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The problem of finding the current carried by the driven, heavily d~mped, sine-Gordon chain

has been solved by two methods. Trullinger et at. tPhys. Rev, Lett. 40, 206, 1603(E) (1978)]
and Guyer and Miller IPhys. Rev. A 17, 1774 (1978)] have employed an approximate treatment
of the hierarchy of equations generated by the Smolouchowski equation (the SEH method) to

calculate the current analytically and numerically. Buttiker and Landauer [Phys. Rev, Lett. 43,
1453 {1979);and {unpublished)] have criticized this treatment and have proposed an alternate

treatment employing ideas from nucleation theory (the NT method). These two methods of
solution are reviewed and compared. Both methods are shown to involve the same ansatz for

the nonequilibrium probability distribution function. The SEH method employs an exact in-

tegration of the steady-state one-particle current equation; the NT method employs an approxi-

mate integration of the steady-state nucleation current equation. The approximations underlying

the use of the two methods are described. Criticism of the SEH method by Buttiker and Lan-

dauer' is discussed.

I. INTRODUCTION

Over the past several years there has been consid-
erable effort in the development of the theory of the
statistical mechanics of nonlinear systems. This ef-
fort has arisen in part because of the challenge of-
fered by this conceptually difficult problem and be-
cause of the experimental investigations of systems
that are able to be modeled by nonlinear equations,
i.c., systems with important properties that probe
nonlinearity. ' The equilibrium statistical mechanics
of slfllpic nonllncar systcllls (c.g. , tile $ chaill, tile
sine-Gordon chain, etc.) are weil understood. Much
less well understood is the theory of the dynamics of
nonlinear systems. This is in part because of ihe
variety of system conditions that can influence one' s
judgement as to the basic elements that must be in-

corporated in a theory of the dynamics. (For exam-
ple the system may contain a dilute, weakly interact-
ing, thermally generated soliton-antisoliton gas or a

dcnsc, heavily damped, prcssure Bnd thermally
generated soiiton "gas, " etc.) It is also in part be-
cause some of the analytic methods are new and have
yci io stand thc test of time.

Thc dynamics of hcBvily damped nonlinear systcAls
have been the subject of severa1 papers and some dis-
cussion. Truiiinger er ai. ' (I6) and Guyer and Miller'
have described thc heavily damped sine-Gordon
chain in an external field using the Smolouchowski
equation (SE). Because they were interested in the
case of a strongly interacting system in an external
field of arbitrary strength, these authors employed a
method of solution that leaned heavily on the simi-

larity of the basic equations to those encountered in

the description of dense fluids. This method is cal)ed
the Smolouchowski equation hierarchy method, SEH
method, and variations on it have proven particularly
useful in the development of a general formalism
for treating the dynamics of nonlinear systems in the
heavy damping limit. 4 6 Landauer, in a series of
private communications' and in collaboration with

Buttikcr, s has proposed an alternative method for
treating the "driven sine-Gordon chain" that is based
on nucleation theory, NT. In addition Landauer
and Landauer and Buttikera have criticized the
method employed by I6 and Guyer and Miller in

principle and with respect to certain details.
The purpose of this paper is to discuss the descrip-

tion of thc dynamics of the heavily damped sine-
Gordon chain in an external field (determination of
the rate of phase evolution) with an emphasis on ex-
posing the similarities and differences of the various
approaches, and on indicating the elements of a
correct theory. %C find, and the discussion below is
oriented toward making this point, that the method
of solution employed by I6 and Guyer and Miller, the
SEH method, is in principle much the same as that
advocated by Buttiker and Landauer, the nucleation
theory method. However, the SEH method involves
exact integration of equations in contrast with the ap-
proximate NT treatment. Further by being embed-
ded in a systematic hierarchical apparatus, the SEH
method lends itself much more readily to improve-
ment and generalization. In Secs. II and III wc look
at 8 simple-model problem to illustrate the SEH and
NT methods. %e examine 8 number of important
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general properties of the behavior of the Smo-
louchowski equation in Sec. IV and we review a
number of features of the SEH method with an eye
toward understanding its relationship to the NT
method. In Sec. V, we critically examine the as-
sumptions which form the basis of the NT method
and in Sec. VI we review our findings and discuss the
essential content of the two theories.

II. MODEL PROBLEM

Here and in Sec. III we look at a model problem
using the SEH and the NT method. The idea is to
see the essential features of the methods in a context
that is simple and does not obscure what is going on
with superfluous detail.

Consider a pair of particles, 1 and 2, that form a
molecule, held together by a spring, that resides in a
region of space containing a sinusoidal potential. The
Hamiltonian of the system is E =p'/2l + V(12),
where I is the moment of inertia of the particles and

V(12) = —Et(cos8t+cos82) + —E2(8t —8t)', (1)

~l

A

FIG. 1. Currents and configuration space. To calculate
the rate of phase evolution for particle 1, one projects J
onto e&(e~ is a unit vector in the I direction) and integrates
over the surface A. The result is the net probability current
from 8& =0 to 2m. Formally this procedure is equivalent to

~

~

~d 1 dN5(et u) e J (1 W). The net center-of-mass
current, passes through the surface C, etc. Note: the rela-
tive current is not pointwise zero', it is zero at any r when in-

tegrated over all R.

8, -2x, /a. The particles in the molecule are subject
to the constant external force F, V, (12) = —F(8t
+82) and are sufficiently damped by the medium in

which they reside that the distribution function
describing the pair is the Smolouchowski equation for
diffusion through configuration space

+ 7, J(12)-0,
9t

where 02=(i)/81, 8/M) and
r

( ) I 8a (12) tip U(12) (12) (3)
el

'
81

( )
1 8a (12) rtp U(12) (12) (4)

2 N

where r =pfrt, g is the coefficient of viscosity, and
U(12) = V(12) + V, (12). Here I stands for 8t, etc. ,
o (12) is the probability distribution function, and

Jt(12) and J2(12) are the probability current com-
poAcnts ln thc directions 1 aAd 2 of configUration
space, respectively (see Fig. 1). In thermal etluiiibri-
um F =0, the solution 'to Eq. (2) ls

o (12) = p(12) -exp [-PV(12) j.
In addition Jt(12) = J2(12) =0; the pro5ability
current in configuration space is pointeise zero.
%hen F 4 0[ V, (12) & 0) the molecule is driven at a
constant rate by the field: a steady state results.
This steady state is described completely by the
behavior of the probability current in configuration

space: V2 J =O. It can also bc described Qppioxi-
mately by statements about the behavior of the aver-
aged probability currents in configuration space. For
example'.

(a) The probability current in the 1 direction is
constant

Jt(l) =—J/d2 J~(12) =const—= J
or the equivalent statement

J,(2) =-Jl ~I J,(12) =J .

(b) The averaged probability current in the center-
of-mass direction, es = ( I, I )/K2, is constant,

Js(R) =
J~ dr Ja(Rr) =J

where

Jrt(Rr) = [J,(12) +J,(12)]/~2

R =(8, +8,)/2,

I' =~2-~t

[The constants on the right-hand side of Eqs.
(5)—(7) are the same since the individual particles
move in steady state at the same rate as the center of
mass. l

(c) The averaged probability current in the relative
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motion direction, e„=(1,—1)/J2, is zero

J, (r) = JtdR J,(Rr) =0

where

(8)

TABLE L Notation for distribution functions, V denotes
the equilibrium interaction potential, exp W is the modifica-
tion of p(p) to yield o-(o-), expPFR is due to the applied
field.

J,(Rr) = p(12) +/3Fe(Rr)
QR

(9)

J,(Rr) =[Jt(12) —J2(12)]/J2

The probability current for relative motion, J,(Rr),
need not be pointwise zero but it is zero when aver-
aged over all R because the forces at work on the
molecule do not lead to a net rate of motion of its
constituents relative to one another; the molecule
does not come apart (see Fig. 1).

Equations (5)—(8), equations for certain average
probability currents, amount to truncated differential
equations for the probability distribution function,
o(12), see below. These equations can be used to
advantage in analyzing approximate solutions to the
full steady-state Smolouchowski equation, V2 J =O.

Let us consider an example of the use of Eqs.
(5)—(8) to solve 'Vq J =0 in an approximate way.
Since p(12) solves )72 J =0 exactly when F =O,we

seek a solution to Eq. (2) in the form o(12)
=p(12)e(12). Then from Eqs. (5)—(8)

p =exp(-P V)

p = exp( —p V +pFR )
=exp{—P V + 8'( R)

" =expt —P V+ 8'(R) +PFR ] =exp) —P V+ 8'(R) j

Eqs. (10) and (8) leads to

( )
Bu(r)

9r

where

( ) =f dR p(R~)E(R)e(r)

is the probability distribution function for relative
motion and e(r) —=expu(r). From Eq. (13) we con-
clude that u(r) must be zero. Then, Eq. (12) takes a
simple form and can be solved by known methods.
Define 14'(R), W'(R) = W(R) —/3FR, so that Eq.
(12) becomes

and

J„(Rr) = J2p(12) (10)
where

BW(R)
9R

(14)

Equations (9) and (10) are exact. Now suppose that
we choose to approximate e (12) by a product ansatz

e(12) =E(R)e(r)

o (R) —= p(R) exp(+/3FR ) exp W(R )

Integrate this center-of-mass differential equation on
R and subject the solution to two constraints:

Then, the use of this ansatz in Eqs. (7) and (9) leads
to

normalization:
2e

(r R dR =1 (15)

J = o(R) +PF8 lJ'(R)

where

(12) periodicity:

(16)

()()=f u p(R )r(R)e(~)

is the probabiltiy distribution function for the center
of mass and E(R) —=expel'(R). (Let us pause for a
moment to remark on notation. The discussion will

involve a variety of distribution functions that differ
from one another in detail according to the manipula-
tion being undertaken. %e exhibit the notation we
will use in Table I: p refers to uncorrected distribu-
tion function, - denotes that the external field is in-
corporated into the distribution function. In some
contexts this notation serves no useful purpose and
we do not use it.) Equation (12) is an example of
what we called a "truncated" differential equation
above. Similarly, the use of this ansatz, Eq. (11), in

18'(2rr) —W'(0) = J dR
(r( R)

(17)

Now a(2rr) =o(0), /3F2rr+ W(2n) = lt'(0)—, or
W(2rr) —ltr(0) =+PF2rr so that we have

dR.
o.(R)

(18)

With this equation, we have a solution for J (steady-
state, center-of-mass probability current), using the
SEH method. This solution is not exact since it uses

The first of these constraints is a choice of normali-
zation for o(R) and the second follows from transla-
tional invariance of V(12). Thus upon integration of
Eq. (14) we obtain



23 OVERDAMPED SOLITON MOTION 5883

a o (12) that does not solve 02 J =0 exactly; rather
it is faithful to the statements about the averaged
probability currents contained in items (b) and (c)
above. In addition we had to fix an integration con-
stant by appeal to physical argument.

(a)

III. NUCLEATION THEORY DESCRIPTION
OF THE MODEL

(2', 2~)

As an alternative to the simple version of the SEH
method described above, we might proceed quite dif-

ferently. %'e are interested in the rate of molecule
motion. This rate is related to the steady-state proba-
bility current Ja(R ). The steady-state probabililty

current is independent of R and can thus be calculated
at any R. It might be relatively easy to calculate this

probability current by focusing only on local config-
urations which can cause evolution of the molecule

through the 'ducts, " the improbably occupied regions
of configuration space, that connect two relatively

probable configurations. For example from Eq. (1),
with F =0, we see that for motion of the molecule
from near R =0 to near R =2m the duct is at
(R = m, r =0) where the potential energy has the
form shown in Fig. 2. For F 4 0 the duct remains at
r =0 and is shifted along the R axis to R (F),
(4w/a )Et sinR (F) +F -0. (We have assumed the

spring holds the molecule more or less intact as it is

driven over the sinusoidal potential so that only one
duct is of importance; see Fig. 2 for an illustration of
a more complex situation. ) We will take the aver-

aged steady-state probability current Jn(R) to be the

probability current that passes through the duct. This
is given by Eq. (9):

Jn(Rr) =p(12) +PFe(Rr)Be(Rr)
9R

27r-

FIG. 2. "Duct" and probability current flow. (a) The
probability current flow is primarily limited by a single
"duct" in configuration space between two relatively prob-
able configurations. %'hen this is the case the probability
current can be described near the "duct" with reasonable
certainty. (b) There are situations in which more than one
"duct" contributes importantly to the current from R =0 to
2m. If the spring E2 is soft the molecule can move one
"atom" at a time, then, there is a substantial current
through "ducts" near i =0, near r =+2m, etc.

tremum p(12) [really V(12) + V, (R)]; i.e., at (R, r)

As above we take e(Rr) to have the form

e (Ry ) = e ~&+ &~R

so that Jn(Rr) becomes

Jn (Rr ) = o (12)
9R

(19)
and

4m
E~ sinR + F =0

a

r=0

(22)

(23)

Now, from Eq. (14), the steady-state probability
current we seek is

J =Jn(R) =cr(R)
9R

(21)

(b) The behavior of the energy near the duct is

given by

V(12) + V, (12) =ED+ A, r' —
2

AnBR2, —(24)

~here

We will attempt to learn J by integrating Eq. (21)
near the duct. To this end we must (a) locate the
duct and (b) specify the behavior of o (12) near the
duct.

(a) The duct is taken to be located at the ex-

&0=FR +Et cosR, A, =E,= ' (1 —Q')'i'
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em'(sz»0) &
w(sR «o)

p(BR)

where

(2S)

' 1/2

-(BR )
-)8R0 2a'

)

exp —,
'

(AR BR2)

Carrying out the SR integration leads to
r r

~/2(es'(8R »0) ~N'(8R ((0)) RsJ= e
( ) 0 R

d 88 p 5R

(26)
To complete the specification of J, we now need to
know the behavior of W far from R. A variety of ar-
guments are. given that permit 1V(BR ))0) and
lV(BR (& 0) to be specified in terms of known
properties of the system. These arguments are of the
same genre as the normalization and periodicity con-
ditions that were used on Eq. (17). Thus in Eq (26).
we have a solution for J, the steady-state, center-of-
mass probability current. It is the nucleation theory
equivalent of Eq. (18).

The two calculation procedures outlined here are
very similar, We have exhibited some details of both
that expose this similarity They both involve calcula-
tion of the steady-state, center-of-mass probability
current using the ansatz a.(12) = p(12)E(R). They
differ in that the SEH method employs an exact
treatment of the consequences of this ansatz
~here —as the NT method makes several approxima-
tions in handling this ansatz. Thus we expect the
SEH method to give the "correct" result in places
~here they. differ appreciably. Indeed, simply deter-
mining a procedure for locating the duct [finding the
extremum of V(12) + V, (12) as in item (a), above
Eq. (22)] intmduces strong limitations on the region
of validity of the NT method. That is, for the pur-
pose of locating the duct and integrating Eq. (21) we
want the extremum of a.(R), (r(R) =p(R)
&& exp lV(R ). We, following BL (Buttiker and Lan-
dauer), take this to be given by the extremum of
p(R), Eq. (22). This procedure is acceptable if
1V(R) is small or slowly varying near the duct found

from p(R). However, H'(R) is of order FR [see,
e.g., Eqs. (17) and (18)]. Thus the procedure we
have used for finding the duct is strictly. correct only

Q = F/2E ). Equations (22) —(24) are the information
about the behavior of p(Rr ) near the duct that will

permit integration of Eq. (21). Use of Eq. (24) in

Eq. (21) leads to

r -pEO -A I /2 AgsR /2 ye+(~+~~)
J=JI dre 'e ' e '

B(BR)

Be w(8R )

B(BR)

at F 0. Thus, to permit FR in p(R) to influence
the location of the duct, while IV(R) is ignored, is
inconsistent and leads to errors of order FR in the lo-
cation of the duct,

IV. SMOLOUCHO%SKI EQUATION HIERARCHY

In this section we describe the SEH method of
solution of the driven, heavily damped, sine-Gordon
chain. The problem is described in detail in Guyer,
and Miller' as is the application of the SEH method.
We will not dwell upon the details of the method
here but rather we will indicate the important
features of the calculationa1 scheme together with any
approximations used in making them. We shall also
describe those features of the SEH method that per-
mit one to treat the approximate solution of I6 and
Guyer and Miller as the first step in a systematic 'and

tractable scheme for solving the N-body SE. We re-
view the SEH method as applied to the sine-Gordon
chain: an N-particle problem, The N-particle sG
chain is described by the potential energy

V(1 W) = XE, co—se, + ' X(e,„—e, )' (27)
r l

in the external field

V, (1 N) = E0 $8(—
l

The N-particle probability distribution function obeys
the SE

(28)

where

J(1 N)

Iti

+ X—,J;(1 N) =0
gt ; ] QI

(29)

r

1 9 BPU(1 N)=——~(l" W)+~(1" W)
7' Q I Ql

(1) BJ,(1)
8 '81

Ba (12) BJ)(12) BJ2(12)
91 82

B~(1.. . ()())
X

BJ,(l N)
Bt ; 81

(32)

(32')

00)
and U = V+ V, . It is useful to have available the
equations of motion for the low-order probability dis-
tribution functions since it is these functions which
are related to important physical quantities. We de-
fine

(("')=fd(. +»" ()r.((" (r)
(negiecting an unimportant normalization). %e find
a hierarchy of equations for (r(1), a(12), . . . , upon
integration of Eq. (30) on 2 W, 3 iV, etc:
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where

Ji(I) =—p(1) + e(I)I 8e(l) 0&~~( ) t. . . Bp&(ij)+ X J~ &j p(lj)[~(lj) —~(I)]
91 )~(~) 91

(33)

i

J, (i2) = —p(12) ' + e(12) ' + X ~ dj &(12j)[e(12j)-e(12)] @' ( ' )

i

1 8e(1 N ) 0P ~e
J,(i" N)= —&(I" N) + ' e(I ~ N)

T Ql 8l
(34')

In writing Eqs. (33) and (34), we have used the
Born-Bogoliubov-Green-Kirkwood- Yvon (BBGKY)
equations for the n-particle equilibrium distribution
functions p(1), p(12), . . . and the definitions

0 (I ) = p(1)e (1), a (12) =—p(12) e (12), for each
a (I ~ ~ ~ n). [The similarity of the structure of the
equations for Jt(I), Ji(12), . . . to the correspond-
ing equ, .&brium BBGKY equations' has led to the
SEH method being referred to as the BBGKY "ap-
proximation. " This terminology is unfortunate. ]
Equations (31) and (32) are exact since they
represent a collection of relations among defined
quantities. In preparation for testing a number of ap-
proximate treatments of these equations we consider
Ja(12) and J,(12). These probability currents ire
constructed from Ji(12) and Jz(12) as described
above. By the argument below Eq. (7) we have

Jit(R) = Jt dr JR(12) =Ji(l)

I

(Har tree-like) form

«(I " N ) - i (I) i (2) "i (N) .

Upon making the defintion it(I) -e""' we see that
a(1 ~ ~ N) has the analytic structure that permits
a (I ), a (12), . . . to be calculated directly in terms
of the unknown pseudoexternal field, ~, using
transfer-integral techniques. ' [We can aiio calcu-
late e(1), e(12), . . . , of Eqs. (33) and (34} direct-
ly.] Note: Eq. (37}does nor mean that
e(I) =A(I), e(12) =h(1)h(2), . . . , . Using w(I)
then, Eq. (31) takes the form

i

J =Ji(1) = —(r(1)1 I}w(I) +PF
T $1

where o (I) is a function of w determined exactly by
solving a transfer-integral problem. %e can now use
the constraints equivalent to Eqs. (15) and (16) to
obtain

For J„(12) we have

J,(R,r) = [Ji(12)—Jz(12)] (35)

$2e
Jr =PF2rr

o I (39)

Using the indistinguishability of the motion of 1 rela-
tive to 2 from the motion of 2 relative to 1 we have

J,(R,r) = (I/K2) [Ji(21)—Jz(21)]= J,(Rr)—
and Jz(12) =Ji(21). Thus for J„(Rr) we find

J,(R.) =if (12) 0'(12) (36)

This equation is as simple in form as Eq. (10) above
although it describes a remarkably more complicated
system; e(12) is sensitive to the fact that 1 and 2 are
embedded in the middle of a chain.

In contradistinction to the theory of classical fluids,
we shall direct our attention to the N-particle equa-
tions, (32') and (34') by introducing and discussing
several approximate forms for e(1 N)

Ansarz i. We choose e(I N) to be in the

It is important to note for practical purposes that the
determination of o (I) for use in Eq. (39) involves
the self-consistent determination of w(1).

The ansatz in Eq. (37), used by 16 and Guyer and
Miiler, yields a form for e(12) [e(12) is symmetric
in the interchange of I and 2] that does not in gen-
eral satisfy J,(r) =0. It is this failure that leads to
the next level of approximation to a (I N); see
ansatz 2 below.

The procedure carried out here is an example of
the SEH method: (i) an approximate form to
o(1 N) is chosen that permits calculations of
ir(1), cr(12), . . . ; (ii) the unknown functional
forms in o(1. N) are determined by appeal to the
sequence of reduced Smolouchowski equations, Eqs.
(31) and (32).

Ansarz 2. We choose e (1 N ) to be of the form

e(1 N) =l't(I)h(2) h(N)

x f(12)f(23) f(N —1N) (40)
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and we define h(l) =expw(1) and f(12)
=expu(12), and u(12) = u( ~x) —x2~). The con-
straint set by the steady-state single-particle probabili-
ty current is the same as above [only o (1) is more
corn plicated]

Equations (43) and (44) are the continuum version
of Eqs. (29) and (30). We seek to solve Eq. (44) for
the steady-state probability current using the ansatz

(

(p( )) = exp f—" tp(x)l p(p(x)l

J=—(1) +pF
7 ' $1

(41)
where

The constraint J„(r)=0 is not automatically satisfied,
and constitutes the "equation of motion" for u(r).

Ansa(z 3. In general one proceeds by using approx-
imate forms for e(l N) that permit reasonably
easy determination of the reduced n-particle distribu-
tion functions; i.e., that reduce the determination to
a tractable transfer-integral problem. Then, a suit-
able number of current equations must be integrated
in order to fix the unknown functions. In this man-
ner we proceed to construct a systematic solution to
the SE.

p[8(x)) = exp( PE[8-(x)] )

J(x;[8(x)])= —~[8(x)] 8)v[8(x)]
t 88(x)

(46)

This equation is the continuum version of ansatz 1

above, EO. (371; the functional exp ( J(dx/ )
&& )v[8(x))) is denoted by )8[8(x)] in Eq. (4.7) of
BL. Substitution of Eq. (45) into Eq. (44) leads to

V. NUCLEATION THEORY

In this section we describe the NT approach to the
driven, heavily damped, sine-Gordon chain problem.
For the details of this method see Ref. 8. Belo~ we

shall indicate the important features of the NT
scheme together with the approximations needed for
its implementation. In order to make a comparison
with the detailed treatment of BL more accessible we

adopt their continuum version of the sine-Gordon
chain.

Consider a continuum sine-Gordon chain described
by the potential energy

Etp(x)l= J—"—ptcoae( )
a

E a2 gg+ ' —Z, 8(x) , (42)
gX

where configurations of the chain are given by 8(x)
and the external field appears in Eq. (42). The
equilibrium probability distribution function p[8(x)],
is a functional of 8(x). For Eo WO the probability
distribution function o [8(x) ] obeys the
Smolouchowski equation

Bo.[8(x)) + dx 5 J( [8( )]) 0 (43)
Bt a 58(x)

where

the continuum version of Eq. (34'). (Note a minor
difference associated with the use of p in the discrete
chain problem instead of the p used here, the PF
term, see Table 1.)

Buttiker and Landauer argue that the steady evolu-
tion of phase arises under appropriate circumstances
as a consequence of the soliton-antisoliton creation
process (a nucleation process). Therefore the
steady-state phase current, (88/Br), the steady-state
single-particle probability current, J, and the steady-
state nucleation current [a current through the duct
in configuration space that connects the no soliton
chain (0) to the chain with a soliton-antisoliton pair,
(SS)] are all related to one another. BL establish a
relationship between the steady-state nucleation
current and the steady-state phase current. They
then calculate the steady-state nucleation current. In

a calculation of the steady-state nucleation current at-
tention is focused on the region of configuration
space near the duct that connects (0) to (SS) (see
Fig. 3). The center of the duct is located at a "suit-
able extremum" of E[8(x)], 8(x), and [E( 8)x] is

then expanded about 8(x) in terms of the normal
modes of the chain about 8(x), 8$„(x).E(8(x))
=—E[8(x)]~near the center of the duct can now be

expressed as a function of the normal-mode ampli-
tudes qo, q), . . . , and

1

F. 8(x) + Xq„g(i(„(x) = E( (8)x;g v)O)
'' ')

V
i

J(x;[8(x)1)= — (r[8(x) ]
1 8

88(x)

= E()+ —, Xe„vt'„.I (47)

+.[8(-))"""""
(44)

S8(x)

The "suitable extremum" called for here is a
saddle-point configuration at which the energy is un-
stable to the motion described by the mode denoted
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SS Substitution of Eq. (50) in Eq. (49) leads to

I 0@'(nant " )
j„(8(x);nay)t ) =-

T an.

x p{8(x);gagt ~ ~
.)

Uo

I

l

I
I

I,
SS

USS

I
I

I

I

2r
U2m

FIG. 3, Configuration space. The nucleation current

flows from 0 to SS, where 0 denotes the unkinked chain,

u p, and SS denotes the kink-antikink chain, u», at or near

the critical nucleus. The probability current from 0 to SS
(proportional to J e„e, {uss —u())/( uss

—us[] is a mea-

sure of the pair nucleation rate. The flow of probability

from 0 to 2n (from u p to u 2~) is related to this rate.

The probability currents .j„are not pointwise zero but
like J,(Rr) in Sec. II they are expected to be zero on
average near the duct (the single exception is ja
which is nonzero on average). To make further prog-
ress we must assume W(gag( ) to depend only
on qa as ~(na). [BL find @'(qagt ) = ~(ga) by
setting the currents j„ identically to zero. This is

merely an assumption. ] Thus the ansatz for
cr(8(x);gag) ) employed by BL is not that of Eq.
(45) as it appears in Eq. (50); it is

(r(8(x);qaqt ~ ) = e ' p(8(x);v)apt ~ ) . (53)fv(gp)

"ith this ansatz Eq. (49) for the probability current
in the gp direction is

by amplitude ria. Evolution of the chain from (0) to
(SS) can now be described by evolution of rta from

qp & 0 towards gp & 0, see Fig. 3.

8 (qp)
1 Qe

Jp(8( )x;g qat ) =- p(8(x);gag) )t 8'gp

(54)

8(r(8(x);ripe)t ' ' ')
X

t)
f ( ) ) 0

9t v u

We integrate this equation on qi, g2, . . . to get the
steady-state nucleation current Jp,

where
(48) (gp)

ip = — p(8(x);pa)t

Strap

(55)

I

I t) {8{x);ri,ri, " )
j„(8 x;rlprit ) =-

T II'g„

+ Pe„rt„rr(e(x);rtprtt )

(49)

cr(8(x);qaqt ) = e "'"' p(8(x);gpqt )

where
r

"(~o'i )=f—" r('x)+zq„s(„(x)

and
(51)

P (8{x);rip rit ' ' ' ) =exp [—pE (8(x); rt() rt t
') )

The parabolic approximation used for E in Eq. (49)
will be valid in the neighborhood of the saddle point.
The probability distribution function (near the duct)

is taken to be given by Eq. (45)

Following the standard prescription (see Sec. II) this
equation may now be integrated with respect to qp to
yield

H'(qp» p) 8'(qp «p), f d qpJpt je —e
p{8(x);pa)

(56)

As a final step exp'(qa» 0) and
exp@'(qa «0) are specified. It is argued that
W(qa» 0) —~ and that W(qa «0) is deter-
mined by requiring that the ansatz in Eq. (53) con-
forms to one's expectation about o [8(x) ] near (0).
The statement that W(qa» 0) ~—oo means that
the soliton pair must be driven apart by the field and
acquire energy during one collision time that is large
compared to k~ T; BL translate this into PF &) m{),
where mp is the soliton density.

Of course Eq. (56), achieved using the NT
method, is superficially the same as Eq. (39),
achieved using the SEH method. But is the physical
content the same~ The answer is in principle yes.
Both methods involve the same ansatz for the proba-
bility distribution function. Both methods involve in-
tegration of a steady-state probability current equa-
tion. The integration procedures differ in the choice
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of direction in which to project the current and in the
choice of variables to be used in describing the
relevant region of configuration space. It 'is the
choice of implementation which distinguishes the two
methods. In the SEH method, configuration space is
described by 12 N and the integration procedure
involves variables 2 ~ .% so that the steady-state prob-
ability current equation, Eq. (38), becomes an equa-
tion for the behavior of the probabiltiy distribution
function of 1. Integration of this equation yields the
steady-state probability current. Formally

J~(l) = Jt dl Ng(u e)e J(1 .N)

where u =(u), u2, . . . , u~) and e =(1,0, 0, . . . ).
In the NT method, configuration space is described
by qoq~q2 ~ ~ ~ and the integration procedure involves
variables q~q2 so that the steady-state probability
current equation, Eq. (54), becomes an equation for
the behavior of the probability distribution function
of 'gp. Integration of this equation yields the steady-
state nucleation current. Formally

J= dl Nbu ee ~ J1 N

e = ( usy —uo)/I uss —uo(

is a unit vector pointing from 0 to SS (here usy is a

configuration of the chain corresponding to a soliton
pair at or beyond the critical nucleus and uo is a con-
figuration of the chain with no soliton pair, see Fig.
3). [5(u e) defines the surface in configuration
space orthogonal to the direction of the current being
calculated, orthogonai to e.] The currents Jo and J~
are related as described by BL.

turn to a modification of the correlated motion of
pairs, triples, etc.

2. The hierarchy of equations that are generated
from the Smolouchowski equation, the SEH, provide
a tractable sequence of equations that can be em-
ployed for the systematic solution of the driven,
sine-Gordon chain (or any similar problem). A pos-
sible scheme for improvement of the extent solution
is suggested in Sec. II.

3. The current-field characteristic reported by I6
and Guyer and Miller are the results of exact (nu-
merical) integration of the relevant equations.

4. Guyer and Miller reported an "activation ener-
gy" for kink or soliton creation as a function of' the
external field. As decribed by Guyer and Miller this

activation energy was determined by analysis of
the numerical data (i.e., by use of a semilog plot).
No attempt was made to account for a field or
temperature-dependent prefactor. The point of Fig.
10 in Guyer and Miller is to show qualitatively that
the field degrades the "barrier. " Further, the calcu-
lation of Guyer and Miller, as stated by them, was
for a discrete version of the sine-Gordon chain —a
feature which is not without significance when mak-
ing numerical comparisons.

5. The SEH method and the NT method are simi-
lar in form since both methods build up the non-
equilibrium distribution function from a product an-
satz. In the NT method p is multiplied by

exp —w [8(x) ]
dx

where w [ t)(x) ] may depend upon e(x),
'78(x), . . . . In the SEH method p is multiplied by

VI. 0ISCUSSION

In this section we summarize and compare the con-
tent of the two methods of solution of the driven,
overdamped sine-Gordon chain.

1. The SEH method of solution is based on the
belief that the system being described is a strongly in-
teracting system possibly driven far from equilibrium.
Thus the SEH method is designed to work at all
fields and temperatures —it is not a perturbation ap-
proach. The ansatz of the low-order SEH method,
Eq. (37), builds up the nonequilibrium distribution
function from the equilibrium distribution function
by a modification of the single-particle structure of
the N-particle distribution function that is consistent
with the existence of a steady-state current. The
equihbrium distribution functions, p(12),
p(123). . . . , describe pairs, triples, etc. , of particles
that already reside in an inhomogeneous space with
strongly correlated motions. The modification of the
single-particle structure (for all particles) leads in

as in Eqs. (37), (40), . . . . As the SEH method
has been used by 16 and Guyer and Miller Eq. (57) is

truncated after the first term (ansatz I). Buttiker and
Landauer argue that in principle this treatment of Eq.
(57) is unsuitable. If the modifcation of the relative
motion of pairs of particles, etc. (as a consequence'of
a steady current) were substantial compared to the
relative motion permitted by the equilibrium distribu-
tion function, then terms like u, . . . in Eq. (57)
should be retained. %e find no evidence that impor-
tant deviations from the Hartree-like result occur.
[The inclusion of terms like u in Eq. (57) leaves un-

changed the discrepancy between the low-

temperature results of the two methods, i.e., T '~' vs
7 3/2]-

6. The NT employing the basic ansatz in the SE,
can, in principle, develop a hierarchy of equations for
the distribution functions and currents in terms of
the normal modes of the critical nucleus. BL proceed
by setting all except one of the components -of the
A'-particle current to zero (pointwise), This restriction
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reduces the basic ansatz to

e(q )P[8(x)]=e Pp[e(x), gpss) ] (58)

7. The above ansatz, Eq. (58), appears as a reason-
able description of the behavior of the system near
the critical nucleus. However, its utility away from
the critical nucleus is unclear. BL proceeds as fol-
lows: near the critical nucleus the probability distri-
bution function is taken to be

e(x) =e(x) + gg„gy„(x)

'I

=e "' exp —P E(t)(x)) + —,
' $&.q, '

V

Near the stable chain configuration the probability
distribution function is taken to be

tt(x) = e, + XX,sy„(x)

P [8(x)] = P(tt, ;XpXt )

=e ' exp —P E(tt, )+ —, gj„Xt„

(59)

The function W(qp) is fixed at gp « 0 by setting it
equal to the constant W(tr, )

W(qp «0) = W(e, ) .

[Note also W(e) in Eq. (59) is not permitted to fluc-
tuate about tt, .] It is hard to assess the significance
of these approximations.

8. The procedure employed by Biittiker and Lan-

dauer for finding the "duct" keeps the term FR
while ignoring another term of order FR, W(R).
Thus the procedure employed by BL is strictly correct
only for F 0. One should appreciate that the very
complex numerical self-consistent solution to Eq.
(39) employed by l6 and by Guyer and Miller was
necessary because of this point. In this regard Fig. 7
of Guyer and Miller is illuminating.

9. The NT method as carried out be Buttiker and
Landauer is subject to four restrictions on the values
of the physical parameters for which it is valid; (i)
ks T. « Vp, (ii} npg « I, g'=K/ V, , (iii) PF » np,
and (iv) F/Vp « 0. This latter restriction, to low

fields as per item 8 above, makes the theory invalid
for the small amplitude nucleus (SAN) case dis-
cussed at length by BL.

The nucleation theory method for calculation of
the steady-state nucleation current permits one to ex-
amine the dynamics of the nucleation process in a

physically appealing and analytically tractable way.
The-usefulness of this method is nest invalidated by
our criticism of details of its implementation by BL,
In summary our criticism of the NT method is of (I)
the difficulty in assessing the range over which the
ansatz of Eq. (58) would be expected to give a good
solution to the problem and (2) the difficulty associ-
ated with embedding this method of solution in a sys-
tematic procedure. Thus it would seem that for
quantitative purposes the nucleation theory method is
at present superseded by the SEH method.
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