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Generalized structural theory of freezing
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The first-principles order-parameter theory of freezing, proposed in an earlier work, has been
successfuj in yielding quantitative agreement with known freezing parameters for monatomic
liquids forming solids with one atom per unit ceil. A generalization of this theory is presented
to include the effects of a basis set of many atoms per unit cell. The basic equations are modi-
fied by the "density structure factors" f; which arise from the density variations within the unit

cell. Calculations are presented for the important case of monatomic liquids freezing into hex-
agonal close packed solids. It is concluded that all freezing transitions can be described by using
structural correlations in the liquid instead of the pair potential and that the three-body correla-
tions are important in deciding the type of solid formed after freezing.

I. INTRODUCTION

In an earlier work' (hereafter called RY), an
order-parameter theory of freezing was described
which uses the structural correlations in the liquid in-

stead of the interatomic potential. This approach has
several advantages. First, it has been able to explain
the similarities of freezing transitions in different real

and computer-simulated systems. This is basically

due to the fact that structural correlations in different
systems show many similarities2 although their pair
potentials may be widely different. For example, the
highest peaks of the static structure factor S, near
freezing are similar for liquids with attractive
Lennard-Jones, purely repulsive Coulomb (one-
component plasma), and hard-sphere-type pair poten-
tials. The second advantage of using structural corre-
lations is that the dominant pair correlations can be
measured directly by actual and computer experi-
ments. In fact, this provides an important check for
the theoretical predictions. Another advantage is the
ease with which three-body correlations can be intro-
duced in the theory as compared to the introduction
of three-body forces. The physical reason for the im-

portance of three-body effects is quite simple. %hen
an atom is surrounded by other atoms, the two-body

forces would determine the interatomic separation
and the three-body forces depending upon the angles
should influence the nearest-neighbor arrangements.
Finally, the systematic approximation scheme
described in RY enables one to handle a many-
order-parameter theory incorporating many-body
correlations with easy, step by step approximations
which converge rapidly.

The input information consists of the compressibil-
ity (and its variation with density) of the liquid near
freezing and an assumption about the type of lattice

for the solid to be formed after freezing (the actual
lattice constant is scaled out). Then the order param-
eters are chosen to be proportional to the lattice
Fourier transforms of the density. It is often possible
to assign the same order parameter corresponding to
all the reciprocal-lattice vectors (RLV) of the same
magnitude. The output information depends on the
approximation step. The first step is to take one or-
der parameter and examine whether a transition is at
all possible. If a transition is predicted, then the out-
put also consists of the predicted values of the frac-
tional change of density and the structure factor
c~( =1 —Sr ') corresponding to the first peak. The
second step is to choose judiciously ' a second-order
parameter and get predicted values for the freezing
parameters. The next step is to improve these pre-
dictions by including three-body effects. Usually it is
not necessary to go any further because all other ef-
fects add to less than 5'/0. Applications '4 of these
procedures to the freezing of monatomic liquids into
solids with one atom per unit cell leads to quantitative
agreement with experimentally known freezing
characteristics.

The purpose of the present paper is to generalize
this structural theory of freezing to include the ef-
fects of a basis set of many atoms per unit cell. It is
necessary to rewrite the basic equations of the earlier
work, RY, in suitably simplified form before general-
izing them. This is done in the next section. Section
III shows that the effects of the reciprocal lattice
should be suitably weighted in the presence of a basis
set of many atoms per unit cell. The generaliied
equations are given in Sec. IV. An important test of
these equations is provided by the example of a
monatomic liquid freezing into a hexagonal close
packed (hcp) solid. This is described in Sec. V where
the important conclusions are also summarized.
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II. BASIC EQUATIONS OF RY THEORY

When a liquid approaches freezing transition, the
external conditions like temperature and pressure,
etc. , affect the structural correlations and also set up
density fluctuations. Energy of the system increases
by setting up the density fluctuations but the conse-
quent change in pressure lowers. energy. The relative
effects of the two processes are determined by the
structural correlations and the freezing transition
takes place when the two energy contributions bal-
ance each other. The theory described in RY treats
this process of spontaneous finite-amplitude density-
fluctuation instability in the mean-field approxima-
tion. The basic equations are as follows.

Consider a N-particle system with Hamiltonian H~
confined in a volume V, whose thermodynamic po-
tential 0 is sought in a grand canonical ensemble.
Assuming that this system would freeze into a given
type of lattice (actual lattice constant is scaled out)
described by reciprocal-lattice vectors [Ki }, the order

parameters A. l are defined to be directly proportional
to the lattice Fourier transforms p; = pK

I

=$& )2cos(K; r, ) of the density p( r ) = g&, 8( r
—rt). The adequacy of such order parameters has
been discussed in detail in RY. Note that here p; has
been chosen to be real in contrast to the complex p;
in RY. It has been shown that fl as a function of A.;
can be calculated from

exp[ —PII([X, })}
I' r I

=Tr exp —X(X;—p;p, )2 —P(H)v —P,N) . (I)

c(r) = gc,2cos(q r)
O

and

(p( r ) ) = pp(1 + 7!) + pp Xp;2 cos(K; r ) (6)

with the fractional volume change q and
2p, ; = (p, )/Np, can be used in Eqs. (4). Note that p, ;
defined here is half of p, ; used in RY. The @,;-
dependent terms will cancel out if one sets

p; = ( c;/2N p)
'i'

Finally, one defines the reduced order parameters
g; =2e;h. ; and the functions

t 1

$([g;})= exp g2g;cos(K; r)
l

(ga)

and

fk( ( fj })= 2cos(Kk r )exp $2&;cos(K; r )
I

t

(gb)

and

)) ff(r)= ))(r) —Jc(r —r )[(p(r )l —
p ldr

(4b)
Here c( r ) is the direct correlation function with

c, =1 —S~
' and S, is the static structure factor,

which can be directly measured by experiments. po is
the uniform part of the density. The expansions

Here p, is the chemical potential, P = I/k Tsadnp; are
real constants so that A.; are also real. Writing the
mean-field expansion p,' = 2 (p; )p; —(p; )

' where

( ) denotes the ensemble average, one obtains

to get

rt =Init)( [$; })/(1 ep)

Then, integration of Eq. (2) yields

(9)

8 Pfi([))., })—XZ,' = —2p„(p„) .
BA.g,

(2)

The hypernetted chain (HNC) method' can be
used to develop a systematic approximation scheme
involving liquid-state correlation functions. The
self-consistent equations involving only two-particle
correlations are

In addition, evaluation of (p;) is mathematically
equivalent [using Eq. (I)} to the problem of comput-
ing (p;) for a liquid placed under a fictitious periodic
potential (the actual liquid experiences no such poten-
tial!):

pv( r ) = X(2p,'(p)) —2p)))))2cos(K, r ) . (3)

/3&&([g)})= [ft([(;})—&([0})]
Np

g2 2—(I —ep) rt+~ . (10)
2cl 2

This analytic expression for thermodynamic potential
gives freezing transition. For (;=0, one has the
liquid state. For g; &0, PAQ( [$; }) should be, as in
the Landau theory of phase transitions, a minimum
as a function of order parameters (; and also vanish
to give the freezing transition. . In practice, $, @k
and q are evaluated using Eqs. (8) and (9), and one
gets

—=(I+&)—.EI

c;

(P(r)) =Ppexp[ P& ff(r )}—(4a)
Equation (11) represents the minimal condition,

and one looks for the following equation to be satis-
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fied for the phase transition to take place:

g2 . 2
= ( I —co) tl+ ~

2c; 2
(12)

only the real part enters thc final equations of thc
theory. Therefore w'e consider only the real part of
the Fourier transform of p~( r ) which may be written

If three-body correlations with Fourier transforms
c &II are included (see RY), then Eq. (12) would be

modified to give

iV

pt =ft" X2cos(K; r k) f,' X— 2sin(K; rk)
k 1

where fn and f are the real and imaginary parts of
the density structure factor

+ Xcap(2It+, 1) + g 'c &—",,n&"p,' . , . (l3)
l I

Here co~03~ is related to the variation of co with den-
sity and co is related to the isothermal compressibility
Bf by the relation (1 —co) = p/poBf. n &II is the
IIUInbcf of vcctofs Ill tllc sct {K;} whose IIIlcaf colll-
bination with a given vector of this set gives another
vector of the same set. It is a geometrical effect
which is explained in RY.

The above equations are applicable to freezing of
monatomic liquids into solids with one atom per unit

cel/. The existencc of a basis of many atoms per unit
cell affects the choice and effectiveness of the various
order parameters as described in the next section.

III. "DENSITY STRUCTURE FACTOR"

Consldcl' thc fI'cczlng of 8 polyatomic llquld which
has the following special properties. (I) There are in

general nt, different kinds of atoms. (2) There are
NI atollls of cacll kllld. (3) Tllc lntcractlons afc sucll
that segregation of different types of atoms is
prevented. (4) The solid formed has NI lattice sites
with a basis of nb different atoms at positions 7&,

j=1, . . . , nb. The total number of atoms is
N = Nlnb.

Thc dcnslty for each constltucnt of such 8 polya-
tomic liquid becomes periodic after freezing. Close
to the freezing transition, the density function may
be generalized as

1V1 Nb

p'( r ) = g $ wt8( r —r k
—7t)

k~1 J~I

~here the "weight factors" ~& represent, in some ap-
proximation, the relative differences (if any) of the
constituent atoms in the unit cell. For monatomic
liquids, ~& =1 for all j. For two or more types of
atoms, the properties of the constituent atoms would
determine ~& in a complicated way and here it suf-
fices to treat wt as adjustable parameters (one of
which shouid always be chosen as unity).

It was shown in RY that the imaginary part of the
complex order parameter can be integrated out and

1f; =—
Xw& exp(i K, 7t)

nb&,

In Eq. (14), ns Xkn&I has been replaced by /k' I to
take care of the number of atoms undergoing freez-
ing. The effect of the basis appears through f; in Eq.
(14) and leads to substantial modifications of the dif-
ferent order-parameter modes. Indeed, some of the
order-parameter modes will be completely suppressed
due to f; =0. Three simple examples below illustrate
such cases.

A. bcc as sc with a basis of t~o atoms

Consider a monatomic liquid that freezes into a
body centered cubic (bcc) structure. One procedure
is to view this structure as a one atom per unit cell
case, construct the reciprocal lattice (which is fcc)
and start with the smallest reciprocal-lattice vector set
to discuss freezing in one order-parameter approxi-
mation. This is exactly the procedure that was fol-
lowed in RY. But onc can also look upon the bcc
structure as a simple cubic (sc) structure with a basis
set of two identical atoms placed at 71 =0 and

1 1 1
r& =(—,, —,.—, ) in the units of the iattice constant of
the sc lattice. Then, one has the reciprocal-lattice
vectors of sc lattice~ as K; = h A +k 8 + /C where
A, 8, and C are the primitive translation vectors of
the sc reciprocal lattice and h, k, and l are integers.
Now wt= 1 and f&= —[I+(—I)"+"+I}.For odd

values of (h + i& + I) one gets f; =0 and for even
values f; =1. It follows from Eq. (14) that p;s=0
when (h+k+I) is odd. Thus, the shortest
reciprocal-lattice vector with h =1, k =0, and f =0
does not enter bcc freezing. The next vector with
h =1, k =1, and 1=0 has fn=1 and f =0 so that
pts= X„,2 cos(K, rk). This is exactly the smallest
reciprocal-lattice vector in the former description.
Thus, the two procedures, with the help of f, and p;~,

lead to the same freezing equations. In fact, f; effec-
tively throws away all those order parameters of sc
that are "inadmissible" for the bcc case.

8. fcc as sc rvith a basis of four atoms

In analogy with the bcc case, one can congidcr the
face centered cubic (fcc) as a one atom per unit cell
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structure and then the smallest reciprocal-lattice vec-
tor set yields the one parameter approximation as in
RY. Also in the units of the lattice constant, a basis
set of four atoms situated at 7, =0, 7, = ( —, , —, , 0),
73 = (0, 2, 2 ), slid t4 = ( 2, 0,

2 ) at'taclled to a sim-

ple cubic lattice represents a fcc lattice. Then the
density structure factor corresponding to
K, =h A +k I3 +!C becomes

t fl y ( 1)k+k+ ( I )k+1 + ( I )I+0)

72 3
a +

3
b +

2
c . Then the density structure fac-

tor is

f, = —,
' [I +exp[in(4!r +2k+3!)/3l }

This vanishes when (4h +2k +3!) is an odd multiple
of three. The corresponding order-parameter modes
will be absent for hcp freezing. Equation (16) will be
further used in Sec. V.

This is unity when h, k, and I are all odd or aII even
integers, and zero otherwise. The first nonvanishing

f, corresponds to !t = 1, k = 1, and != I, which is the
smallest vector of the reciprocal lattice of fcc. Again,
like bcc, the two procedures are equivalent, and f,
and p;~ help in sorting out the RLV set appropriate
for fcc structure from the RLV of simple cubic lat-
tice.

C. hcp structure

The lattice is hexagonal with lattice constants a and
c, with the ideal value of P =c/a for close packing
being ( 3

)'!'. The primitive translation vectors are'

a =a(%3x+y")/2, b =a(—43x+y)/2, and
c = a Pz, where x, y", and z are unit vectors along the
Cartesian axes. The reciprocal-lattice vectors are ex-
pressed in terms of the primitive translation vectors
A =2rr(x/v3+y)/a, B =2'( —x/J3+y)/a, and
C=2n(i/P)/a. Thus, K;=hA+kB+!C. There are
identical atoms per unit cell at r~ =(0, 0, 0) and

The generalized equations of freezing may be ob-
tained by choosing the order parameters A.; to be pro-
portional to p;k of Eq. (14) for freezing into a solid
with a basis of many atoms per unit cell. This gen-
eralization is nontrivial because now one has two dif-
ferent terms in p; whose mean field linearization
must be done properly; Also, the term with f/ may
assume different signs for RLV of same lengths.
Now, one can define two averages

N

pc; = X2cos(K; r~)

p&g = X 2 sin(K fy)

so that the proper mean-field linearization of (pk)'
may be wr}tten as

(pk)'=(fa)' 2pc; X2cos(K; r, ) pc2 +(—f )' 2ps; $2sin(K, 'r, ) —ps2
j }

N

+2f,"f,''pc, ps; —pc, X2cos(K; r&) —ps, X2sin(K, rj)
j~} J~}

This expression must be used in Eq. (1) where p; is now replaced by p;. Then the differential equation in order
parameters [the counterpart of Eq. (2)1 becomes

8 Pn([k, )) —$k,' = 2ek(fspc, f/ps, ) . — —
k, i

This reduces to Eq. (2) for ff =1 and f; -0. The equivalent fictitious potential for calculating the fluid response
is now given by

pv( r ) = X [2a,'(fspc, f/ ps, ) —2a; h, j [2facos. (K—I r ) —2f/sin( KI r ) [ (19)

It may be noted that this long-range oscillatory potential has both sine and cosine oscillations superposed with
weighting factors of f/ and f;". The fiuid density wiII show similar osciBations in response to this v( r ). The
HNC Eqs. (4) will now contain p; in place of p, and the Fourier expansion of Eq. (5) for c( r ) remains un-
changed. However, the expansion of (pk( r ) ) has to follow that of v( r ) in Eq. (19). It must also contain ad-
ditional fi" and fj' as factors for p, c, and p, s, to govern the effects of various RLV sets. Thus, one gets

(p ( r )) pI[(I+r!)+p]x(fppc, f/ps, )[2fpcos(KI r ) —2f/—sin(K, r )]
i
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The first factor of the last term in Eq. (20) is simply the average of pi of Eq. (14). Again the f; factors
suppress the "inadmissible" RLV sets and as an example of this, one obtains the correct expansion for bcc from
that of sc by using the fi of Sec. III A.

Using the expansion of Eq. (20), one gets rid of p, c; and p, s; terms in the self-consistent HNC equations by the
same choice of wi as Hl Eq (7) Then the final form of pverr'becomes

pv, r(r)--cori —$g [2facos(K; r ) —2f sin(K; r )l,
with ii:; =2a;h„as defined before. The @ and $k functions are now defined as foliows:

di([ f l) =
J~ exp Xg;[2f; cos(K; r ) —2f/sin(K r )l,"dr

I

(21a)

d (k[(;l)= J
-' [2fkcos(Kk r) —2fksin(Kk r)lexpXgi[2facos(K, r ) —2f/sin(K, r )l . (21b)

Note that these forms of $ and $~ are more complicated than those of Eqs. (8), specially in view of the fact
that the new sin(Ki r ) terms have a factor f/ whose sign may change for RL& of same magnitudes. As ex-
pected, Eqs. (21) reduce to Eqs. (8) for fia = I and f/=0. Integration of Eq. (18) leads to the final conditions for
freezing:

fi"f('' ' =(I —co) rt+~ (22)

p, ,
—= =(I+rt)—fi"fib( 4 i

Cl

where rt, as before, equals In@/(I —co). These equations explicitly exhibit the effects of the basis set. They van-
ish identicaHy for f;-0 and reduce to Eqs. (11) and (12) for f;-1. Finally, one can include the three-body ef-
fects. Then Eq. (23) gets modified to the condition

( I co) il + + coil + + XciQ pi (2rl + I ) + XC I PINj pi y, ~ y
I I

w'th the usual definitions of the three-body correla-
tions (see RY) c00, cio, and c,i,„. The order(3) (3) (3)

parameters gi must be replaced by

in evaluating the functions $ and Qk for Eq. (24) as
discussed in detail Bl RY. The generalized Eqs. (21)
to (24) of freezing also provide good quantitative
results for the important case of hcp solids.

An important test of the generalized equations of
freezing is provided by the example of monatomic
liquids freezing into hcp solids. The complication of
the hcp structure has often come on t]he way of
theoretical studies of hcp solids. For example, the
electronic structure of hcp metals has not yet been
studied as extensivelyl as those of fcc metals
although the number of elements forming hcp solids

is more than7 the number of elements forming the
equally close packed fcc solids. One of the stated
goals of RY +as to study the freezing into hcp solids
and the generalized theory here is the appropraatc ap-
proach for this study, On the other hand, this also
provides a very clean test for the generalized equa-
tions because the large number of sets of RLV ~hose
magnitudes are in the region of the second peak of S,
can easily lead to quantitative disagreement for any
inaccurate theory. The density structure factors fi ef-
fectively sort out the appropriate RLV sets and lead
to the expected results.

The direct and reciprocal-lattice vectors of the hex-
agonal lattice are described in Sec. III C and the den-
sity structure factor for mona~oml'e Amp structure is
given by Eq. (16). The reciprocal-lattice vector sets,
together with their (/i, k, l) values, fi, fi', and IIt;I'
are tabulated for p -48/3, in the increasing order of
length in Table I, The system under study is chosen
to be the hard sphere fluid with co= —49.0 and
cotS' =-183.0 for ease of comparison with known
numbers. As described in RY, one should look for
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TABLE I. Some sets of reciprocal-lattice vectors (RLV) of hcp lattice with the corresponding density structure factors f, and
fi. Following Kittel (Ref. 7), we write K =it A +kB+iC where A (2w/a)(x/J3+y), B (2w/a)( —x/J3+y), snd
C (2m/a)(i/P). A sca1ing procedure described in the text determines the form of wI „,and ~& „„that are used in functions

No.

RLV

Xcos(K, r )

w, „,= X2cosfk(x+y) +k( —x+y) +/z]

(0,0,1)(0,0-1)

(1,0,0) (0,1,0) (1,-1,0) (-1,0,0)
(0,-1,0){-1,1,0)

0.375

1.333

2 cosz

2(cos2x +2 cosx cosy)

1.500 2 cos 2z

(1,0,1)(-1,0,1)(0,1,1)(0,-1,1)
(1,-1,1)(-1,1,1)(-1,0,-1)
(1,0,-1)(0,-1,-1)(0,1.-1}
(—1,1,—1)(1,—1,—1)
(1,0,2) (-1,0,2) (0,1,2) (0,-1,2)
(1,-1,2) (-1,1,2) (-1,0,-2) (1,0,-2)
(0,-1,-2) (0,1,-2) (-1„1,-2}(1,-1,-2)

1.70S 4 cosz {cos2x + 2 cosx cosy)

4 cos2z ( cos2x +2 cosx cosy)

12

(0,0,3) (0,0,-3)

(1,1,0) (2,-2,0) (-1,2,0)(-1,-1,0)
(-2,2,0) (1,-2,0)

(1,1,1)(2,—2, 1)(—1,2,1)(—1,-1,1)
(—2,2, 1)(1,—2, 1)(—1,—1,—1)
(-2,2,;1)(1,-2,-1)(1,1,-1}
(2.-2.—1)(—1.2.—1)

3.375

4.000

4.375

2 cos3z

2( cos2y +2cosycos3x)

4cosz (cos2y +2cosycos3x)

(1,0,3}(-1,0,3) (0,1,3) (0-,-1,3)
(1,—1,3) (—1,1,3)(-1,0,—3)
(1,0,—3) (0,—1,3) (0,—1,—3)
(0,1,-3)(-1,1,-3)(1,-1,-3)

4.708 4cos3z (cos2x +2cosxcosy)

1'0

12

(2,0,0) (0,2,0) (2,-2,0) (-2,0,0)
(0,-2,0) (-2,2,0)

(1,1,2) (—1,—1,2) (2,—1,2) (—2, 1,2)
(1,-2,2) (—1,2,2) (-1,—1,2) (1,1,—2)
(-2,1,-2) (2,-1,-2) (-1,2,-2)

5.333

5.500

2(cos4x +2cos2xcos2y)

4cos2z (cos2y + 2cosy cos3x )

(2,0,1)(—2,0,1)(0,2, 1)(0,—2, 1)
(2,-2,1)(-2,2, 1)(-2,0,-1){2,0,-1)
(0,—2,—1}(0,2,—1)(—2,2,—1)(2,-2,—1}

4cosz (cos4x +2cos2xcos2y )
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TABLE I (Continued).

Xsin(K, r )P„

wi „„=X+ sin[h(x+y) +fr( —x+y) +Iz]
Comments

2sinz Ineffective due to f; =0

1/4 2( sin2x —2 sinx cosy) v@4 (a) Two dimensional
(b) Length too small

2 sin2z
(c) No solution
(a) One dimensional
(b) Length too small

3/4 4 cosz (-sin2x +2 sinx cosy) v3/4
(c) No solution
(a) Correct length
(b) First o.p.
(c) Reasonable solution

1/4 4 cos2z ( sin2x —2 sinx cosy) ifi4 (a) Too long to be first set

(b) Too small to be second set

(c) "Reasonable solution"

2 sin32 Ineffective due to f, =0

2( sin2y + 2 siny cos3x) (a) Two dimensional
(b) Too small to be second set

4cosz ( sin2y +2 siny cos3x) Ineffective due to f, =0

3/4 4 cos3z (—sin2x +2 sinx cosy) is/4 (a) Too small to be second set

(b) No good solution

1/4 2( —sin2x + 2 sin2x cos2y) A]4 (a) Two dimensional
(b) No good solution

4cos2z(sin2y +2siny cos3x) Good to be second set

3/4 4 cosz (sin4x —2 sin2x cosy) A/4 (a) Good second set
(b) Gives good solution together

with set 11.
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the set of shortest RLV to choose the first order
parameter. However, f, =0 for set 1 in Table I.
Then, one would naturally examine set 2 which is

only two dimensional. In fact, this set was used for
freezing of hard disks in RY yielding a solution of
c& =0.86 and q =0.013 in the one order-parameter
approximation. The same solution should have ap-
peared here without the generalized equations.

The generalized equations lead to no solution for

set 2 for hcp. Some details of the computational pro-
cedure are as follows. The functions $ and Pk of
Eqs. (21) are evaluated for given values of (,. The
integrations are over the primitive cell which now
contains two atoms and whose volume would appear
in the denominators. Some odd factors can be scaled
out (for example, the K3 associated with the x com-
ponent and the P associated with the z component do
not appear in the final formulas). Then one gets

$=n '
J dx J dy Jt dz exp Xg, (few, „,—f .w, „„) (25a)

P&=n 3 Jt dx Jt dy Jt dz
' ' '"

exp Xg, (f;"w„„f/w, „„)— .
I

(25b)

Here, it is assumed that there are n& vectors of the
same magnitude in the RLV set (K& }. Let these vec-
tors be designated as K&, a =1,2, . . . , n& Then t.he

quantity w&„,= X,cos(KJ r) where r has been

properly scaled. In fact, for hcp, one has
(KJ r) =h(x+y)+k( —x+y)+lz. So far, the
procedure is analogous to that described in RY. But
the sine summation here needs special care because

fJ may change sign with n (although fj~ remains the
same for all a). Let PJ be the sign of fJ . Then
w&„„= Q, PJ sin(K& r ). Table I contains the ex-

pressions for ~& „,and ~~ „„for the different sets of
RLV. In the one order-parameter approximation,
one chooses a value for gj, evaluates d, P&, and rt
Assuming that the minimum condition of Eq. (23) is
satisfied, one tests the equality of thermodynamic po-
tentials in the two phases by using Eq. (22) [or Eq.
(24) when the three-body effects are included]. This
search continues by changing (& values and a solution
may or may not exist corresponding to a given RLV
set }KJ}. It does not exist fo the RLV set 2.

The fact that no solution is found for the RLV set
2 in the one parameter approximation is an expected
result which also shows the validity of the generalized
equations. The essential argument is that the hard

sphere fluid could also freeze into a fcc structure with

a lattice constant of W2 a (a is the lattice constant for
hcp lattice). Then the smallest RLV set would corre-
spond to about (a/2n)z}K&}')1.5 in Table I. There-
fore, the magnitudes of RLV sets 1, 2, or 3 do not
correspond to the position of the first peak position
of the structure factor and these RLV sets cannot
provide the first order parameter. This conjecture is
borne out by the generalized equations. The RLV set
1 is ineffective due to f; = 0 and the sets 2 and 3 give
no solution. The one order-parameter approximation
corresponding to RLV set 4 yields a solution that is
tabulated as theory I in Table II. This is comparable
to the one order-parameter solution for fcc case

}

where cj
——0.96 and q =0.029 (see RY, Table II).

The present values of both these quantities are better
than those for fcc implying a possible preference for
hcp freezing.

The RLV set 5 was also tried as corresponding to
first order parameter and yields a reasonable solution
as shown in theory III of the Table II. However it is
unacceptable because (a) its magnitude is too large,
(b) it does not combine with a proper second order-
parameter set, and (c) the previous set has the prop-
er magnitude and combines perfectly well with a
second set to give the two order parameter approxi-
mation (see below). This establishes set 4 as the set
for the first order parameter and now one can search
for the set of RLV that would correspond to the
second order parameter. The systematic procedure
can be followed to test all the subsequent sets as the
set for the second order parameter and the results are
shown as theorys IV, V, VI, and VII of Table II, for
which solutions exist. But Table I shows the interest-
ing fact that the RLV sets 11 and 12 have magni-
tudes very close to each other so that both of these
together should correspond to the second order
parameter. Also, their magnitudes lie very close to
the position of the second peak of the structure fac-
tor. The result of assigning the same order parame-
ter for the 24 vectors of sets 11 and 12, is shown as
theory VIII in Table II and inclusion of coo term
gives theory IX of Table II. In fact, one could have
tabulated theory I, VIII, and IX only as logical con-
clusions dragon from the magnitudes of RLV and the
structure factor curve. The satisfactory solution
found with the proper two order-parameter theory
represents the solution to the problem of hcp freez-
ing. It must be remarked that the small value of q
can be improved to agree with experiment if a small
positive clo

' is introduced.
In conclusion, it may be stated that all freezing

transitions can be described by using the structural
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TABLE II. Freezing parameters for hard sphere hcp freezing. Here q denotes the fractional density change, cj and c„are
structure factors cv (= 1 —Ss ') corresponding to q = [K;}and q = }K„},respectively. The reciprocal-lattice vector (RLV) sets
( KJ } and }IC„} are designated according to the labels described in Table l.

Description
[KJ} set

label
}K„}set

label

Theory I: One order parameter
Theory II: One order parameter
with c~~~~~ =—183.0
Theory III: One order parameter
Theory IV: Two order parameters
Theory V: Two order parameters
Theory VI; Two order parameters with
cp~p3~ = —183.0
Theory VII: Two order parameters
Theory VIII: Two order parameters
Theory IX: Two order parameters with

p~p3~ = 183 0
Experiment

0,93
0.91

0.91
0.91
0.82
0.80

0.84
0.67
0.64

0.19
0.28
0.30

0.30
0.31
0.28

0.29

0.032
0.018

0.040
0.033
0,055
0.053

0.052
0.070
0.05

0.10

0.57
0.43

1.11
0.58
0.66
0.64

0.08
0.14
0.15

0.15
0.19
0.15

10
11
11

12
11 and 12 together
11 and 12 together

correlations in the liquid instead of the pair potential.
The generalized equations of freezing presented here
describe in general the phenomena of freezing into
solids with a basis set of many atoms per unit cell.
The density structure factor accounts for the effect of
thc basis set and yields good quantitative agreement
with known results. The approach of using structural
correlations avoids the usual difficulties with manipu-
lations involving two-body potentials with large repul-
sive cores. It also avoids the difficulties associated
with formulation of many-body forces in fluids. This
is important because at least three-body forces must
be introduced in understanding the various nearest-
neighbor coordination numbers. Indeed, there are
evidences for the important role played by three-body
interactions in systems with long-range and short-
range. orders. "P

The present theory enables one to easily study the
role of three-body correlations in the phenomena of
freezing. The conclusion is that every liquid should
freeze into a bcc structure if three-body correlation is
attractive (c,Ii3) is negative). The other extreme of
very strongly repulsive three-body correlation would

yield a simple cubic structure which is not found in
nature. %eakly repulsive three-body correlations
would produce hcp structures and very weak three-
body correlations imply fcc structure. In fact, these
two close packed structures appear to have a small di-
viding line in terms of three-body correlations so that
slight changes in three-body forces can possibly bring
about changes from hcp structure to the fcc structure
and vice versa. These conclusions appear to bc close
to the observed facts. Therefore, it is fair to state
that the present theory of freezing helps in under-
standing the effects of three-body forces in the for-
mation of solids besides yielding quantitative results
for the freezing parameters.
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