3 3

r'xr'= r2 3 4

I'5 x I'3 = I ~

I"& x I"3+= I'3+

I)XI2-I2

I'3" I'2= I'3

I ( xI2- I2

D + (2 P++ 3P y
) il, ; ~21), )3 —1)

Z„(33&, )3-3&

r;xr;=r;
(I 3+ I'4) xI3

=I +r.
1 2

r'3xr2= r3

I 3 x I 2- I'3
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TABLEII. Exciton symmetries forT()[110]. Incolumn2basisfunotionsandtheirsymmetry
for the rhombohedral strain Hamiltonian are listed. In column 3 the symmetry of the states
for the actual crystal point group C2, is given.

Irreducible represent-
ations of O{3) {0&)

Do ('I'2)

Df' ( I'5)

D+ (2 I'++ 3I +)

D2

ri, leo)

ri' (I11&+I
1—»)/W&

r;; I
lo&

r4 (I»&-II-I))/~&

r;; 12o&

r;; (I22&+ I2-2&/W~

r; (I21&- I2 —I&)/W2

r3 (I 22) —I2 —2&)/ 2

14 (I21)+I2 —1))/)t2

C2„

I f xI2- I2

I'3 x I'2-—I'4

I'4 XI'2- 13

I'f xI'2 ——I'2

I'f xI', = I'

I'2 x I'~ —I'
f

r3xr, = r4

I 4 X I'2- I"3

states of H0.

~yCC, & =E,(r)
~

O-,'-,'CC, &+C,(r) ~2-,'-,'CC. &,

igCC, & =E,(r) iO-,'-,'CC, ) +C,(r)
i
2-,'-,'CC, &

+C,(r) ~2-,'-'CC, &.

The states were denoted y if their L =0 part con-
tained the hole states from the I', valence band
(J=—,'), and g if from the r,' valence band (J= s).

Their unperturbed energies are denoted E(y) and

E(g), respectively. For illustration we treat for
tetragonal strain (T II [100]) only the lowest ortho-
excitons transforming according to (Z, I';) and

(II„r;).
(i) For symmetry (Z, , I ) the states ~yio& and

Iglo& interact. The secular matrix is

E (y) + hT ——', J„—', U 2 J —eM2 T

—', v 2 J —eW2 T E(g)+hT+dT —s4J

Tll [Ioo~:

(~g, I'4):

(H, I'~):

g„ I f'+ re:

TII [Ill}:
(Z', I'2):

(Z~, I' f):

(rr„ I 3):

g „r3):
Tll [110):

xf=-2 „, x2=0, 3=0.

xf = 2xgp x2 —0~ x3= 0,

Xf X2 —X3 X ~

xf=x2 ——0, X3=—2xg.

xf-—-2x„', x2=0, x3=0.

xf=-2x„', x2=0, x3=0.

xf —x2 —x3 —xgaI

Xf X2 0 j X3 2xge

(I f & I 2) Xf X3— 2 (Xg+ 3Xg) & X2 22xg Xg)e
.1 p 1

(r,', If): 3 x X2 xgI

(I', , r,): X,=X,=--,'(x„+3X„'), ,=--,'(x„-x„').
(I'4, I'3): xf=x3=-2{xg- x'g), x2=+ 2(x„+x'g).

TABLE III. Coefficients for the strain Hamiltonian
(14). The excitonic states are denoted by their trans-
formation pr'operties under the symmetry group of the
strain Hamiltonian and the actual crystal point group.

where

J,= —cEO (0)/4w,

J= —cE, (0)E,(0)/4',

J, = -cE,' (0)/4s,

eo ~2
eT = x„dr r' E,(r)E,(r)+ Co(r)C, (r)

+ G,(r)G (r)),
v2

0

hT =&I,

dT=x„d~x'I~i ~ —562f ~
0 --:c,( )c,(.)].

(ii) For symmetry (II, 1";) the states ~yll&,
~gll&, and ~g21& interact. The matrix to be
diagonalized is
E(y ) + h T —32J e T/ W2+ f v 2 J —& 3/2e T

eT/IM+ g MJ E(g)+hT- ,'dT -', J, —p V 3 dT—-
—&3/2eT 2~3dT E(—g—) +hT + ,'dT—

(17)
The secular matrices become identical to those
found by Waters et al.' if e=—d, i.e., if the admix-
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ture of D-like terms (G„G„G,) is small and
+p +y and if we ide ntif y

E(y ) = E', ——,
'J„

E (g) = E, + 6 —zJ .
The energy eigenvalues resulting from this sec-
ond-order perturbation calculation have been
formulated in Ref. 7. Here we only cite the en-
ergy difference between doublets (II, symmetry)
and singlets (Z symmetry) for the yellow and

green strain-split orthoexcitons:

E(yII ) —E(yZ ) = —4leT/6'& 0,
where a' =E(g) -E(y),

E(gll, ) -E(g Z;)

=- &dT+4leT/b' —2e T'/b'+ —,', d'T'&0.

(18)

(19)

HI. NUMERICAL SOLUTION AND COMPARISON
WITH EXPERIMENT

A. Numerical calculations

Using the quadrupole-dipole Baman scattering
technique, involving odd parity phonons, Waters
et al. measured the first four dipole-forbidden
states of F symmetry of the yellow series under
uniaxial stress T up to 2.5 kbars (Ref. 7) parallel
to [100]. They found that the triply degenerate
1Sstate splits into a singlet and doublet with the sing-
let energy increasing and the doublet energy de-
creasing with stress, as first observed by Gross
and Kaplyanski. " For the higher quadrupole
states, however, the sense of the splitting was
reversed from that of the 1S.' The magnitude of
the "3S"splitting exceeded that of the 1S as noted
by Agekyan and Stepanov. ' Experiments for
stress applied along the [110]direction were also
reported by Waters. " Here the degeneracy of the
F, orthoexciton is completely lifted. Again, as
compared to the 1$ yellow exciton, the sense of
the splitting for the higher excitons is reversed.
An attempt was made to interpret the data by

Generally we can assume 4&0, e&0, d&0, T &0
(if the stress is compressive), and, for Cu,O, &'

=E(g) -E(y)& 0. The yellow doublet and singlet are
split by a second-order effect produced simultan-
eously by the exchange and strain interactions.
This exchange-strain splitting, which has been
investigated by Elliott, "Kiselev and Zhilich, "
and others, places the doublet below the singlet.
The splitting for the green exciton is predomi-
nantly caused by a first-order effect, namely by
the strain splitting of the F, valence band. We

expect this splitting to be much stronger than that
of the yellow exciton, and the sequence of the spl'it

levels to be reversed (doublet above singlet).

exact diagonalization of the perturbation matrices
(16) and (17). Only moderate agreement could be
achieved with the experimental results; the level
reversal couM not be explained. The analysis of
the quadratic strain coefficients suggested that
the "38"yellow exciton may actually belong to the
green exciton series or that interactions between
yellow and green excitons with different principal
quantum numbers may be significant although not
included in the theory. Therefore it appeared nec-
essary to solve the r adial differential eigenvalue
problem (9), as has been done by Frohlich et al. '
for the case of zero stre ss.

We expanded the S-like radial functions (L =0)
into exponentials exp(- o.;r), the D-like radial
functions into functions of the form rexp(-P;r)
for a fixed set of parameters o.';, P~. The result-
ing general secular problem was solved numeri-
cally. The band parameters and deformation po-
tentials were chosen to yield an optimum fit for
the experimental excitonic spe ctra both under
tetragonal and rhombohedral stress, where the
zero-stress position of the 1S green exciton was
assumed at 17247 cm '. In Table IV we have lis-
ted the exciton energies for zero stress in com-
parison with experimental values. A notation sim-
ilar to that of Frohlich et a/. ' is used; the previous
notations (as presented, for instance, in Ref. 5)
are indicated. Apart from the 1SG paraexciton
the agreement is excellent up to the 3S excitonic
states and is within 1 meV also for the higher
states.

In Figs. 1 and 2 the stress data are presented.
The theory agrees well with the stress dependence
of the level positions, the level reversal of higher
excitonic states with respect to 1SF, the large
strain splitting of 2SY, and the small strain split-
tings of 3(SD)Y and 3(DS)y' The spl.itting of the
1SG exciton, which has not been seen in the res-
onance Haman scattering experiments, is sur-
prisingly small, in. agreement with the observa-
tions of Agekyan and Stepanov. ' There are other
levels transforming according to F, for tetragonal
stress and according to F„F„and F4 for rhom-
bohedral stress, which arise from the strain-split
( I'; 1+",') (G=2) exciton. Of these only the I'3
branch of the 1SG paraexciton (at 17 183 cm ') has
been drawn in Fig. 2, which displays an anticros-
sing effect with the F, branch of the 1S& ortho-
exciton (at 17247 cm ') as the rhombohedral
stress increases. The F, component of all but the
1SF orthoexciton could not be observed by Waters '
for T~[[110]due to technical difficulties.

B. Discussion

The sequence of the strain split components of
the 1SP orthoexciton can be explained by the ex-
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TABLE IV. Comparison of calcu1.ated energies with experimental values for zero stress.
Also indicated is the old notation as presented in Bef. 5.

Present theory

16299

16399

17 183

17 245

17251

17 377

17419

17427

17441

17 455

17 475

17478

17484

17492

Experiment

16299

16399

17160

17247

17 381

17428

17 441

17451

17470

17476

17481

2

3p+
5

Sp++ 2p+
4 3

3p+
5

f1 +
2

Sr'
5

1p+
2

3p+
5

Sp++ 2++
4 3

3p+
5

iI+
2

3p+
5

3++ + 2++
4 3

Sl +
5

New notation

1$Y para

1$F ortho

1$G para

1SG ortho

2$Y para

2SFortho

3SFpara

3(SD)F ortho

3DF para

3(D$)F ortho

4$Y para

4(SD)F ortho

4DY para

4y$) Y ortho

Old Notation

3$

3Dg

3D2

3(DS)Y 5

17450'~"~ ~s o l~

(~

3(SD)Y
'|7400

3(DS)Y
17450'

, 3(SD)Y „

17400—

C~ l, ~
0

'|7350
[

E
LJ

17250 ==
LIJ 1SG

17350—
I

E

17250—

T II [1101

17200- 17200—

16400 ~

16350

16400 &:

]SY x x~x
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FIG. 1. Dependence of the lowest quadrupole active

orthoexoitons on stress T ([ [100]. Triangles denote the
experimental data of Waters et al. for p4 excitons, cir-
cles for p& excitons. No separation of the two represen-
tations was possible for the state at 17430 cm"~. Full
lines are theoretical results.
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FIG. 2. Energies of orthoexcitions for rhombohedral
stress T (( [ll'0]. Triangles denote the experimental
data for p4, circles for l-s, and crosses for 1"~. Full
lines are results of the present theory. The broken
line is the +3 branch of the strain split 1SG paraexciton.
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change-strain splitting which is a result of per-
turbation theory (Sec. II B 3.). To understand
the level reversal for the 2SY orthoexciton at-
tention has to be paid to the strong exchange in-
teraction between the 1SG and 2SY orthoexcitons
which, according to Frohlich et gl. , diminishes
the intensity of 1SG by shifting oscillator strength
to 2SY. Without this exchange interaction, the
eigenvalue problem of the orthoexcitons reduces
to that of the paraexcitons. At zero stress the
1SG paraexciton (at 17 183 cm ') is a mixture of
80/o green S-type (L=O, J= —,', E= —,'), 2% green
D-type (L=2, J= ~, E= +), and 18/o yellow D-
type (L=2, J=-,', E= ~) states. The 2SY para-
exciton consists of 98% yellow S-type (L=O,
J= —,', E= ,') and 2-% green D-type (L=2, J=-,',
E= ,') state-s. If the analytic exchange interac-
tion is switched on, the following numbers result.

E 1SG orthoexciton 2SY orthoexciton

0 1 1
2 2

2 j.
2 2

0 3 3
2 ?

2 3 3
? ?

87%%uo

1%

3%%uo

34/o

0%
33%

o/o

33%

Hence the 1SG exciton has become almost com-
pletely yellow (J= —,'), whereas the 2SY orthoex-
citon is a mixture of yellow S type (J=-,'), green
S type (J= 2), and yellow D type in equal parts.
The strain splitting of the 2SY exciton will there-
fore be dominated by the first-order deformation
potential interaction, which causes the I'8 valence
band to split and which yields the doublet above
the singlet. Of course, this kind of splitting is
also caused by a simultaneous action of the ex-
change and strain potentials, but due to the close-
ness of the levels and the high amplitude of the
wavefunctions at x=0 the exchange interaction is
a very strong process, not accessible by per-
turbation theory, upon which the strain interac-
tion is imposed as a weak effect. The smallness
of the strain splitting of the 1SG exciton is due to
the competition between exchange-strain splitting
and band deformation splitting, effects which dif-
fer in sign. The 3(SD)I' orthoexciton comprises
a rather pure yellow S-D mixture with negligible
exchange-strain splitting. The 3(DS)Y orthoex-
citon displays band deformation splitting owing to
a, 10'%%uo green S-type admixture.

The following parameters have been used in ex-
citon Hamiltonian (3):

E =2.175 eV, B=0.107 eV, A = 1.19,
p, =0.4, @=0.15, c =2.11,

x„/&=-0.006 kbar ',

x„/& =0.074 kbar

&„'/T = -0.024 kbar

Given the dielectric constant, the conduction-
band mass and the cubic elastic compliance con-
stants from the literature, the band parameters
and deformation potentials of Table V were de-
duced from these data. The values for gap en-
ergy and spin-orbit splitting are very close to
those measured. ' From y& and p,„ there follows
for the masses of the I'7 valence band and the ~8
light holes

mr+ -—I/y", = 0.66m,

m'"; —= m/[v", (1+p, )]= 0.40m .

mr~ agrees well with the cyclotron resonance data,
of Hodby et al. '

(mr+, =0.69m), m~+ is about 30%
smaller (m~+ ——0.58m). The analytic exchange

8
constant is an order of magnitude larger than that,
for instance, in GaAs . The shear deformation
potential D„' differs in sign from D„. Otherwise
for rhombohedral stress the I"3 and 14 branches
of each strain-split level would -exactly exchange
their position, as can be seen from the strain
Hamiltonian [(14) and Table III]. A curious con-
sequence of this sign difference, which also ex-
ists for CuCl, is that for stress parallel to the
[111]direction the sequence of doubly (I"3) and
nondegenerate levels (I'q) is reversed as com-

TABLE V. Crystal parameters of Cu20 used or de-
rived in fitting the experimental exciton data.

go= 7.11 (FI'ef. 22)

= 6.46 (Hef. 22)

E~= 2.175 eV

A= 0.128 eV

R=0.107 eV

m~=0.99m (Ref. 23)

y"=1 52

p„=0.66

2m C
a =— =0.276 eV '

@47Ie2

=qR = 0.016 eV

$ff 4.1 69xl03kbar(Ref. 24)

Sf2
—1.936 x10 kbar (Ref. 24)

$44- 8.264 x10 3 kbar-f (Hef. 24)

Cf -Df -—-2.1 eV

D„=1.95 eV

D„'=-0.95 eV
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meters should be considered as polaron para-
meters.

17050 =
3(DSjY

3(SD)Y
17400-

17350—
2SY

17250 =
1SQ

17200— T II [111]

16400
1SY

16350—

I I

0 O.S 1.O 1.5 2.0 2.5

STRESS (kbarj
FIG. 3. Theoretical results for the orthoexciton levels

under stress T ~( [1111. The order of doublets (Z'3) and
singlets (1't) is reversed with respect to the case T )(
P.oo].

IV. SUMMARY

We have diagonalized the effective-mass Ham-
iltonian for excitons in uniaxially stressed Cu,Q
in a nonperturbative approach, following the cal-
culations of Frohlich et gl. for the zero-stress
case. The results explain the data of Waters
et gl. ' ' The position of the 1S green orthoex-
citon between the 1S and 2S yellow orthoexciton
lines is confirmed. The splitting of the 1S yellow
exciton is understood by the mechanism of ex-
change-strain interaction. The splitting pattern
of the 2S yellow orthoexciton is actually that of a
green exciton, i.e. , dominated by the deforma-
tion potential splitting of the I"8 valence band and
reversed with respect to that of the 1S yellow ex-
citon. This green character is transferred to the
2S yellow exciton by a strong exchange interac-
tion with the 1S green exciton. The exchange-
strain interaction and deformation potential inter-

/

action compete and almost cancel each other for
the 1S green exciton, leading to a marginal split-
ting, which originally motivated Agekyan and
Stepanov to dispute the traditional level assign-
ment scheme for even parity excitons in Cu20.
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