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%'e present a new method based on the detailed analysis of the magnetization curve in the

paramagnetic range for studying the quadrupolar interactions in cubic rare-earth intermetallic

compounds; the third-order magnetic susceptibility characterizes the anisotropic curvature of the

magnetization curve. It corresponds to the H coefficient in the odd field development of the

magnetization. This high-order coefficient receives a contribution from the induced quadrupolar

moment which varies as H2, Thus studied in the nonordered (cubic and paramagnetic} range

with magnetic fields applied along the [001] and [111]directions, the third-order magnetic sus-

ceptibility provides information on the quadrupolar interactions associated with the two tetrago-

nal and trigonal symmetry-lowering modes. Using perturbation theory and mean-field approxi-

mation, we give analytical expressions for the third-order magnetic susceptibility in the presence

of a crystalline electric field, bilinear exchange, and quadrupolar (exchange and rnagnetoelastic}

interactions, Application to Tm + cubic intermetallic compounds, for which large quadrupolar

interactions have been shown to exist, is then given, illustrating the reliability of the method.

I. INTRODUCTION

The magnetic properties of the cubic rare-earth in-
termetallic compounds have been extensively studied
for the last few years, especially the magnetization
processes. Because of the strong mixing of the 4f
wave functions

~
J,MJ) by the crystalline electric field

(CEF), the classical description of the magnetization
fails and one finds at low temperature an anisotropic
reduction of the magnetic moment in comparison
with the free-ion value. This anisotropy of the mag-
netization occurs in addition to the anisotropy of the
energy, which sets both the easy magnetization direc-
tion and the process of the rotation of the moment
towards the magnetic field applied along a hard mag-
netization axis. The complete description of the mag-
netization processes then requires the diagonalization
of the full Hamiltonian, including the CEF, the Zee-
man coupling, and the bilinear Heisenberg exchange
between the 4f ions. As a consequence such an
analysis of the magnetization processes had allo~ed a
determination, albeit rough, of the CEF parameters
in many compounds.

However, it became rapidly apparent that the sim-
ple assumption of only bilinear exchange interactions
in presence of CEF was too approximate: there ex-
ists strong magnetoelastic couplings between the 4f
ions shell and its surroundings as well as higher rank
exchange interactions such as the quadrupolar ones. '

These quadrupolar exchange interactions are strong
enough in a few cases to induce a quadrupolar order-
ing in absence of bilinear exchange interactions as in
TmCd, ' or above the magnetic ordering as in TmZn. 3

In the other more usual cases the quadrupolar in-
teractions are less strong thin the bilinear ones,
which then drive the magnetic ordering, but the
quadrupolar interactions, nonetheless, deeply modify
the magnetic properties, especially the magnetic mo-
ment and the anisotropy of the energy. 4

In order to study the magnetoelastic coupling and
the quadrupolar exchange interactions in presence of
CEF and bilinear interactions and to separate their
respective effects, it is necessary to carefully under-
take specific experiments such as elastic constants'
and parastriction measurements. Carried out in the
nonordered (cubic and paramagnetic) range they may
be analyz~ using perturbation theory methods: this
allows us to eliminate (or minimize) the specific diffi-
culties related to the exchange model and to have
analytical expressions for the various susceptibilities
connecting the mvoived variables, for instance: (i)
the usual (first-order) magnetic susceptibility which
couples the magnetization and the magnetic field, (2)
the strain susceptibility, i.e., the response of the
quadrupolar moment to the corresponding strain,
which is used in the elastic constants analysis, "(3)
the quadrupolar field susceptibility, connecting the
quadrupolar moment to the square of the magnetic
field, which appears in the parastriction. 6

As a new way for studying the quadrupolar interac-
tions, we want now to present the third-order mag-
netic susceptibility, which consists in a detailed
analysis of the magnetization induced by an external
field in the paramagnetic range. As the magnetiza-
tion is an odd function of the magnetic field, the
second term (in 8 ) of its development is modified
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23 THIRD-ORDER MAGNETIC SUSCEPTIBILITY AS A NEW. . .

by the quadrupoiar contribution (in H'). This then
provides a new experimental method for investigating
the quadru polar interaction.

Section II is devoted to the derivation of the
analytical expressions for the third-order susceptibili-
ty using a perturbation theory. If the first-order mag-
netic susceptibility is isotropic in cubic CEF, the
third-order one is anisotropic leading to the anisotro-

py of the magnetization. Applying a magnetic field
successively along fourfold and threefold axes allows
one to separately determine the quadrupolar coeffi-
cients associated with tetragonal and trigonal sym-
metries. In Secs. III and IV we present illustrations of
the method used on thulium compounds having the
CsC1-type structure. The quadrupolar coefficients are
then compared with determinations from other ex-
periments (parastriction and elastic constants).

II. THEORY

A. Perturbation theory

The Hamiltonian used for describing the properties
of the 4f shell in a cubic CEF has been extensively
described in the recent past, in particular, in Ref. 6.
It is developed by using the operator equivalent
method and the mean-field approximation for the*

dcscrlptlon of thc Hclscnbcrg and quadrupolar ex-
change terms. The one-ion magnetoelastic coupling
is restricted to the first term (proportional to the
second-order Stevens operators) and the elastic vari-
ables are treated in the harmonic approximation.

Two types of order parameters are in presence: the
magnetic moment, lv] =gJ ps J and the quadrupolar
moments

Q = (010) = (3J,'- J(J+1))

for the tetragonal symmetry, and

Q'- (J'8& - (-'(JJJ+JJJl) )

for the trigonal ones. For instance, when the mag-
netic field H is apphed along [001],only (J, ) and Q
are nonzero and the full Hamiltonian is reduced to

X -Xcsp gJ p, s(H—+ nM) J, —8)8)010 —K)QO10

+ [-,' ( C 0, —C,', ) (8,) '+ ,
' nM'—+ ,

' K Q']—, (1)

where n and E» are the bilinear and quadrupolar. ex-
change coefficients, 8» and C»» —C»2 the magnetoe-
lastic coefficient and the background elastic constant
associated with the tetragonal strain e3=2a
—e~. Carried to second order in ~3 and the fourth
order in 0, the perturbation theory leads. to the ex-
pression of the free energy

F&o&=FcaF —
1 x[ (H +))M) —

q
xl(8)&1+K)Q) —xP (8)8)+K)Q)(H +nM)1

„' xp)(H—-+ nM)" + ,
' (C,', ——C,', ).»+ —,

' nM'+ —,
' K,g',

where four pure CEF susceptibilities may be calculat-
ed from the cubic CEF level scheme (Appendix A):
XI))) is the well-known (first-order) magnetic one, Xl
ls thc strain susceptibility involved ln thc ultlasonlc
velocity calculations, 5 Xp' is the quadrupolar field
susceptibihty appearing in the parastriction and x]
is the CEF third-order magnetic susceptibility. From
the equilibrium conditions, the equilibrium values are
then deduced:

m = X&»8+X~»03

8»
C0 CO

Q =xgH 2

with

x["
1 —nxp)

x[3) ( xp) ) 2

g(3) +26
(1 —n x[))))' ' (1 —n xg))'(1 —Glxl)

xp)
Xg=—

(1 —n xp))'(1 —Glxl)

l

As it is well known in the mean-field approximation,
the actual susceptibilities result from the enhance-
ment of the corresponding CEF ones by the ex-
change interactions: in the case of the bilinear ones
n =0'/C with C =gjpslJ(J+1)/3, the Curie con-
stant and O' would be the paramagnetic Curie tem-
perature in absence of CEF effects. In the case of
quadfUpolaf lntefactlons, Gl.= 81 /( Cl1 —C)1 ) +Kl,
the total quadrupolar coefficient, characterizes the
sum of the magnctoelastic and quadrupolar exchange
contributions. One finds again that the first-order
magnetic susceptibility [Eq. (6)] depends only on the
bilinear interactions; the quadrupolar field susceptibil-
ity [Eq. (g)] is reinforced by both the bilinear ex-
change (enhancing the applied field effects) and the
quadfupolaf llltefac'tlolls (enhancing tile induced
strain) and is involved in the parastriction process.

Equation (7) shows that the total third-order mag-
netic susceptibility consists in two contributions, both
strengthened in an identical manner by the bilinear
interactions: (i) The first one corresponds to the
CEF initial curvature, XI)', of the magnetization
curve. Depending only on the level scheme as Xt))), s

and x2, ' it is characteristic of this level scheme and
provide an experimental determination of it. (ii) The
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second contribution is the quadrupolar one. Accord-
ing to their relative sign, a competition between both
contributions can be expected. in some cases.

%hen the magnetic field is applied along the three-
fold axis, analogous calculations may. be performed,
their results are given in Appendix B.

8. Behavior of the third-order magnetic

susceptibilities

without cEF effect

When the CEF has no effect, the 4f ground-state
multiplet (L,S.J) is compietely degenerated. This
2J + I degeneracy leads to the dwell-known expres-
sions for the first-order magnetic susceptibility (Fig.
1, left part)

without bilinear exchange and

y {1)
T —0

in presence of bilinear exchange interactions of
strength 0" (0' ) 0 for a ferromagnetic coupling).

X~ diverges at the ferromagnetic Curie temperature

P, =8' in the mean-field model.
In the same way, the curvature of the magnetiza-

tion curve is defined in absence of any interaction by
the third-order susceptibility (left part of Fig. 1)

x[3) ( (3)

T3

where C"~ is the third-order Curie constant

4 4 J(J +1)(2J '+2J +1)
gj PB 90

pote that C'3~ is the negative H /T' coefficient in

the development of the Brillouin function and that
the third-order susceptibility is here isotropic.

In presence of pure bilinear exchange, . the third-

order susceptibility is reinforced:

~(3)
(3)

T'(1 0'/T)"—

diverges at T, =0', but the lo~-temperature behavior
of X~~~ '~ is not linear. A third-order paramagnetic
Curie temperature 8~3~ = —0' may be defined from

the Xg' '~' high-temperature extrapolation (Fig. 1,
left part).

't00

=OK 8= 5 75

0

8=10K

& 100
0
K
Q.

U
hJ

-200
0 100 200 0

TEMPERATURE(K )

~ 9~
, 20

a0

FIG. 1. Left part: Temperature behavior of the classical reciprocal first- and third-order magnetic susceptibilities w'thout

quadrupolar interactions (8&=0). 8& and H&3 are- the first- and third-order paramagnetic Curie temperatures, 0 character-

izes the Heisenberg interactions, and Tc is the ferromagnetic Curie temperature. Right part: Temperature variations of the
classical third-order susceptibility for various quadrupolar interactions and. constant (0 =10 K} bilinear interactions. The inset
shows the phase diagram ( Tg, ——— Tc in the tetragonal phase, and —— Tc = Tg).
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Xg= J(J+l)(2J —1)(2J+3)=, (13)
1 Cg

5T T

XP) g2 2 Cg-6»T~ ~ (14)

Let us define Og = CgG~ that leads to the following

isotropic expression

X(3) = C(3)

T'(I e'/T—)4

(2J —1)(2J +3) OQ

2J~+2J + I T —O~o

Thus, owing to the presence of both 0' and Hg, the
temperature dependence of X~ may be very dif-
ferent (Fig. 1, right part). Instead of remaining al-

ways negative in all the temperature range as for

O~ =0 K, XM becomes positive at a threshold tem-
perature To = ( I + a) Oo with

(2J —1)(2J +3)
(2J'+2J + I)

In presence of quadrupolar interactions the strain
susceptibility Xq and the quadrupolar field susceptibil-
ity Xp' occur. In absence of CEF effects, they
reduce to the following isotropic expressions':

ism, 9 (ii) a nonmagnetic, but quadrupolar ground
state: the I'3 doublet defined by 8' =2.2 K and
x = —0,8, (iii) a nonmagnetic and nonquadrupolar
ground state, i.e., a singlet as I q( & = —1.2 K,
x = —0.31).

Figure 2(b) gives the low-temperature dependence
of the reciprocal first-order susceptibility: a Curie
behavior with a downwards curvature for the magnet-
ic ground state I')", and a pure Van Vleck one for
the nonmagnetic ones, I ~ and I 3. Without any other
complementary data, an experimental Van Vleck
behavior may be fitted, varying 8'and x, with I ~ as
well as I"3 for ground state. Figure 2(c) shows the
third-order susceptibility for the I'f ~ magnetic triplet
according to the two mean measurement directions in
cubic symmetry. From this example (as from the
two others) it is clear that the CEF leads the third-
order magnetic susceptibility to be anisotropic. The
negative divergence originates from the —I/T' terms
in the expression of XP' given in the Appendix A.
The reciprocal cube root of Xpl, which is the tem-
perature linearized form [inset of Fig. 2(c)] exhibits
here some deviations. In addition, its anisotropy
changes in sign at about 40 K.

This anisotropic behavior is more emphasized in

Fig. 2(d) . . The inset shows a pure Van Vleck depen-
dence in the case of I'q. It arises from (i) the nulli-

ty of (I"q~J,
~

I'q& which drives the vanishing of the
—I/T3 term at low temperature and (ii) the precise
cancellation of mixed Van Vleck and Curie terms
such as

as soon as Og is nonzero. According to the relative
strength of Og and 0', various phase transitions may
occur: (i) For Ot'I smaller than 0', the ferromagnetic
ordering occurs at T, = 0', driving the quadrupolar
ordering too. All the magnetic susceptibilities [Eqs.
(6), (7), (8)] diverge at T„ the divergence of XM&'l

being negative for T, ) To and positive for T, & To.

(ii) For eo larger than 0', the quadrupolar ordering
occurs at Tg = 0~, where X~' and Xg diverge but not
X~'. The magnetic dipoles are not ordered at T~, 0'
drives their ordering at a lower temperature in the
quadrupolar range according to the new level scheme.

2. With CEF effects and without quadrupolar interaction

The same high-temperature behaviors are found
for all the susceptibilities, but additional effects may
be induced at low temperature by the specific charac-
ter of the low-lying CEF levels. As an example we

discuss here the case of the trivalent thulium ion
(J -6), which provides, in cubic symmetry, the
three possible configurations [Fig. 2(a)]: (i) a mag-
netic and quadrupolar ground state, as the triplet I )'~

found for instance for the CEF parameters W 1.2 K
and x -0.31 in the Lea, Leask, and Wolf's formal-

[(I 21J*li 1&l'[ &I 2J J Ii J&['

T(E~ —E,) (Ez E))—
with terms from —(Xpl)~/2T. The different 0 K
values originate from the different triple sums of
off-diagonal matrix elements along the two direc-
tions.

The case of the I 3 doublet as ground state is more
exciting [see Fig. 2(d)], The nullity of diagonal
terms, (I'3~ J, ~I"3&, induces the vanishing of the
—I/T3 term at low temperature. But the cancellation
observed above in the case of the. I q ground state is
found again, but only for the [111]direction. Along
the [001] axis, the positive mixed Van Vleck and Cu-
rie terms

[«3IJ,II &['[«3IJ,II &&['

T(E3 —El) (E3 —Eg)

are dominant, leading to a positive divergence of Xpl.
This has been verified to be a peculiar feature of the
I 3 doublet. Thus studying the third-order suscepti-
bility may give precise information on the CEF level
scheme and appears to be at least as valuable as
studying the first-order susceptibility.
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FIG. 3. Calculated temperature variations of the tetragonal third-order susceptibility in presence of quadrupolar interactions
and CEF term. The inset gives the quadrupolar ordering as a function of the total quadrupolar coefficient 6'&.

With CEF and quadrupolar interactions

The effects of the quadrupolar interactions in pres-
ence of CEF is obvious in the Fig. 3, The presented
curves have been calculated for various G~ values in

absence of bilinear interactions. - The nature of the I 3

ground state leads to the positive divergence for
G~ =0 as seen above. Increasing 6~ drastically in-
creases the To values in comparison with the Oq ef-
fect without CEF. For example with 6~ -1 mK, i.e.,
ett-Ctt(jt =1.386 K (with Cg=1386 for J =6), one
finds TO=15 K instead of TO=4. 1 K in the classi-
cal model. This is due to the strong quadrupolar
character of the I 3 doublet.

rupolar coefficients, .

In our study of CsCl-type structure Tm'+ com-
pounds, the magnetic field was provided by a super-
conducting coil, the magnetization measured by a
flux magnetometer with an accuracy of 10 ' and a
sensitivity of 10 ' emu. The temperature was stabi-
lized at better than 0.05 K in the range 4.2—30 K.
These experimental conditions were clearly better
than in a preliminary experiment, '0 A set. of experi-
mental data is shown in Fig. 5 for the compound
TmCd: at 5 K, which'is near the quadrupolar order-
ing temperature (Tg =3.16 K) one finds large

higher-rank contributions which reduce the linear

III. EXPERIMENTAL

In order to obtain experimental values, a possible
method may be the analysis of the magnetization
curves. Figure 4 sho~s examples of the isothermal
field dependence of the magnetic moment along the
fourfold and threefold axes. Plotting M/H vs H'
may enable us to obtain both the first-order suscepti-
bility, i.e., the isotropic null field value, and the
third-order one, i.e., the slope of the linear low-field
range. At higher magnetic field, a positive curvature
usually occurs in this diagram corresponding to the
positive 0' term in the development of the classical
Brillouin function. Fitting the temperature variation
of the isotropic first-order susceptibility by using Eq.
(4) leads to 0", the hilinear exchange coefficient and
fitting the thermal variation of the anisotropic third-
order susceptibility leads to the 6~ and 62 total quad-

[OO1]

[111]

--. [001]

FIG. 4. Analysis of the magnetization field dependence in
terms of first- and third-order susceptibilities.
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for X~ on Tm compounds with copper, cadmium,
and zinc, for which a large amount of experimental
data exists and which allows us to check the validity
of this new method for investigating quadrupolar in-

teractions.
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FIG. 5. Plots of (M/H)(H ) along the fourfold axis in

the nonordered range of TmCd.

range; X~ is negative. The tetragonal third-order
susceptibility increases when increasing the tempera-
ture up to positive values ( T =9.7 K) before decreas-
ing at higher temperature (11.6 and 17.3 K). In
these high-temperature plots, linearity extends up to
high fields according to the (H/T)' ratio occurring in

the magnetization field development. The experi-
mental sensitivity does not enable us to observe the
excessively high temperature To, at which the third-

order susceptibility comes back to negative values.
Note that a "dynamical" experimental method,

more accurate than this "static" one, may be consti-
tuted by the superposition of a small alternating mag-

netic field of pulsation ~ to the static one in order to
directly measure the third-order susceptibility through
the 3' flux variation.

A. TmCu

This compound antiferromagnetically orders at
T~ =7.7 K within the (mm0)-type structure. Its
complex magnetic properties at low temperature, as
well as all the magnetoelastic properties investigated
above T~, indicate the presence of noticeable quadru-
polar interactions. "' The CEF level scheme and
wave functions have been deduced from neutron
spectroscopy experiments ( W =1.4 K, x = —0.42).
All the CEF susceptibilities, X(", X]", X2, XP', are
then calculated within this level scheme. Figure 6(a)
gives the experimental temperature variation of the
reciprocal first-order susceptibility measured along
[001] and [111]together with calculated
xg' '(0'=0). The best agreement is obtained by a
simple shift from XP' ' to experimental XM"' ' de-
fined by 0'= —3.0+0.3 K, this value being kept in

all the following fits.
The third-order susceptibility measured along [111]

is found to be more strongly negative than the
behavior, Xg'~/(I nxf"—), expected in presence of
only bilinear interactions; this indicates a negative
trigonal quadrupolar contribution, reinforcing the
negative curvature of the magnetization curve. The
fit leads to G2 = —60 + 20 mK.

Along the fourfold axis, the two contributions are
obviously competing: xM3 is unambiguously positive
below 12 K and then vanishes above. Fitting is here
particularly selective and leads to G~ =10.3 +0.5 mK.
The calculated curves show that, in absence of anti-
ferromagnetic ordering, XM would decrease down to
negative values, the "bilinear type" contribution
dominating at low temperature; this will be experi-
mentally observed in TmCd (see Sec. IV B).

B. TmCd and Tmo 3YO 7Cd

IV. APPLICATION TO Tm3+ CSCI-TYPE COMPOUNDS

These Tm3+ intermetallic compounds have been
chosen because many various experiments have
shown that the quadrupolar interactions (magnetoe-
lastic coupling and quadrupolar exchange) are partic-
ularly large. 2' For the Tm3+ ion (J =6), the spin
moment is small (S =1) with regard to the orbital
moment (I. = 5), and a balanced competition
between quadrupolar and bilinear interactions may be
expected. We present in this section results obtained

TmCd has been extensively studied over the last
years. ' It is the first manifestation of a quadrupo-
lar ordering in a cubic rare-earth intermetallic. The
quadrupolar exchange interactions drive the tetrago-
nal quadrupolar ordering at T~ =3.2 K, which is
manifested through the tetragonal lattice symmetry
lowering through the magnetoelastic coupling. The
CEF term is defined by H =0.95 K, x = —0.34. The
bilinear exchange is zero in TmCd. It is then possi-
ble to show the quadrupolar contribution to X~' by
presenting in the unique Fig. 7 the [001] temperature
behavior observed in TmCd and in Tm03Y07Cd,
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For this [111]symmetry no discrepancy is observed

mode is tetragonal and not trigonal andlowering mo e is
r(3) 1/3therefore no divergence occurs for XM a ong

[111]. G1 (mK)

[oot]

C. Tm~Lui ~zn

~ ~

TmZn is the second compound, which exhibits a
~ ~

netic hase. ' Itsdrupolar ordering in the paramag
'

p
level scheme is close to the isomorphous TmCd one

8' = l.2 K, x = —0.31): the I'f' triplet is the cubic
ground state which is split at T~ =8.55 K into a mag-
netic doublet (I"fo in tetragonal symmetry) and a
nonmagnetic sing eI t (I')"). This singlet, which has a
large quadrupolar moment, is the g

'
th round state in t e

tetragonal phase. But in TmZn, the bilinear ex-
change is large enough to induce pa s ontaneous mo-
ment at T, = 8.12 K Due to the Van Vleck behavior
of this groun sta e,d t t I')" this ferromagnetic ordering
disappears ad' r as soon as a small part of Tm + is rep ace

ains ob-by Lu3+ while the quadrupolar ordering remains o
servable.

Lu Zn(T =3.4 K), the bilinear exchange
is characterized by 0' = 1.4 K, deduced rom e

'bilit . Alongof the reciprocal first-order suscepti i i y.
Ill], G2 ———40+ 20 mK (Fig. 9). Along [001], the

qua rupd olar interactions are strong eno gu h to dom-
e CEF contribution: the third-order suscep

10 K fit 1 dbility is positive above 15 K. Above
G 1 e of about 17 mK, but at lower tempera-

Cd occurstures, the same discrepancy as found in Tm d o
th experimental data cannot be descri eagain: e ex

with t e sameh G coefficient over the entire temp
ture range. s g is aA T '

pproached, there are premoni-
tory signs of the transition appearing for this sym-

F m the calculated phase diagram
G =17T~(G') (inset of Fig. 9) we can verify that G' =

mK is the value driving a quadrupolar ordering at
T~ = 3.5 K, which is very close to the experimental
value.

nt 0' =2.8 KTh arne bilinear exchange coefficient
was found in the nonordered (cub&c and param ga netic)

f T Lu Zn and TmZn. Along [111]therange o mQ9 up i n an
oundseffects o e if the dilution between the three compoun s

Zn toG increases from —90 mK in TmZn oare clear: 2 inc — '
n o

—70 mK in Tm09Luo'Zn (Fig. 10) an — m

Tm07Lu03Zn (Fig. 9).
The situation is more complex for the tetragonal

etr where the low-temperature discrepancy is
obvious. If we restrict the fit to the high- e p
range (Fig. 11), agreement may be found with

G~ =23 mK (TmoqLuo'Zn) and G~ =28 m

(TmZn). These values lead to calculated Tu values
.4 K d 10.5 K (inset of Fig. 9) which are a little

larger anth the experimental values o .8 an
the uadru-In the low-temperature range close to the qua

polar ordering in ob th compounds, many explana-
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to a sample remaining slightly strained and agrees
with calculations which predict a stronger first-order
susceptibility in the paramagnetic tetragonal phase.
Starting from this slightly strained state, the following
isothermal ( T;+~ = T; + I K) magnetization curve ex-
hibits a too large low-field slope. The corresponding
[001] XQ' ' values would lead to 0' =4.5 K (inset of
Fig. 11) instead of 0'=2.8 K as deduced from both
the [111]Xgl ' values obtained from the [111]mag-
netization curves, free of residual trigonal strain ef-
fects, and the [001] data obtained in a weak magnetic
field with a translation balance. About the third-
order susceptibility, this residual strain effect on the
bilinear exchange coefficient then strongly reinforces
the positive value through (1 —n X]")4. Note that in
the second experimental method of the Sec. III,
working in low (ac) magnetic fields would avoid the
effects of this residual strain.

V. CONCLUSION

10 '

10 30

tions may be proposed. First the same one as in
TmCd (Sec. IV B) may be valid (coexistence of many
competing high-order H/T terms, all influenced by
quadrupolar interactions in the vicinity of To). In
addition, residual strain effects are important in
Tm Lu~ Zn compounds due to the strong tetragonal
magnetoelastic coupling, for instance the tetragonal
spontaneous strain is —9 x 10 ' in TmZn' instead of
—0.6 x10 3 in TmCd '5

As a consequence each [001] magnetization curve
is marked by the past history of the sample during
the experimental procedure: at a given temperature
T&, above Tg, there exists a critical field which drives
the sample from the paramagnetic state to the (single
domain) ferromagnetic tetragonal state (see Sec. II D
of Ref. 3 for a more detailed discussion). Decreasing
the field from this latter state leads to a low-field
slope, i.e., a first-order susceptibility value, a little
stronger than for increasing field. This corresponds

FIG. 11. Temperature variations of X~ along [001] in

TmQ9LuQ lZn and TmZn. Full lines are calculated varia-

tions, they are hatched below T~ (according to inset of Fig.
9), where the third-order susceptibility cannot be calculated
from the same cubic CEF level scheme. The inset gives the
temperature behavior of the reciprocal first-order susceptibil-
ity measured along [111](V) and [001] (0 from the mag-

netization curves as explained in the text and with a
translation balance); lines are calculated variations for vari-

ous bilinear exchange.

The Gi and G2 parameters determined in these Tm
systems are given in Table I with the physical param-
eters occurring in the fits. About the tetragonal sym-
metry, the effects of quadrupolar interactions on X& '

are spectacular, leading to a balanced competition
with the XP~ term and then to precise G~ determina-
tions. This is particularly true for TmCu where elas-
tic constants, parastriction and magnetization mea-
surements" give precise values for the magnetoelas-
tic coupling [8~'/(C~~ —C~'2) =4.0+0.5 mK] and
the quadrupolar exchange (E& =7.0+0.5 mK). The
same conclusions remain closely valid for TmCd
[8& /c&t —

c&2 =1.3 +0.3 mK and It'~ =11.2 +1.0 mK
(Ref. 2)]. From the comparison between TmCd and
TmQ 3YQ qCd, the G~ coefficient seems to quickly de-
crease with the dilution, in agreement with the van-
ishing of softening effects in ultrasonic velocity
data. '" In TmQ7LuQ3Zn, the Gi value obtained from
X~ well describes the quadrupolar ordering tempera-
ture T~ as in TmCd.

On the other hand, in TmQ9LUQ iZn and TmZn, the
quadrupolar interactions are too large and modify the
magnetization field dependence above T~ mainly
through a field hysteresis of the induced tetragonal
strain. This shows the shortcomings of our present
experimental method, which may imply too large
magnetic fields in such specific cases. For these
cases, actually low magnetic fields are necessary and
better results may be expected from dynamical sus-
ceptibility measurements.

The G2 quadrupolar parameter is always found to
be negative. The effects of dilution in Tm Lui Zn
are obvious, this was not observed in the isomor-
phous system with Cd. Comparing the G,/G, experi-
mental ratios ranging from —6 to —2 to 12 (the ratio
for isotropic quadrupolar interactions) indicates that
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TABLE I. Physical parameters occurring into the fits. H'and x are deduced from neutron spec-
troscopy data (except for Tm Y~ Cd) and 0 from first-order magnetic susceptibility measure-
ments.

CEF terms
e(K) x

Blllnear
exchange 0 (K)

Total quadrupolar coefficients
6) (mK) 6, (mK.)

TmCu
TmCd

Tmp 3Yp 7Cd

Tmp pLup 3Zn

Tmp 9Lup ~Zn

TmZn

1.4

0.95

1,2

-0.42

—0.34

—0.31

—3,0

1,4
2,8

2.8

10.3+0.3
13+ 1

-0
—17
—23
-28

—60+ 20
-50+ 20

—50+ 20
—40+ 20
—70+ 20
—90+ 20

the trigonal quadrupolar interactions are clearly the
weakest ones in the CsCl-type structure compounds.
This third-order susceptibility study allows the first deter
mination of G2, which had not been achieued from ui
trasonic velocity and parastrictjorI data because of the
weakness of the magnetoelastic coupling compared to
the quadrupolar exchange for trigonal symmetry, for
instance 822/4Cf4 =l.6+ 1 mK while G2= —60+20
mK in TmCu. '2

This analytical study of the anisotropic third-order
magnetic susceptibility appears from Sec. II as a pos-
sible way of determination of CEF terms. In addition
to its anisotropic feature, the observation of a change
of sign of XPl in its temperature dependence appears
to be of importance; it may enable us to choose
between two level schemes with nonmagnetic ground
states, e.g., one with the I 3 doublet, the other with
I ~ or I 2 singlet. Such a choice is impossible from the
analysis of the only first-order susceptibility, '6

The third-order susceptibility study is very fruitful
in obtaining information about quadrupolar interac-
tions. Performed in the nonordered (cubic and
paramagnetic) range it allows determinations of the
two total quadrupolar coefficients for the tetragonal
and trigonal symmetries, whatever the low-
temperature ordered structure is. It then constitutes
a complementary determination besides the ultrasonic
velocity and parastriction measurements. However, it
necessitates both single crystals and good experimen-
tal conditions. As for fitting the high-field magneti-
zation processes, it neglects the magnetic band contri-
bution which may be expected to be weak in Trn
compounds as verified in a polarized neutron diffrac-
tion experiment in TmZn. ' A study of the whole
Bzn series is under~ay which will check this particu-
lar point as well as provide determinations for the
two symmetry coefficients G~ and G2 throughout the
series.
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In a first step we define the eigenvalues E; and the
eigenvectors lik ) corresponding to the crystal-field
Hamiltonian 3C~EF'.

X CEF I lk ) = E
I tk )

In each subspace i the eigenfunctions lik) have to be
adapted to the perturbation Hamiltonian. A pertur-
bation theory up to the second order for ~3 and the
fourth order for H allows us to obtain the analytical
expressions of the perturbed energies E~

4

E„=E,+ QE,„'"'+
I

Then the partition function Z

Z Xe ik (A
i,k

can be calculated, where P = 1/kti T, ks is the
Boltzmann constant and T is the temperature. One
obtains

Z = Z«„jl + —pXg&H'+ —pX,(a, e,)'+ pXp&a, e,H'

+ —,'P[X("+—,'P(X)")']0'+ }, (A4)

which leads to the expression of the total free energy
F„,= ksTlnZ given in [E—q. (10)1.

The expression of the four CEF susceptibilities Xp,

Xq, XP, and Xti' are given by
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&'a"=gj2j s2xfi -2 $ E
+ TIJikikl'Ik, JWIl I J 8

IQkjil'
»=Xf; -2 $ E

'E +
k

TIQkkl'ik, JAil 1 J

)rP& g2~2 Xf
i,k J A/, IJ' ~ ] (r

JikjiQ i iJi i +2QikjiJ iJi

(E, Ej) (—E, E)—

I Jik,ji I'Qik, ik + 2Qik, jiJji, ik Jika,
j~i,i Ei —Ej kaT 2(kjiT)~

' '' '

3) j 2+44 'k J' P.J'i' J'I',J",I" J"I",ik
2ks T ' (E —E )(E —E )(E —E )

J Ail
J Wl I

I Jlk jll I Jik j'i'I + 2~ikJI Jji j&i'Jj'i' ik
Jik ik

X
' Ik.j i ' jl,j i j ilk,

(E, —Ej) (E, E,)—
J &il

j~g (Ei —Ej) (Ei —E)' (Ei —E)kjjT k'T' 6k'T'

(As)

Jik.ji = (ik IJ*IJI)

implies that the nonzero average values are in the
fourfold axis system:

(J.) =(Jr) =(J*) ~ (P~) =(P~) =(P )

(Alo)

are the matrix elements of J, and 020 between the cu-
bic CEF levels, For each degenerate CEF level i,

fi= 8 =E' 8
ZCEF i,k

is the Boltzmann population factor.

Ii is then more convenient to make a rotation of thc
coordinates axes so that [111) is the new z axis. 1n
the new system

M'=gjps(J, )

APPENDIX 8

~hen thc m8gnctic field 0 ls applied along 8 thicc-
fold axis, e.g. , [111),the rhombohedral symmetry

are the only nonzero expectation values and the new
Hamiltonain and corresponding free energy are writ-
ten as

X =Xcsp gjjkji(H + nM )J, —— 82eki02 — E—2Q 020+ [6C404 (e—ki)2+ nM 2+ E2—Q 2)—
F,'„=Fcsp —

2
Xfj')(H + nM')2 —

—,»(-82aki+ —, ItgQ')2

—Xf i'( —8 e, + —, K Q')(H +nM')2 ——XIi3~'(H +nM')" +6C0 k2, + 'nM'~+ —,
'

Jt Q'—
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Here x]"'=xf" because of the isotropy of the first-
order magnetic susceptibility in cubic symmetry. X2,
xp)', and xp' have the same expressions as the cor-
responding tetragonal susceptibilities, but their values
differ from the nonprimed susceptibilities according
to the new cubic CEF wave functions in the new axes
system adapted to the rhombohedral symmetry. The
equilibrium conditions for M', ak), and Q' lead to

m'- X&»'8 + X~'~'0'+

82
ski 24cp Q

Q'=xgH +2

with

x~'=

and the total trigonal quadrupolar coefficient

(&,)'
6'2 +E2

4C$4

x 1)

1-nxp))
x(3)' (xP)~)2

(1 —n xf")'(1 —
—,', G,x,')

xj2) '
IXg= l

(1 —n xj")'(1——„G2x2)

Laboratoire propre du CNRS, associe a l'Universite Scien-
tifique et Medicale de Grenoble.

'P. M. Levy, P. Morin, and D. Schmitt, Phys. Rev. Lett.
42, 1417 (1979),

2R. Aleonard and P. Morin, Phys. Rev. B 19, 3868 (1979),
3P. Morin, J, Rouchy, and D, Schmitt, Phys. Rev. B 17,

3684 (1978).
4P. Morin and D, Schmitt, J. Phys, F 8, 951 (1978).
5M. E. Mullen, B. LQthi, P. S. Wang, E. Bucher, L. D. Lon-

ginotti, J. P. Maita, and H. R. Ott, Phys, Rev. B 10, 186
(1974).

P. Morin, D. Schmitt, and E. du Tremolet de Lacheisserie,
Phys. Rev. B 21, 1742 (1980).

~R. L. Melcher, "The Anomalous Elastic Properties of Ma-
terials Undergoing Cooperative Jahn-Teller Phase Transi-
tions, " Physical Acoustics, edited by W, P, Mason and R.
N. Thruston (Academic, New York, 1975), Vol. XII.

K. H. J. Buschow, H. W. de Wijn, and A, M. van Diepen,
J, Chem. Phys. 50, 137 (1969),

9K. R. Lea, M. J. M, Leask, and W. P. Wolf, J. Phys. Chem.
Solids 23, 1381 (1962).

' P. Morin and D. Schmitt, Phys. Lett, 73A, 67 (1979).
"P, Morin and D. Schmitt, J. Magn. Magn. Mater. 21, 243

(1980),
' C. Jaussaud, P. Morin, and D. Schmitt, J. Magn, Magn,

Mater. 22, 98 (1980),
' B, Liithi, M. Muller, K, Andres, E, Bucher, and J. P. Mai-

ta, Phys. Rev, B 8, 2639 (1973).
'4B. Luthi (private communication).
'5H. R. Ott and K, Andres, Solid State Commun, 15, 1'341

(1974).
&6B. R. Cooper, Helv. Phys. Acta 41, 750 (1968).
' D, Givord, P. Morin, and D. Schmitt (unpublished).


