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We present a new method based on the detailed analysis of the magnetization curve in the
paramagnetic range for studying the quadrupolar interactions in cubic rare-earth intermetallic
compounds; the third-order magnetic susceptibility characterizes the anisotropic curvature of the
magnetization curve. It corresponds to the H3 coefficient in the odd field development of the
magnetization. This high-order coefficient receives a contribution from the induced quadrupolar
moment which varies as H2. Thus studied in the nonordered (cubic and paramagnetic) range
with magnetic fields applied along the [001] and [111] directions, the third-order magnetic sus-
ceptibility provides information on the quadrupolar interactions associated with the two tetrago-
nal and trigonal symmetry-lowering modes. - Using perturbation theory and mean-field approxi-
mation, we give analytical expressions for the third-order magnetic susceptibility in the presence
of a crystalline electric field, bilinear exchange, and quadrupolar (exchange and magnetoelastic)
interactions. Application to Tm3™ cubic intermetallic compounds, for which large quadrupolar
interactions have been shown to exist, is then given, illustrating the reliability of the method.

I. INTRODUCTION

The magnetic properties of the cubic rare-earth in-
termetallic compounds have been extensively studied
for the last few years, especially the magnetization
processes. Because of the strong mixing of the 4f
wave functions |J,M,) by the crystalline electric field
(CEF), the classical description of the magnetization
fails and one finds at low temperature an anisotropic
reduction of the magnetic moment in comparison
with the free-ion value. This anisotropy of the mag-
netization occurs in addition to the anisotropy of the
energy, which sets both the easy magnetization direc-
tion and the process of the rotation of the moment
towards the magnetic field applied along a hard mag-
netization axis. The complete description of the mag-
netization processes then requires the diagonalization
of the full Hamiltonian, including the CEF, the Zee-
man coupling, and the bilinear Heisenberg exchange
between the 4/ ions. As a consequence such an
analysis of the magnetization processes had allowed a
determination, albeit rough, of the CEF parameters
in many compounds.

However, it became rapidly apparent that the sim-
ple assumption of only bilinear exchange interactions
in presence of CEF was too approximate: there ex-
ists strong magnetoelastic couplings between the 4/
ions shell and its surroundings as well as higher rank
exchange interactions such as the quadrupolar ones.!
These quadrupolar exchange interactions are strong
enough in a few cases to induce a quadrupolar order-
ing in absence of bilinear exchange interactions as in
TmCd,? or above the magnetic ordering as in TmZn.>?

2

In the other more usual cases the quadrupolar in-
teractions are less strong than the bilinear ones,
which then drive the magnetic ordering, but the
quadrupolar interactions, nonetheless, deeply modify
the magnetic properties, especially the magnetic mo-
ment and the anisotropy of the energy.*

In order to study the magnetoelastic coupling and
the quadrupolar exchange interactions in presence of
CEF and bilinear interactions and to separate their
respective effects, it is necessary to carefully under-
take specific experiments such as elastic constants®
and parastriction® measurements. Carried out in the
nonordered (cubic and paramagnetic) range they may
be analyzed using perturbation theory methods: this
allows us to eliminate (or minimize) the specific diffi-
culties related to the exchange model and to have
analytical expressions for the various susceptibilities
connecting the involved variables, for instance: (1)
the usual (first-order) magnetic susceptibility which
couples the magnetization and the magnetic field, (2)
the strain susceptibility, i.e., the response of the
quadrupolar moment to the corresponding strain,
which is used in the elastic constants analysis,>” (3)
the quadrupolar field susceptibility, connecting the
quadrupolar moment to the square of the magnetic
field, which appears in the parastriction.®

As a new way for studying the quadrupolar interac-
tions, we want now to present the third-order mag-
netic susceptibility, which consists in a detailed
analysis of the magnetization induced by an external
field in the paramagnetic range. As the magnetiza-
tion is an odd function of the magnetic field, the
second term (in H*) of its development is modified
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by the quadrupolar contribution (in #2). This then
provides a new experimental method for investigating
the quadrupolar interaction.

Section II is devoted to the derivation of the
analytical expressions for the third-order susceptibili-
ty using a perturbation theory. If the first-order mag-
netic susceptibility is isotropic in cubic CEF, the
third-order one is anisotropic leading to the anisotro-
py of the magnetization. Applying a magnetic field
successively along fourfold and threefold axes allows
one to separately determine the quadrupolar coeffi-
cients associated with tetragonal and trigonal sym-
metries. In Secs. III and IV we present illustrations of
the method used on thulium compounds having the
CsCl-type structure. The quadrupolar coefficients are
then compared with determinations from other ex-
periments (parastriction and elastic constants).

II. THEORY

A. Perturbation theory

The Hamiltonian used for describing the properties
of the 4/ shell in a cubic CEF has been extensively
described in the recent past, in particular, in Ref. 6.

It is developed by using the operator equivalent
method and the mean-field approximation for the
J

description of the Heisenberg and quadrupolar ex-
change terms. The one-ion magnetoelastic coupling
is restricted to the first term (proportional to the
second-order Stevens operators) and the elastic vari-
ables are treated in the harmonic approximation.

Two types of order parameters are in presence: the
magnetic moment, M = ;15T and the quadrupolar
moments

0=(09)=(3J2-J(J+1))
for the tetragonal symmetry, and
Q'= (Pu) = <_;_(JIJ_/ +J/Jl)>

for the trigonal ones. For instapce, when the mag-
netic field H is applied along [001], only (J,) and Q
are nonzero and the full Hamiltonian is reduced to

3 =3Ccer — &yms(H +nM)J, — Bie;09 — K,Q09
+[5(Ch - Ch) (&) ++nM2+1K,0% , (1)

where n and K, are the bilinear and quadrupolar.ex-
change coefficients, B, and C{; — C?, the magnetoe-
lastic coefficient and the background elastic constant
associated with the tetragonal strain €3 =2¢,, — €,

— €. Carried to second order in €; and the fourth
order in H, the perturbation theory leads to the ex-
pression of the free energy

onz=FCEF—%X3”(H +nM)Z—%X2(31€3 +K10)2=x§(Be;+ K,0) (H +nM)?

— X6 (H +nM)* +3(Ch —CH) S+ +nM2+ 1K, 07 @)

where four pure CEF susceptibilities may be calculat-
ed from the cubic CEF level scheme (Appendix A):
x§" is the well-known (first-order) magnetic one, X,
is the strain susceptibility involved in the ultrasonic
velocity calculations,® x§2 is the quadrupolar field
susceptibility appearing in the parastriction® and x§»
is the CEF third-order magnetic susceptibility. From
the equilibrium conditions, the equilibrium values are
then deduced:

M=X{PH+XPH - -, (3)
B,
=——1—0, 4
€3 ch-ch 0 @
Q=XxoH%- - , )
with
X0
1 - . (6)
X 1—nx§V
D= +2 ,
X (1—-nx§")* G (1=nxf")4(1-G,xy)
¢
X" ®)

Xo= a —nx§)2(1 — Gyxy)

[
As it is well known in the mean-field approximation,
the actual susceptibilities result from the enhance-
ment of the corresponding CEF ones by the ex-
change interactions: in the case of the bilinear ones
n=0*/C with C =g?upJ(J +1)/3, the Curie con-
stant and ®* would be the paramagnetic Curie tem-
perature in absence of CEF effects. In the case of
quadrupolar interactions, G;=B{/(C{ —C%) +K,,
the total quadrupolar coefficient, characterizes the
sum of the magnetoelastic and quadrupolar exchange
contributions. One finds again that the first-order
magnetic susceptibility [Eq. (6)] depends only on the
bilinear interactions; the quadrupolar field susceptibil-
ity [Eq. (8)] is reinforced by both the bilinear ex-
change (enhancing the applied field effects) and the
quadrupolar interactions (enhancing the induced
strain) and is involved in the parastriction process.®
Equation (7) shows that the total third-order mag-
netic susceptibility consists in two contributions, both
strengthened in an identical manner by the bilinear
interactions: (i) The first one corresponds to the
CEF initial curvature, X§*, of the magnetization
curve. Depending only on the level scheme as x§V,3
and X,,° it is characteristic of this level scheme and
provide an experimental determination of it. (ii) The
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second contribution is the quadrupolar one. Accord-
ing to their relative sign, a competition between both
contributions can be expected in some cases.

When the magnetic field is applied along the three-
fold axis, analogous calculations may. be performed,
their results are given in Appendix B.

B. Behavior of the third-order magnetic
susceptibilities

1. Without CEF effect

When the CEF has no effect, the 4/ ground-state
multiplet (L,S,J) is completely degenerated. This
2J +1 degeneracy leads to the well-known expres-
sions for the first-order magnetic susceptibility (Fig.
1, left part)

n_C
X§ = 9)
without bilinear exchange and
C
X5 = T-o" 10)

in presence of bilinear exchange interactions of
strength ®* (©* > 0 for a ferromagnetic coupling).
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x{ diverges at the ferromagnetic Curie temperature
T.=©" in the mean-field model.

In the same way, the curvature of the magnetiza-
tion curve is defined in absence of any interaction by
the third-order susceptibility (left part of Fig. 1)

3)
Xé”-—”%s— , (11)

where C® is the third-order Curie constant

2
C(3)=—g_,4p.,‘}’,(',+1)(29'(l) D gy

Note that C® is the negative H3/T? coefficient in
the development of the Brillouin function and that
the third-order susceptibility is here isotropic.

In presence of pure bilinear exchange, the third-
order susceptibility is reinforced:

(&)
=
°(1-0%7
diverges at T, =0%, but the low-temperature behavior

of X313 is not linear. A third-order paramagnetic
Curie temperature, ®,§’) = —;—G)*, may be defined from

the X"~ high-temperature extrapolation (Fig. 1,

left part).
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FIG. 1. Left part: Temperature behavior of the classical reciprocal first- and third-order magnetic susceptibilities without
quadrupolar interactions (@3 =0). ©, and Gp(” are the first- and third-order paramagnetic Curie temperatures, ®* character-
izes the Heisenberg interactions, and 7 is the ferromagnetic Curie temperature. Right part: Temperature variations of the
classical third-order susceptibility for various quadrupolar interactions and constant (©* =10 K) bilinear interactions. The inset
shows the phase diagram (—— TQ, ——— T in the tetragonal phase, and ——* Tc= TQ).
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In presence of quadrupolar interactions the strain
susceptibility X, and the quadrupolar field susceptibil-
ity {2 occur. In absence of CEF effects, they
reduce to the following isotropic expressions®:

1 CQ
- + —_ =2
X2 ST./(J 1)(2J -1)(2J +3) T ' (13)
ng)———;gfp,f;—. (14)

Let us define ©3 = Co G, that leads to the following
isotropic expression

XM:&.L_
(1 -0*/7*

_I-DQJ+3) 9

x |1 > =
2J5+2J +1 T-0

(15)

Thus, owing to the presence of both ®* and @, the
temperature dependence of X\7’ may be very dif-
ferent (Fig. 1, right part). Instead of remaining al-
ways negative in all the temperature range as for
(6)5 =0 K, X{ becomes positive at a threshold tem-
perature To=(1 +a)®p with

_Q/-1)QJ+3)
(2J2+2J +1)

s

as soon as @5 is nonzero. According to the relative
strength of ©5 and ©%, various phase transitions may
occur: (i) For ©; smaller than ®*, the ferromagnetic
ordering occurs at T, =@, driving the quadrupolar
ordering too. All the magnetic susceptibilities [Eqs.
6), (7), (8)] diverge at T, the divergence of X\;’
being negative for T, > T, and positive for T, < T.
(i) For © larger than ©®*, the quadrupolar ordering
occurs at Tg =04, where Xf7’ and Xg diverge but not
X{#). The magnetic dipoles are not ordered at Tp; ©*
drives their ordering at a lower temperature in the
quadrupolar range according to the new level scheme.

2. With CEF effects and without quadrupolar interaction

The same high-temperature behaviors are found
for all the susceptibilities, but additional effects may
be induced at low temperature by the specific charac-
ter of the low-lying CEF levels. As an example we
discuss here the case of the trivalent thulium ion
(J =6), which provides, in cubic symmetry, the
three possible configurations [Fig. 2(a)]: " (i) a mag-
netic and quadrupolar ground state, as the triplet I'§"
found for instance for the CEF parameters W =1.2 K
and x =—0.31 in the Lea, Leask, and Wolf’s formal-

ism,’ (ii) a nonmagnetic, but quadrupolar ground
state: the I'; doublet defined by W =2.2 K and

x =—0.8, (iii) a nonmagnetic and nonquadrupolar
ground state, i.e., a singlet as I',( W =—1.2 K,
x=-0.31).

Figure 2(b) gives the low-temperature dependence
of the reciprocal first-order susceptibility: a Curie
behavior with a downwards curvature for the magnet-
ic ground state T'§", and a pure Van Vleck one for
the nonmagnetic ones, I'; and I's,. Without any other
complementary data, an experimental Van Vleck
behavior may be fitted, varying W and x, with I'; as
well as T'; for ground state. Figure 2(c) shows the
third-order susceptibility for the I'§" magnetic triplet
according to the two mean measurement directions in
cubic symmetry. From this example (as from the
two others) it is clear that the CEF leads the third-
order magnetic susceptibility to be anisotropic. The
negative divergence originates from the —1/7° terms
in the expression of x§* given in the Appendix A.
The reciprocal cube root of X§*’, which is the tem-
perature linearized form [inset of Fig. 2(c)] exhibits
here some deviations. In addition, its anisotropy
changes in sign at about 40 K.

This anisotropic behavior is more emphasized in
Fig. 2(d).. The inset shows a pure Van Vleck depen-
dence in the case of I',. It arises from (i) the nulli-
ty of (I'3|J,|T;) which drives the vanishing of the
—1/T? term at low temperature and (ii) the precise
cancellation of mixed Van Vleck and Curie terms
such as

[(Tal Z| T ) (T | T )
T(E,—E)(E,~E))

with terms from — (x§’)?/27. The different 0 K
values originate from the different triple sums of
off-diagonal matrix elements along the two direc-
tions.

The case of the I'; doublet as ground state is more
exciting [see Fig. 2(d)]. The nullity of diagonal
terms, (I';|%|T;), induces the vanishing of the
—1/T? term at low temperature. But the cancellation
observed above in the case of the I'; ground state is
found again, but only for the [111] direction. Along
the [001] axis, the positive mixed Van Vleck and Cu-
rie terms

I(F3|Jz|r/>|2l <FJIJIIFJ>|2
T(EJ_E/)(Eg —E/)

are dominant, leading to a positive divergence of Xx§¥.
This has been verified to be a peculiar feature of the
I's doublet. Thus studying the third-order suscepti-
bility may give precise information on the CEF level
scheme and appears to be at least as valuable as
studying the first-order susceptibility.
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for the three level schemes given-in (a). In (b), the hatched straight line is the classical behavior.
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FIG. 3. Calculated temperature variations of the tetragonal third-order susceptibility in presence of quadrupolar interactions
and CEF term. The inset gives the quadrupolar ordering as a function of the total quadrupolar coefficient G,.

3. With CEF and quadrupolar interactions

The effects of the quadrupolar interactions in pres-
ence of CEF is obvious in the Fig. 3. The presented
curves have been calculated for various G values in
absence of bilinear interactions.  The nature of the I'y
ground state leads to the positive divergence for
G, =0 as seen above. Increasing G, drastically in-
creases the T, values in comparison with the 95 ef-
fect without CEF. For example with G; =1 mK, i.e.,
05 =CpG;=1.386 K (with Cp=1386 for / =6), one
finds To=15 K instead of Ty=4.1 K in the classi-
cal model. This is due to the strong quadrupolar
character of the I'; doublet.

III. EXPERIMENTAL

In order to obtain experimental values, a possible
method may be the analysis of the magnetization
curves. Figure 4 shows examples of the isothermal
field dependence of the magnetic moment along the
fourfold and threefold axes. Plotting M/H vs H?
may enable us to obtain both the first-order suscepti-
bility, i.e., the isotropic null field value, and the
third-order one, i.e., the slope of the linear low-field
range. At higher magnetic field, a positive curvature
usually occurs in this diagram corresponding to the
positive H* term in the development of the classical
Brillouin function. Fitting the temperature variation
of the isotropic first-order susceptibility by using Eq.
(4) leads to ©*, the bilinear exchange coefficient and
fitting the thermal variation of the anisotropic third-
order susceptibility leads to the G; and G, total quad-

rupolar coefficients.

In our study of CsCl-type structure Tm?** com-
pounds, the magnetic field was provided by a super-
conducting coil, the magnetization measured by a
flux magnetometer with an accuracy of 1073 and a
sensitivity of 1072 emu. The temperature was stabi-
lized at better than 0.05 K in the range 4.2—30 K.
These experimental conditions were clearly better
than in a preliminary experiment.!° A set.of experi-
mental data is shown in Fig. 5 for the compound
TmCd: at S K, which’is near the quadrupolar order-
ing temperature (TQ =3.16 K) one finds large
higher-rank contributions which reduce the linear

M [001]
[111]
H
M/H
[001]
“\“h11]
12

FIG. 4. Analysis of the magnetization field dependence in
terms of first- and third-order susceptibilities.
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FIG. 5. Plots of (M/H)(H?) along the fourfold axis in
the nonordered range of TmCd.

range; X7’ is negative. The tetragonal third-order
susceptibility increases when increasing the tempera-
ture up to positive values (7 =9.7 K) before decreas-
ing at higher temperature (11.6 and 17.3 K). In
these high-temperature plots, linearity extends up to
high fields according to the (4 /T)? ratio occurring in
the magnetization field development. The experi-
mental sensitivity does not enable us to observe the
excessively high temperature T, at which the third-
order susceptibility comes back to negative values.

Note that a ‘‘dynamical’’ experimental method,
more accurate than this ‘‘static’’ one, may be consti-
tuted by the superposition of a small alternating mag-
netic field of pulsation w to the static one in order to
directly measure the third-order susceptibility through
the 3w flux variation.

IV. APPLICATION TO Tm** CsCI-TYPE COMPOUNDS

These Tm?* intermetallic compounds have been
chosen because many various experiments have
shown that the quadrupolar interactions (magnetoe-
lastic coupling and quadrupolar exchange) are partic-
ularly large.? For the Tm>** ion (J =6), the spin
moment is small (S =1) with regard to the orbital
moment (L =5), and a balanced competition
between quadrupolar and bilinear interactions may be
expected. We present in this section results obtained

for X{#’ on Tm compounds with copper, cadmium,
and zinc, for which a large amount of experimental
data exists and which allows us to check the validity
of this new method for investigating quadrupolar in-
teractions.

A. TmCu

This compound antiferromagnetically orders at
Ty =7.7 K within the (7wm0)-type structure. Its
complex magnetic properties at low temperature, as
well as all the magnetoelastic properties investigated
above Ty, indicate the presence of noticeable quadru-
polar interactions.'""!> The CEF level scheme and
wave functions have been deduced from neutron
spectroscopy experiments (W =1.4 K, x =—0.42).
All the CEF susceptibilities, x§", x§, x5, X2, are
then calculated within this level scheme. Figure 6(a)
gives the experimental temperature variation of the
reciprocal first-order susceptibility measured along
[001] and [111] together with calculated
x§V-1(©*=0). The best agreement is obtained by a
simple shift from x§"~! to experimental x}}’~! de-
fined by ®*=—3.0 £0.3 K, this value being kept in
all the following fits.

The third-order susceptibility measured along [111]
is found to be more strongly negative than the
behavior, X¢®/(1 —nx§V)*, expected in presence of
only bilinear interactions; this indicates a negative
trigonal quadrupolar contribution, reinforcing the
negative curvature of the magnetization curve. The
fit leads to G, =—60 +20 mK.

Along the fourfold axis, the two contributions are
obviously competing: X7’ is unambiguously positive
below 12 K and then vanishes above. Fitting is here
particularly selective and leads to G;=10.3 £0.5 mK.
The calculated curves show that, in absence of anti-
ferromagnetic ordering, X\?’ would decrease down to
negative values, the ‘‘bilinear type’’ contribution
dominating at low temperature; this will be experi-
mentally observed in TmCd (see Sec. IVB).

B. TmCd and Tm0.3Y0.7Cd

TmCd has been extensively studied over the last
years.>!® It is the first manifestation of a quadrupo-
latr ordering in a cubic rare-earth intermetallic. The
quadrupolar exchange interactions drive the tetrago-
nal quadrupolar ordering at Ty =3.2 K, which is
manifested through the tetragonal lattice symmetry
lowering through the magnetoelastic coupling.2 The
CEF term is defined by W =0.95 K, x =—0.34. The
bilinear exchange is zero in TmCd. It is then possi-
ble to show the quadrupolar contribution to X3’ by
presenting in the unique Fig. 7 the [001] temperature
behavior observed in TmCd and in Tmg3Y(,Cd,
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FIG. 6. Reciprocal first-order susceptibility in TmCu (upper part), full and dotted lines result from fits. Temperature varia-
tion of the third-order susceptibility along [111] (middie part) and [001] (lower part) full lines are calculated variations and do
not account for the occurrence of the antiferromagnetic ordering.
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FIG. 7. Temperature dependence of x,‘j’ along [001] in
TmCd and Tmg3Y(,Cd. Full lines are calculated. The inset
gives the quadrupolar ordering temperature, Tp, as a func-
tion of the tetragonal quadrupolar coefficient, G,.

where the quadrupolar exchange is decreased. The
experimental data for the dilute compound always
remain negative very close to the behavior calculated
without bilinear and quadrupolar interactions (G,=0
mK). This agrees with the fact that neither a soften-
ing of the (Cy; — Cy,) mode'® nor a structural transi-
tion was observed above 1.4 K. This indicates the
G, quadrupolar coefficient rapidly decreases with di-
lution. In an opposite limit the third-order magnetic
susceptibility is unambiguously positive between 9
and 25 K in TmCd and reaches its maximum value at
13 K. Below that temperature, it decreases and
changes in sign at 9 K, remaining negative in the
low-temperature range, where the negative x§* con-
tribution dominates the quadrupolar one. The best
fit is obtained with G, =13 +1 mK where the
discrepancies observed at low temperature may be
due to the corrections in vicinity of Tgp. It is indeed
difficult to obtain a precise value of x{’ due to the
short linear behavior of (M/H)(H?) (see Fig. 5).
This defect was not observed close to the ordering
point in TmCu, Ty =7.7 K, because the magnetiza-
tion curve in the paramagnetic range, and then X},
are not influenced by the antiferromagnetic coupling.
Along the [111] axis, the two sets of data for the
two compounds are very close to each other (Fig. 8);
the trigonal quadrupolar contribution reinforces the
negative curvature. In both cases G,=-—150 +10
mK, and this will be discussed in the last section.

GofmK)=+50
m' 0
8
X
-
- o »
‘“ W =09 5K
o [
Ao ® x =-034
o *
3¢ _st p 6"= OK i
< 50
° TmCd
oTm Y Cd
n 03 07 ]
_10 1 1 1 A1 1
0 S 10 15 20 25 30
T (K)

FIG. 8. Temperature dependence of the third-order susceptibility along [111] in TmCd and Tmg3Y +Cd; full lines result

from fits.
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For this [111] symmetry no discrepancy is observed
(Fig. 8) close to Ty, because at Ty the symmetry
lowering mode is tetragonal and not trigonal and
therefore no divergence occurs for X313 along
[111].

C. Tm,Lu,_,Zn

TmZn is the second compound, which exhibits a
quadrupolar ordering in the paramagnetic phase.> Its
level scheme is close to the isomorphous TmCd one
(W=12K, x=-0.31): the I'{" triplet is the cubic
ground state which is split at Tp =8.55 K into a mag-
netic doublet (T'§? in tetragonal symmetry) and a
nonmagnetic singlet (I'§?). This singlet, which has a
large quadrupolar moment, is the ground state in the
tetragonal phase. But in TmZn, the bilinear ex-
change is large enough to induce a spontaneous mo-
ment at 7, =8.12 K. Due to the Van Vleck behavior
of this ground state, I'{?, this ferromagnetic ordering
disappears as soon as a small part of Tm>* is replaced
by Lu®* while the quadrupolar ordering remains ob-
servable.

In Tmg;Lug3Zn(Ty =3.4 K), the bilinear exchange
is characterized by ®*=1.4 K, deduced from the fit
of the reciprocal first-order susceptibility. Along
[111], G,=—40 +20 mK (Fig. 9). Along [001], the
quadrupolar interactions are strong enough to dom-
inate the CEF contribution: the third-order suscepti-
bility is positive above 15 K. Above 10 K, fits lead
to a G, value of about 17 mK, but at lower tempera-
tures, the same discrepancy as found in TmCd occurs
again: the experimental data cannot be described
with the same G, coefficient over the entire tempera-
ture range. As Ty is approached, there are premoni-
tory signs of the transition appearing for this sym-
metry in X,{})._ From the calculated phase diagram
To(G)) (inset of Fig. 9) we can verify that G, =17
mK is the value driving a quadrupolar ordering at
To =3.5 K, which is very close to the experimental
value.

The same bilinear exchange coefficient ®*=2.8 K
was found in the nonordered (cubic and paramagnetic)
range of TmggLug Zn and TmZn. Along [111] the
effects of the dilution between the three compounds
are clear: G, increases from —90 mK in TmZn to
—70 mK in TmggLug,;Zn (Fig. 10) and —40 mK in
TmojLUo‘an (Flg 9)

The situation is more complex for the tetragonal
symmetry where the low-temperature discrepancy is
obvious. If we restrict the fit to the high-temperature
range (Fig. 11), agreement may be found with
G] =23 mK (Tmo‘gLumZn) and Gl =28 mK
(TmZn). These values lead to calculated Ty values
of 6.4 K and 10.5 K (inset of Fig. 9) which are a little
larger than the experimental values of 5.8 and 8.6 K.

In the low-temperature range close to the quadru-
polar ordering in both compounds, many explana-
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FIG. 9. Temperature variation of X 7’ along [001] (upper
part) and [111] (lower part) in Tmg;Lug;Zn. The inset
gives the calculated quadrupolar ordering temperature Ty as
a function of G, the arrows indicate the location of the
three studied compounds Tm,Lu;_,Zn; lines are calculated
variations.
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FIG. 10. Teniperature variations of X5’ along [111] in
TmggLug;Zn and TmZn (full lines are fitted variations).
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FIG. 11. Temperature variations of X,(j) along [001] in
TmggLug;Zn and TmZn. Full lines are calculated varia-
tions, they are hatched below Ty (according to inset of Fig.
9), where the third-order susceptibility cannot be calculated
from the same cubic CEF level scheme. The inset gives the
temperature behavior of the reciprocal first-order susceptibil-
ity measured along [111] (W) and [001] (¢ from the mag-
netization curves as explained in the text and ® with a

translation balance); lines are calculated variations for vari-
ous bilinear exchange.

tions may be proposed. First the same one as in
TmCd (Sec. IV B) may be valid (coexistence of many
competing high-order H/T terms, all influenced by
quadrupolar interactions in the vicinity of Tgp). In
addition, residual strain effects are important in
TmgLu;_,Zn compounds due to the strong tetragonal
magnetoelastic coupling, for instance the tetragonal
spontaneous strain is —9 X 10~ in TmZn? instead of
—0.6 x 1073 in TmCd."®
As a consequence each [001] magnetization curve
is marked by the past history of the sample during
the experimental procedure: at a given temperature
T;, above Ty, there exists a critical field which drives
the sample from the paramagnetic state to the (single
domain) ferromagnetic tetragonal state (see Sec. [ID
of Ref. 3 for a more detailed discussion). Decreasing
the field from this latter state leads to a low-field
slope, i.e., a first-order susceptibility value, a little
stronger than for increasing field. This corresponds

P. MORIN AND D. SCHMITT

to a sample remaining slightly strained and agrees
with calculations which predict a stronger first-order
susceptibility in the paramagnetic tetragonal phase.
Starting from this slightly strained state, the following
isothermal (T;4, = T; +1 K) magnetization curve ex-
hibits a too large low-field slope. The corresponding
[0011 x{~! values would lead to ©*=4.5 K (inset of
Fig. 11) instead of ®*=2.8 K as deduced from both
the [111] x{P~! values obtained from the [111] mag-
netization curves, free of residual trigonal strain ef-
fects, and the [001] data obtained in a weak magnetic
field with a translation balance. About the third-
order susceptibility, this residual strain effect on the
bilinear exchange coefficient then strongly reinforces
the positive value through (1 —nx§’)%. Note that in
the second experimental method of the Sec. 111,

working in low (ac) magnetic fields would avoid the
effects of this residual strain.

V. CONCLUSION

The G, and G, parameters determined in these Tm
systems are given in Table I with the physical param-
eters occurring in the fits. About the tetragonal sym-
metry, the effects of quadrupolar interactions on X7’
are spectacular, leading to a balanced competition
with the X§*’ term and then to precise G, determina-
tions. This is particularly true for TmCu where elas-
tic constants, parastriction and magnetization mea-
surements'? give precise values for the magnetoelas-
tic coupling [B2/(C —C%) =4.0 £0.5 mK] and
the quadrupolar exchange (K;=7.0 £+0.5 mK). The

same conclusions remain closely valid for TmCd

[B2 /e —c, =13+03 mK and K;=11.2+1.0 mK
(Ref. 2)]. From the comparison between TmCd and
Tmg;3Yo7Cd, the G, coefficient seems to quickly de-
crease with the dilution, in agreement with the van-
ishing of softening effects in ultrasonic velocity
data.'* In Tmg;Lug;Zn, the G, value obtained from
x§7’ well describes the quadrupolar ordering tempera-
ture Ty as in TmCd.

On the other hand, in TmggeLug;Zn and TmZn, the

quadrupolar interactions are too large and modify the
magnetization field dependence above Ty mainly
through a field hysteresis of the induced tetragonal
strain. This shows the shortcomings of our present
experimental method, which may imply too large
magnetic fields in such specific cases. For these
cases, actually low magnetic fields are necessary and
better results may be expected from dynamical sus-
ceptibility measurements.

The G, quadrupolar parameter is always found to
be negative. The effects of dilution in Tm,Lu;_,Zn
are obvious, this was not observed in the isomor-
phous system with Cd. Comparing the G,/G, experi-
mental ratios ranging from —6 to —2 to 12 (the ratio
for isotropic quadrupolar interactions) indicates that
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TABLE 1. Physical parameters occurring into the fits. W and x are deduced from neutron spec-
troscopy data (except for Tm,Y,_,Cd) and ©* from first-order magnetic susceptibility measure-

ments.
CEF terms Bilinear Total quadrupolar coefficients
w(K) x exchange ©* (K) G; (mK) G, (mK)
TmCu 1.4 —-0.42 -3.0 10.3+£0.3 —6020
TmCd 131 -50+20
0.95 -0.34 0
Tmo'_-,Yo]Cd ~0 -50+20
Tm0.7Lu0‘3Zn 14 ~17 —40+ 20
TmggLuyZn 1.2 -0.31 2.8 ~23 —70+20
TmZn 2.8 ~28 -90+ 20
the trigonal quadrupolar interactions are clearly the ACKNOWLEDGMENTS

weakest ones in the CsCl-type structure compounds.
This third-order susceptibility study allows the first deter-
mination of G,, which had not been achieved from ul-
trasonic velocity? and parastriction® data because of the
weakness of the magnetoelastic coupling compared to
the quadrupolar exchange for trigonal symmetry, for
instance B?/4C% =1.6 +1 mK while G,=—60 +20
mK in TmCu."?

This analytical study of the anisotropic third-order
magnetic susceptibility appears from Sec. II as a pos-
sible way of determination of CEF terms. In addition
to its anisotropic feature, the observation of a change
of sign of Xx§* in its temperature dependence appears
to be of importance; it may enable us to choose
between two level schemes with nonmagnetic ground
states, e.g., one with the I'; doublet, the other with
I’y or I'; singlet. Such a choice is impossible from the
analysis of the only first-order susceptibility.'®

The third-order susceptibility study is very fruitful
in obtaining information about quadrupolar interac-
tions. Performed in the nonordered (cubic and
paramagnetic) range it allows determinations of the
two total quadrupolar coefficients for the tetragonal
and trigonal symmetries, whatever the low-
temperature ordered structure is. It then constitutes
a complementary determination besides the ultrasonic
velocity and parastriction measurements. However, it
necessitates both single crystals and good experimen-
tal conditions. As for fitting the high-field magneti-
zation processes, it neglects the magnetic band contri-
bution which may be expected to be weak in Tm
compounds as verified in a polarized neutron diffrac-
tion experiment in TmZn.!” A study of the whole
R Zn series is underway which will check this particu-
lar point as well as provide determinations for the
two symmetry coefficients G, and G, throughout the
series.

It is a pleasure to thank Dr. R. Aleonard and Dr.
Ph. Lethuillier for their kind assistance with the mag-
netization experiments and Professor P. M. Levy for
fruitful discussions.

APPENDIX A

In a first step we define the eigenvalues E; and the
eigenvectors |ik ) corresponding to the crystal-field
Hamiltonian JCcgg:

X cerl|ik) =Eik) . (A1)

In each subspace i/ the eigenfunctions |ik) have to be
adapted to the perturbation Hamiltonian. A pertur-
bation theory up to the second order for €; and the
fourth order for H allows us to obtain the analytical
expressions of the perturbed energies Ej

4
Ex=E+ 3 EM+ -

n=1
Then the partition function Z

Z= Ee_ﬁE”‘
ik

(A2)

(A3)

can be calculated, where 8=1/kgT, kjz is the
Boltzmann constant and 7 is the temperature. One
obtains

Z=Zcprll + %ﬂxél)ﬂz + ';‘sz(31€3)2+,3><§2)31€3”2

+ B0 +3B(ENH + -], (A9

which leads to the expression of the total free energy
Fo.=—kgT InZ given in [Eq. (10)].

The expression of the four CEF susceptibilities Xg,
X2, X§?, and x§» are given by
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[ l? 1
1)—p2,2 _ " +o— 2 ,
XV =glub Ef/[ 2/5/ E—E kBTl-Ilk,Ikl (A5)
lQ/kﬂ'z 1
Xy= 2 fi|—2 —— + —— | Ol?| A6
2 sz:f 151 ) kBTI ik ik (A6)
st) 5 3 2/ Jik'JIQﬂ,,/'/le,l’,lk+2Qik’jljjl,j'lh]j’1’,lk
=&/ i
e I P Ty (E/_E/)(Ei"E,')
[kt Qi +2 Que i i ik 1 1 1
- - —— + + Juik|? )
= (E, - E)) E—E,  kgT 2(kET)2I ikl O (A7)
J/k‘ﬂ-/ IIJI [ IIJH "
3 — 1 24 g4 —4 g Vg ik
X == g ) +alud ;?:f’ ,;,,, (E~E)(E~E,)(E—E,»)
)=
j”#/,l”
+2 ,'I/k,jll2|‘/,k’/l[r|2+2Jik,jl'lﬂlj'["Ij'l",kjlk,lk 2,1
J &Ll (E/_E/)(E/"‘Ej/) E/_Ej kBT
J'il
[ | || 2 2 1 1
-2 " " + + J 4 ,
,?5,, (E,—E) |(E—-E) (E—E)kgT K3T? 6k373| el
(A8)
)
where implies that the nonzero average values are in the
Ty = ik l-/ il (A9) fourfold axis system:
kJl = 2
and (Jx>=<‘,y>=(‘]z> ’ <ny>=<Pyz>=<sz> ,
and
Quy = (k|02 1) (A10)

are the matrix elements of J, and Of between the cu-
bic CEF levels. For each degenerate CEF level i,

fi= 1 P Ze_pE" (A11)
VAS ik

is the Boltzmann population factor.

APPENDIX B

When the magnetic field H is applied along a three-
fold axis, e.g., [111], the rhombohedral symmetry

€y =€ = €5 .

It is then more convenient to make a rotation of the
coordinates axes so that [111] is the new z axis. In
the new system

M'=gup(Jt;)
and
Q'=(09)

are the only nonzero expectation values and the new
Hamiltonain and corresponding free energy are writ-
ten as

' =3Ccer — gyms(H +"M,)-Iz";'32€k/0? _T%KZQIO?+[GC‘?“(ek’)2+";-”M'2+'2'ITKZQQ] ’

Fioy = Fégp _‘;’Xél)(H +nM’)2"%Xé(';‘BZEkI +TI{K2Q')2

— X" (5 Brew + 35 K20') (H +nM")? = 1 X' (H +nM')* +6CYy e+ +nM™ + L K,07 .
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Here x§V’ = x§V because of the isotropy of the first-
order magnetic susceptibility in cubic symmetry. X3,
x$?', and x§*’ have the same expressions as the cor-
responding tetragonal susceptibilities, but their values
differ from the nonprimed susceptibilities according
to the new cubic CEF wave functions in the new axes
system adapted to the rhombohedral symmetry. The
equilibrium conditions for M’, €y, and Q' lead to

M =x{'H+XiP"H + - -,
B,

24CY,

Q'==xb1-[2+ e

Q.

€x

with
X0

[§ D L. (1)

Xu l—nxél)EXM '

. X§ iio (x§?")?

X =D 87 )4 PR
—nXS ) (1—'1-2-02)(2)

X
Xg=

(1=nx§")2(1 = 75 Gx3)

and the total trigonal quadrupolar coefficient

(B,)?

Gr=%cs

+K, .

*Laboratoire propre du CNRS, associé a I’Université Scien-
tifique et Médicale de Grenoble.
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