
PHYSICAL REVIEW B VOLUME 23, NUMBER 11 1 JUNE 1981

Eliashberg function in amorphous metals
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An expression for the Eliashberg function cx2F(co) is derived for amorphous metals beginning

with a formulation in terms of the Van Hove dynamical structure factor. The result is equiva-

lent to one derived from a different starting point by Foon and Geballe. At low energy,
n2F(co) is shown to vary linearly with eo and inversely with the electron mean free path A in

agreement with Bergmann's expression derived for a Gaussian-disordered crystalline metal.

Modification of the theory for short mean free paths is discussed in terms of the Pippard-Ziman

condition on the electron-phonon interaction. Invoking a prescription derived by Pippard for

the reduction of the electron-phonon interaction in ultrasonic attentuation, one finds a quadratic

dependence of n F(eo) on 0) at low energies in high-resistivity amorphous metals; an even

sharper reduction in the electron-phonon interaction and hence in o. F(0)) has been found by

Poon, who treated the problem in transition-metal systems in the context of the Barisic-Labbe-

Friedel rigid-ion approximation.

I. INTRODUCTION

The Van Hove dynamical structure factor' S(E, ro)

plays an important role in the description of the
lattice-dynamical properties of metals. Baym has
given explicit expressions, for the electron self-
energy, mass-enhancement factor, and the electrical
and thermal conductivity in terms of only the effec-
tive electron-lattice matrix element and S(E, ca).
Meisel and Cote3 have given expressions for S (E, co)

appropriate for amorphous metals. Baym's equations
lead to the Ziman-Faber theory of liquid-metal elec-
trical transport and the corresponding result for
amorphous-metal electrical transport. 5 The Eliash-
berg function6 a2F(co) is an electron-phonon
interaction-weighted density of states and is central to
the theory of superconductivity. In this paper we
derive an expression for n'F(co) appropriate for
amorphous metals beginning with a formulation in

terms of S (E, cu) as proposed by Baym2; the result is

given in terms of the phonon-branch densities of
states and dispersion relations, the effective
electron-lattice matrix elements (r matrices), and the
geometrical structure factor. Our result is seen to be
equivalent to one derived by Poon and Geballe who
started from an expression for a2F(o&) given by Al-
len. '

The connection between the Ziman-Faber liquid-
metal theory4 5 resistivity and the Eliashberg function
(as reported by Poon and Geballe7 and by Berg-
mann9) is clearly seen in the unified treatment in
terms of the Van Hove dynamical structure factor.
In particular, it is shown that n~F(co) for small &u is

inversely proportional to the electron mean free path

A. It is remarkable that such a relationship exists
despite the fact that elastic scattering processes play
the dominant role in determining the magnitude of A

in the amorphous or liquid state while inelastic
(electron-phonon) scattering determines n F(~)

The form of a'F(co) for the dominant backscatter-
ing case, which is expected to be relevant to
transition-metal-based alloys, is also presented. A

modification of the theory, based upon the Pippard-
Ziman condition on the electron-phonon interac-
tion, '« " is suggested for high-resistivity (short A)
metals (for which weak scattering theory is expected
to fail). The results of this approach are compared
with recent calculations of Poon' in which the re-
duced electron-phonon interaction in disordered al-

loys is computed within the Barisic-Labbe-Friedel
rigid-atom approximation. "

II. THEORY

A. Van Hove dynamical structure factor

where the elastic part

S (E~) =e ' '+a( )E5( ) (2)

with e ' t"t the Debye-Wailer factor and a (E) the
geometrical structure factor. The phonon part

(3a)

The Sham-Ziman form of the dynamical structure
factor appropriate to amorphous metals ' is given by

S(E, «)) =S«(E, cu) +Sp„(E,co) (I)
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where the sum runs over the branches of the phonon spectrum and the 0. branch contribution is given by

S (K, cu) =[n(c»)+1] g [a(E q)—8(c» —c», )+a(E+q )8(cu+cur )]
tt'E2/3

&e

—=tiK'[n (cu) +1]o.(K, cu)/6tM m, (3b)

where g is Planck's constant over 2rr, n (c») is the phonon occupation number, M is the ionic mass, the sum runs
over the n branch of the phonon spectrum, and we have used the isotropy of the amorphous state. Converting
the sum into an integral over the phonon spectrum, we have

o' (E, c»)= Jl dc»& F (cuq ) Jl [a(E —q )8(cu —
cup )+a(E+q )8(cu+cu& )]dOq

=F (i ic)uJl
4

a(E —q (cu))
t' dOq

(4a)

F(ic»i—)A (K,q (cu)} (4b)

where F (cu) is the a branch phonon density of
states, q (c») is the a branch dispersion relation, and
we have defined a q-dependent averaged structure
factor A (K,q).

Combining terms for the longitudinal (I), two
transverse (t) acoustic branches, and the optical
branches one obtains

cr(K, cu) = Xo (E, c»)

=Fi(~)~ (K,qt(~))+2F (~)~ (K,q, (~»

+ XFp, (c )A (E,qp, (cu))

valence and EF the Fermi energy. Equation (6) is
equivalent to the expression given by Baym. '

If backscattering is dominant

C
4~~,

= —a(2kF) it(2kr) i'

We shall also use the following definition of the
electron mean free path A:

A —= VF r, = trkt;r, /m

where VF is the Fermi velocity and m the electron
mass.

where the sum on i runs over the optical branches. C. Mass-enhancement factor A, and

Eliashberg function a2F (co)

B. Transport relaxation time r, The mass-enhancement factor is given by

The dominant contribution to the electrical resis-
tivity of amorphous metals is produced by elastic
scattering and at low temperatures the Debye-Wailer
factor is approximately unity. Thus, '"with
x = tcu/kti T, —

g =2 1 a2F(cu)dOJ

OJ
1

(10)
1

S(K, c») it(K) i',
2kp-

1 1 1 3
1 C

'
d I'd K K

4~v, ~ ~ ~ 0 2kF 2k'
1 c 1

x xn(x)S(E, cu) it(K) i

3

=C J" d a(K) lt(K) I'
~

I

where k~ is Boltzmann's constant, T is the tempera-
ture, kF the Fermi wave number, t (K) the scattering
matrix, and C ~3Z/2ttEt: with Z the effective

where the usual definition of the Eliashberg function
is contained in Eq. (10) and Eq. (11) is equivalent to
the expression given by Baym. 2 Thus,

2hk' " g ga2F(cu) C J d
F F

x it(E)i'o(K, cu), (12)

where we have used the identity

Jf dc»cu '
n( cu) G(i cui) —=- Jt dcu c» 'G(c»)
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A (E,q (cu)) a(E), u=i, t (13a)

and

F (cu), u=i, t
3'

qocu
(13b)

where qD is the wave number and c is the n branch
sound velocity. Thus,

2h kF.~F).)- 'c f ~ )rcc))'
3M ~ o 2kF 2kF

xa (E) —+-3OJ 1 2

qD cl cr
3 3 3

and cr(E, cu) is defined in Eq. (5). The form of Eqs.
(5) and (12) indicates that u2F does not factor in the
general case. Equation (12) is equivalent to the ex-
pression derived by Poon and Geballe' who began
from an equation given by Allen. ' We now consider
some special cases.

i. Small energy (lo)v cu) iirnit In .this limit there are
no optical modes and both q, (cu) and qt(cu) are
small. Thus

and Eq. (15) assumes the form

u2F(cu) = (Zg2qo3/12' mMcuA) F(cu) (17)

D. Pippard-Ziman condition

We have suggested in earlier work' that the
electron-phonon interaction should be modified in

high-resistivity metals in accord with the condition
(as stated by Ziman'«), "Phonons whose wavelengths
2n/q exceed the electron mean free path A are inef-
fective electron scatterers. " Pippard's work" con-
tains an analytic expression, the Pippard function
P(q A), for the reduction of the electron-phonon in-

teraction which results at small A. These ideas are
established in the theories of ultrasonic attenuation"
and thermal conductivity' of high-resistivity metals;
but their applicability to electrical transport' and su-
perconductivity' is still open to question.

The Pippard function is given as

p(x) = (2/n ) [x tan 'x/(x —tan 'x) —3/xj . (18a)

Useful approximate forms at large and small x are

c I

2tkFi I
)3M' 4@v,

,

(14a) and

p(x) =—gx/Sn, x ( 1.5

p(x) = 1 —0.976/x, x ) 5

(1gb)

(18c)
1 2 FOE—+-

4m Mm ci c,
(14b)

2ttkp~ 1 o (2kr, «))

3Mcu 4rtr, a(2kF)

Ztt qo o'(2kr, cu)

4mmM 3cu2 a (2kF) A
(15)

iii Backscattering .dominant and a (2kr) near unity.

When a (2kr) is near unity, the averaged structure
factors A (2kr, q) become essentially q independent
and approximately equal to a (2kr); thus

cr(2kr, «)) =—a (2kF) F(cu) (16)

where we have used Eqs. (7) and (9) and the free-
electron identity 2kr =—Zqt). u'F(cu) factors into
u2(cu) F(cu) as displayed in Eq. (14a). Equation
(14b) is identical to that derived for the small cu limit
of a "Gaussian-disordered" crystalline metal by Berg-
mann. 9

The low-energy limiting form of the Eliashberg
function is especially important because of the extra
~eight given to low energies in the expression for the
mass-enhancement factor.

ii. Backscattering dominant. When backscattering is
dominant, Eq. (12) can be brought to the form,

k'k 2

u'F(~) =— ~u(2kF ~)
I «2kF) I'

If the Pippard-Ziman condition describes the reduc-
tion in the electron-phonon interaction at small q A,
then the previously given formulas should be amend-
ed according to the prescription;

u'F(cu), = u'F(cu) P(q(cu) A) (19)

In particular, this implies that in high-resistivity met-
als the low-energy form of n F would be given by

u'F(cu), = 2 1 2—+—(t«))'
5 vr'Mm ci' c,4

t

(20)

for q(cu)A less than about 2. That is, in high-

resistivity amorphous metals, the low-energy part

[q (cu) A ~2] of the Eliashberg function will be qua-
dratic as is usually found in crystalline metals.

Recently Poon' has computed a reduction in

electron-phonon interaction (wliich he refers to as
"phonon ineffectiveness"), based upon the Barisic-
Labbe-Friedel rigid-ion approximation' appropriate
for systems where localization is becoming important.
He finds n'F proportional to co' at small ao in high-
resistivity systems and a much greater reduction than
is given by the prescription of Eq. (19). This can be
taken as further theoretical justification for imposing
the Pippard-Ziman condition in the treatment of
strong scattering systems; it also suggests that the
Pippard function underestimates the reduction of the
electron-phonon interaction in such systems.
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III. DISCUSSION

It is shown that a consistent approach, as outlined

by Baym, 2 can be applied, in particular, to electrical
transport and the Eliashberg function in amorphous
metals. The application to electrical transport gives
rise to the Ziman-Faber theory4' as is well known.
The application to the Eliashberg theory, as given here
gives results equivalent to those derived by Poon and
Geballe' based upon an equation of Allen. s The ex-
pression in Eq. (12), for q A not too small, gives
a2F(co) in terms of the branch phonon densities of
states F (cu) and dispersion relations q (co), geome-
trical structure factors a (K), and the scattering t ma-

trix t(K). Equation (14) indicates that the small en-

ergy behavior of o,2F is linear in ~ and inversely pro-
portional to A. If backscattering is dominant (as
might be the case in transition-metal-based systems)
Eq. (15) shows that a'F will be inversely proportional
to A and will be determined by averages of the
geometrical structure factor near 2kF as well as the
phonon-branch densities of states and dispersion rela-
tions. If backscattering is dominant and a(2kF) =1,
Eq. (17) shows that a'F is approximately proportional
to F(ru)/coA

The small-~ behavior of a'F is important because
of the extra weight given to low-energy modes in the
expression for the mass-enhancement factor A. and is
given by Eq. (14) which is equivalent to Bergmann's
result~ derived for a simple model of a disordered
crystalline metal. As pointed out by Bergmann9 n'F
is enhanced at small ~ in amorphous metals as com-
pared to crystalline metals because (i) n~F is linear
rather than quadratic in co, (ii) there is a large in-

crease in F(ro) associated with. a decrease in c, found
in disordered systems (which is also responsible for a

large increase in the T3 part of the specific heat), and
(iii) the electron mean free path A tends to be short-
er in amorphous alloys,

The enhanced values of n'F relative to crystalline
alloys in the important small-co regime lead one to
expect that amorphous alloys will be better supercon-
ductors than their crystalline counterparts. This ex-
pectation is apparently realized in amorphous simple
metal systems, '~ which, ss Bergmann emphasized, 9

behave like strong coupled superconductors. Howev-

er, amorphous transition-metal systems do not fit the
pattern. Collver and Hammond'0 demonstrated that
in amorphous transition-metal alloys, T, varies
smoothly with the electron-per-atom ratio, exhibiting
a broad maximum near 6.5 in contrast to the
double-peaked variation seen in crystalline transition
metals, 2' and T, in the amorphous phase of the
highest T, crystalline alloys is only about half as
large. This variation of T, in amorphous transition
metals remains to be explained;

The most striking aspects of Eq. (14) [Bergmann's
Eq. (5.6) l is that u F should be linear in co at small
ao. This prediction has been confirmed in many
amorphous and disordered alloys. '2 However, for
small A (corresponding to resistivities in excess of
100 p, fI cm) the Pippard-Ziman condition'0'" may
become important. Cote and Meisel' used a sharp
cutoff in the electron-phonon interaction at small co

to approximate the effect of the Pippard-Ziman con-
dition and found that this could explain the degrada-
tion of T, seen in some radiation-damaged supercon-
ductors23 and "saturation effects" in the electrical
resistivity of high-resistivity metals. '4 A Pippard
function modification as in Eq. (19) is probably a
more realistic approach because it correctly describes
the q A dependence of the ultrasonic attenuation, '

"saturation effects" in electrical resistivity, ' and the
thermal conductivity of high-resistivity metals"; how-
ever, it yields a quadratic smail-ro form for n F(co)
[Eq. (20)] which is nor reduced sharply enough to ex-
plain the observed degradation of T, in radiation-
damaged superconductors. Poon's calculations, "
within the Barisic-Labbe-Friedel approximation, "
yield a more sharply reduced low energy a2F(ro),
proportional to co, in systems where electron locali-
zation is becoming important and thus may be more
successful in explaining the degradation in T,.

Recent measurements" of e2F in high-resistivity
amorphous metals exhibit curvature at small co in ac-
cord with the results of the Pippard-Ziman condition
which suggests that this is a fruitful approach. Obvi-
ously, serious questions remain concerning the na-
ture of the reduction of the electron-phonon interac-
tion in high-resistivity amorphous metals; detailed
tunneling experiments in high-resistivity amorphous
alloys would be helpful in this regard.
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