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Phase diagrams of a model for two-layer 3He-4He mixture films
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We present a Migdal-Kadanoff renormalization-group scheme for a model two-layer classical

XY system with annealed impurities. The model Hamiltonian is appropriate for a two-layer

He- He mixture system. We find a rich variety of phase diagrams. Depending on the choice
of parameters we find either one or two first-order phase-separation transitions, which may be

accompanied by the appearance of superfluidity. Phase diagrams with two X lines are found,

making possible two distinct transitions in the superfluid density. In the case of phase-

separation transitions, each. transition is primarily associated with a single layer, and three-phase

coexistence is possible. Comparison with recent experiments is made.

I. INTRODUCTION

In this work we treat a two-layer generalization of a

single-layer model introduced by Berker and Nelson'
and Cardy and Scalapino (hereafter referred to as
BNCS) for the description of 'He-4He mixture films.
Our primary motivation for this work is to explore
the consequences of departing from a purely two-
dimensional framework. Indeed, we find that the ad-

ditional degrees of freedom in the two-layer model,
when the effect of a substrate potential are included,

produce phase diagrams possessing considerably more
complexity than do those of the one-layer model.

The model Hamiltonian to be used is set on two
parallel triangular lattices positioned such that each
site on the lower lattice lies directly above its coun-
terpart on the upper lattice. Each lattice site may be
occupied by either a 'He atom or a 'He atom. Near-
est-neighbor sites occupied by 'He atoms interact via

LYcouplings, and all nearest-neighbor pairs possess
Ising lattice-gas couplings. Differing chemical poten-
tials for the layers introduce the effect of a substrate
potential. Explicitly, we write
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Here g(s) means a sum over distinct nearest-

neighbor. pairs on a triangular lattice, while X, indi-

cates a sum over sites on that lattice. Jt and J2 are
intralayer XY couplings, while J„ is the analogous in-

terlayer coupling. K ~~ is the interaction energy of
nearest neighbors of types a and y (Ix, y =3, 4) on
lattice P (P=1,2). K"„is interlayer coupling for

atoms of types ot and y. p. ~ is the chemical poten-
tial of a particle of type ot on lattice P. The variable
v;~ takes on two values, zero when site i on lattice P
is occupied by a 'He atom and unity when the site is

occupied by a ~He atom. Finally, 8; ~ is the phase of
a He atom on site i of lattice P.

Within an irrelevant constant term, H may be writ-
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ten in the more compact and useful form
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At this point it is useful to elaborate on the effect
of a substrate potential. Since 'He and He atoms are
isotopes, the potential couples to them equally. How-
ever, quantum effects are quite important in the heli-
um mixtures. For example, near a wall bounding a
bulk mixture a strong concentration gradient is pro-
duced because the smaller zero-point motion induced
volume of the 4He atom makes it energetically favor-
able to have an excess of 4He atoms located in the at-
tractive well of the wall potential. 3 Further, at the
free surface of a bulk mixture there is a bound state

of a He atom due primarily to the relatively large
zero-point motion of this atom. 4 In a thin film the
quantum effects are perhaps even more interesting.
The free surface state for a 'He atom appears to
remain, but the bulk states become discrete due to
the presence of the substrate just below the surface.
In very thin films recent work of DiPirro and Gas-
parini5 shows that in some cases only two important
states remain, one localized within the 4He and the
other near the surface. Though we cannot explicitly
put quantum effects in our inherently classical calcu-
lations we can model the two-quantum-state effect by
including in p. ~ and p,q one-body terms which are dif-
ferent for 'He's in each layer. This allows us to con-
sider nonzero values of the difference 4p, = p, ~

—p, ~

even in the situation where the Ising couylings are
the same in each layer. The naive omission of quan-
tum effects would yield hp, =0 in the case of equal
Ising couplings since explicit substrate potential terms
would cancel in b, p„ the helium atoms being isotopes.

It is possible to provide order-of-magnitude esti-
mates of the parameters appearing in Eq. (3) for the
He- He mixture system. Based on bulk properties,

we expect that

K44 + K3$ —2K34
' —n4[(BI44/'()n4), r + (()143/Bn3) „r 2(()+4—/()n3) ]„r,

where p, 3 and p4 are the bulk 'He and He chemical
potentials, n3 and n4 are the corresponding number
densities, and P=1, 2,x. The dilute-solution theory
of Baym says that the term in brackets here is zero
at low temperatures; thus, we at least expect it to be
small compared to n4(BI44/()n4)„r —27ks The.
parameters J), J2, and J„are of order n4f aks/m—k~, where m is the He atomic mass, and a is an
interatomic spacing. Assuming that the Ising cou-
plings are approximately independent of layer index
P, we expect hp, =—p, q

—p, ~ to be of the order of the
level difference found by DiPirro and Gasparini. '
This gives hp, —kq.

The discrete 'He level nature of thin mixture films
makes somewhat plausible our two-layer lattice model
which might at first glance appear to not represent
very well a continuum film system. Many of our
most interesting results are primarily a consequence
of having two discrete layers. In particular, we find
that, for a range of coupling parameters, our system
can undergo two superfluid transitions, a phenom-

enon which has been observed in very recent experi-
ments of Bishop and Reppy, ' and which cannot be
explained by the BNCS theory.

To exhibit these novel features, we have chosen a
particular set of coupling parameters (in units of
Boltzmann's constant ks = 1) J, = J2 ——E, = K2
=E„=1.0 and J =0.05 for which we determine the
phase diagrams over a wide range of temperature and
chemical potential using a generalized Migdal-
Kadanoff renormalization-group method. The rather
small interlayer XYcoupling (J„=0.05) was chosen
for reasons of computational efficiency as the numer-
ical method requires lengthy calculation; recent
study of. a pure "He system indicate that no qualita-
tive changes occur for J„—1. There is further dis-
cussion of this point in Sec. V.

In the next section, we will consider a Migdal-
Kadanoff' )0 renormalization-group transformation to
be used in affecting approximate determinations of
the phase diagrams produced by H. We also derive
an approximate expression for the superfluid areal
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density jr, (T) for our two-layer system. In Sec. III
we describe the phase diagrams which we have ob-
tained. Some discussion is also given concerning the
consequences of varying the Ising and XY couplings.
In Sec. IV we describe in detail how the phase dia-

grams were found. Section V contains a comparison
of our results with available experimental data and
some additional remarks.

transformation to be introduced shortly. It is more
appropriate to redefine H in terms of a sum of
general four site-interactions hn& (jtj, 2)j, r)R

() ) (2) ( i ) (2) )

= x h4ij (d 2)j( Y)L', Pl( Pi ~ PJ, Pi ), (4)
&iJ&

II. RENORMALIZATION-GROUP METHODS

The Hamiltonian in the form (2) is not invariant
under the Migdal-Kadanoff renormalization-group

with /=8 ' —8 ' =8. ' —8 =8 —8
the sum being again over nearest-neighbor sites on a

hexagonal lattice. A4jJ', where n is the renormaliza-
tion-group transformation index, is given initially by

h,(0)(y r), 2)„p") p'", p"', pI") =J,p,"'P,"'V (y)+J2P,"'P,"'V (y+qs qt)—

+ [Pj Pj Vn„(2)j) + Pi Pi Vj(d(7)jj ) ] + K(( Pj Pi ) + K2( Pj Pj )
Z

[(p )
p

2 )2+( ) (2))2] ) (p(1)+p(()) ( i(2)+p(2))

The cross bond linking the two lattices has been divided into Z =6 equal parts, where Z is the number of nearest

neighbors (within each layer) surrounding each site. A tilde over a coupling constant means that it has been di-

vided by ks T, e.g. , J( = J)/ks T.

Equation (5) has the simplicity of formally having reduced the two-layer system to an effective one-layer sys-

tem with a "four-site" nearest-neighbor coupling. In the case where J„=K„=O, the system decouples into two

independent layers. The single-layer case has been studied by Berker and Nelson' for the triangular lattice and

Cardy and Scalopino' for the square lattice.
The partition function for our system is now given by

B TT U (0) and U (0) e 4'J

('v)j dd J dd; I z I $ HlkBI'—
2m o 2m ()) 2

(2)
j "j

(6)

where A' is the number of sites on a single lattice. %'e now invoke a Migdal-Kadanoff bond-moving transforma-
tion9 " in order to effect a systematic reduction of the degrees of freedom in Eq. (6). We may utilize the sheme
of Berker and Nelson' as well as by us' in an earlier study of a two-layer 'He system in the absence of 'He im-

purities. We refer the reader to these articles for further details. Then we integrate and sum over the variables
associated with the isolated sites. The recursion relation is easily found to be

[U(n)(y ~.p( ) p( ) r( i(2)) U(n)(e d,
. r( ) r( ) P( ) p(2))]2

2$' d 2'(') c )w 2m n [U(n)(d, 0 .p p r()) r(2))]4
(]) (2) o 2' o 2n

where we have used the reflection symmetry

U(n)(g .P(() p(2') p(i) P(2)) U(jj)( 9 .p(() p(2) p(() p(2))
f gL J gR s Vj f V j J VJ p VJ 2 9Ry OLsVJ ~ VJ r Vj 2 Vj

and have chosen the normalization to ensure U(")(0,0, 0;0, 0, 0, 0) =1. For convenience, we have dropped the
subscripts ij on U" here and henceforth.
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Note that Eq. (7) actually provides one with a set of 16 recursion relations since each of the occupation indices
in Eq. (7) can assume two values. The reflection symmetry mentioned above reduces this number to IQ, one of
which is the normalization condition. U "' does not in general factor into a sum of simple-pair and single-site
terms as might be suggested by Eq. (5) and the definition (6) of U'"'. Rather, U'"' must be thought of as a gen-
eral four-site interaction. In order to extract useful information from iteration of Eq. (6), we write the general
four-site Hamiltonian in the form

/
(s) V(N)(8 .„(1) (2) „(1) „(2))+K " („(1) „(1))2+K "

( (2) (2))2
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3 3
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2 3 (lo)

Kl = —In U " (000;1000) +- ln U " (000;1010)

K2 = —lnU(" (OQO;0010) + —lnU " (000;0101)

We find that in all situations K„" iterates to infinity.
The behavior of the other four parameters in
Eq. (10) is much more interesting in that it reflects
closely the nature of the first-order transitions found
in our model. The effective LY coupling for our sys-
tem is calculated from a procedure motivated by our
earlier work7 on a two-layer model for pure 4He. In
that work, the XY cross coupling always iterated to
infinity. This phenomenon occurs in the present,
more complicated, model as well. Explicitly, this
means that the function V~" (8, 2))t, riL, 1111)be-
comes very sharply peaked in gq and gL and a Vil-

and Kqq, K3~, K3~, K4 are additional two-, three-, and
four-site Ising interactions generated by the
renormalization-group transformation. The general
XY coupling potential V~" is assumed to obey reflec-
tion symmetry. The new Ising couplings have been
chosen to obey this symmetry as well. At
8=2)s =7)L =0, Eq. (7), with the normalization con-
dition U'") (0, 0, 0;0, 0, 0, 0) = 1, provides nine recur-
sion relations determining the seven Ising couplings
and the two chemical potentials. Only five of these
are of direct interest here. Expressions giving these
are

K (n)

= -InU'"'(000;1000) —lnU'"'(000;0100)

+lnU" (000;1100)

lain form in 8 for large n, i.e.,

U (8 2)L 2)(, llll)
( ) ( )

«2(())
( )

U " (0, 0, 0;1111)

where h2(8) can be described by a Villain)2 form

( ) X
-/„(8-2wm) / -J„(2am)2/2

)

In Eq. (11) 8(2)) is a very sharply peaked function at

q =0. We monitor the behavior of the XYcouplings
by defining the effective temperatures

(T(,)) 1
i

U"()( lr, o, o;11 II)
U " (0, 0, 0;1111),

(13)

(T(„)) 1 i
U(")(0, 2rlr;1111)
U(")(000;1111)

(14)

o, ( T) m2

AT
(16)

This holds in the present case as well. For T =0 it is

Note that T~", which measures the total two-layer
XY coupling is initially given by T~ ' = —,(Jl +J2) ',
whereas the measure of the XY cross-coupling T„"' is
initially given by T„'")=3/2J„. T„("' always iterates
rapidly toward low temperatures for-all cases con-
sidered. This fact is responsible for the behavior
shown in Eq. (11). This same phenomenon occurs in

a two-layer model for pure 4He. '
T~" may be simply related to the Villain coupling

J„[neglecting negligible contributions from terms
with

~
m

~
) 1 in Eq. (12)l by

1

T(n) " ~2 (i5)
n)&1, 2

when J„~O and J„=O when T~"
For pure 4He (Ref. 8) we derived the approximate

relation
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easy to see that

o, (0) =m'ks(Jt+ J2)/lt'

A convenient relation then derived from Eq. (15)
and Eq. (16) is

o., (T) 2 [(Tf ) '+ln2)
cr, (0) rr2 Jt + J2

(17) cu 2.0—

S
(8-O)

S
(4- 4)

T =0.0

~F =(v, ) =1 —X3
8|Ll]

(2) ) 1 J(2)8F (2) (2)

Op2

(18)

where F is the free energy obtained via the method
of Nauenberg and Nienhuis. " Explicitly,

F= , X —-,3 gn
4 4n

(19)

where T~~ is the approximately determined fixed-
point value of T~'. The determination of T~~ is dis-
cussed in detail in Sec. IV.

To obtain the He concentrations X3' and X3" in
the two layers, we utilize the identities

1.0

0.0

B

(~-~)

-1.0 0.0 1.0
I

2.0

FIG. 1. Phase diagram for T =0, in the p. ~

—p, 2 plane.
3-3, 3-4, and 4-4 are the three phases corresponding to layer
1 and layer 2 being He rich- He rich, He rich- He rich,
and 4He rich-4He rich, respectively. The coupling is K~ =K2
=K„=J& =J2=1.0 and J„=0.05 {in units of k&). N and S
indicate normal and superfluid phases, respectively.

in which g„ is the normalization constant of the
renormalization-group transformation, i.e., the
denominator of Eq. (7).

III. DESCRIPTION OF RESULTS

s.o—
(5-4)

2.8-
(0.2

(0.86, 0.98)

T= I.O

(Vl, VP)

In this section we provide a description of our
results, deferring a discussion of the details of how

they were derived to the following section.
As mentioned in Sec. I (see also Sec. V), we

present results obtained from the renormalization
transformation (7) for the case Kt = K2 = K, = J,
= J2 =1.0 (in units of ks) and J, =0.05.

It is useful to begin with a description of phase
diagrams in the p, ~

—p, 2 plane at fixed T. For T =0,
this diagram may be determined analytically. The
result is shown in Fig. 1. Because there is symmetry
about the line p, ~

= p2, we only show that case
p, 2

~ p, ~. The diagram is divided into three separate
regions, or phases:

a. Phase 3-3. In this phase both layers are pure
'He and the system is normal (i.e., nonsuperfluid).

b. Phase 3-4. In this phase layer 2 is pure 4He and
layer 1 is pure He. This phase is superfluid.

c. Phase 4-4. In this phase both layers are pure
'He and the sytem is superfluid.

The line AB separating regions 3-3 and 3-4 is a
first-order line for phase separation in layer 2. BC is
a first-order line for phase separation in layer 1. BD
is a first-order line for phase separation in both layers
simultaneously. The point B is a three-phase coex-
istence point.
The situation at T =1.0 is depicted in Fig. 2. This

2.4-

(0.006,

2,2-

2.0-

I.S-

l.6—

0,2 0.4
I I

0.6 0.8 I.O l.2 I4 I.6

FIG. 2. Phase diagram for T =1.0, in the p, ~
—

p2 plane.
3-3, 3-4, and 4-4 are the three phases corresponding to layer
1 and layer 2 being He rich- He rich, He rich- He rich,
and 4He rich-4He rich, respectively. The coupling is

K) =K2=K„=J& =J2=1.0 and J„=0.05 {in units of kz).
N and S indicate normal and superfluid phases, respectively.
Some representative concentrations for 4He are given as
{v~, v2) for layers 1 and 2, respectively. The dots on the
lines show the computed points.
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diagram is quite similar to that at T =0. The differ-
ences are that the three-phase coexistence point has
been displaced, phase 3-4 is no longer superfluid, and
the phases are no longer pure, e.g., in 3-3 both
phases are 3He rich but contain some 4He. Further,
the transition across AB involves discontinuities in
both L3' and X3 ', the major discontinuity being in

+3 . The situation is reversed across BC. In Fig. 2
some representative He concentrations for the two
layers are given as (v~, v2).

At T =1,30 the results are shown in Fig. 3. Here
there is a new feature. The onset of superfluidity
which was first order and occurred along the line
CBD at T =1.0 is now second order and occurs along
the A. line SO. A similar phenomenon also occurs at
about T-0.94. Here the line ABwhich involves a
first-order transition to a superfluid phase at T -0 no
longer involves superfluidity. Rather, there is a X

line across the region bounded by AB and BC. This
line merges with the first-order superfluid line BC at
T =—0.95. The resulting line remains first order for
superAuidity until T =1.2S where the A. line SO in
Fig. 3 departs from BC toward the right. %e find
that the jump in o, (T)/T across SO is universal, as
expected. e'4

At T =1.38 (the h, temperature for the pure 4He

systems) the X line SO of Fig. 3 has receded to infini-

ty, and all phases are normal. The first-order lines
for phase separation disappear at higher temperatures
and they appear to do so in the following rather in-
teresting way. As T is increased, the ends of lines AB
and BC, which at low T are at infinity, recede from
infinity toward the point 8 of three-phase coex-
istence. In this case the points 8 and C are critical
points corresponding to consolute points. At, higher
T the lines AB and BC vanish altogether, 8 ceases to
be a three-phase coexistence point and BD shrinks
until only D remains at the critical consolute tem-
perature for hp, =0. For higher T there are no phase
transitions. Our evidence for this sequence is not,
however, complete. It is based on our analytic result
at T =0 and the locations of consolute temperatures
for the cases hp, =2.0, 1.8, and 0.0 discussed belo~.

A given physical system has a fixed difference
hp, - p, 2

—p, l imposed by the presence of the sub-
strate and the discrete nature of the 3He energy levels
(see the Introduction). An experiment can vary p, t

at fixed hp, and T, taking the system along a line
parallel to the 45' line p, ~

= p,2 in Figs. 1 —3. %e
therefore calculate phase diagrams at constant hp, .
Several cases are treated.

hp, 20

This is the case where three-phase coexistence oc-
curs at T =0. In Fig. 4 we show the p, l

—T diagram.
One easily can see the relation of Fig. 4 to Figs. 1—3.
For example, in Fig. 2 for T =1.30 moving along the
line hp, =2.0 one passes successively through the
first-order lines AB and BC and finally through the A.

line SO. This sequence is repeated moving horizon-

2.5"

hg "-2.0

0,7 l.5 l.7

FIG. 3, Phase diagram for T =1.3, in the p, l
—p, 2 plane.

3-3, 3-4, and 4-4 are the three phases corresponding to layer
1 and layer 2 being He rich- He rich, He rich- He, and
4He rich-4He rich, respectively. The coupling is El E2

K„Jl-J2 1.0 and J„0.05 (in units of k~). N and S
indicate normal and superfluid phases, respectively.

I.O

FIG. 4. Phase diagram for d p, -2.0 in the T- p, l plane.
Solid lines are first-order transitions and dashed lines are the
superfluid transitions. The couplings are same as Fig. 1.
The dots indicate computed points.
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&y = 2.0
I.6-

I.4, -

I.2
l.2-

0.8

I- 0.8

0.6 .

04

0.4- 0.2-

0 0. I 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 I,O

FIG. 5. Phase diagram for Ap, =2.0 in the T —J3 plane.
There are two A, lines, one indicated by dashed lines and the
other (between the two lobes) by a short solid line. Dots
indicate computed points. The couplings are the same as in
Fig. 1.

tally from left to right at T =1.30 in Fig. 4.
It is useful to define the average 'He concentration

X3 by

y(l) +y(2)
X3=

2

Then we can construct the X3 —T diagram corre-
sponding to Fig. 4. The result is shown in Fig. 5,
where the right-hand coexistence region corresponds
to the left-hand first order of Fig. 4. Note that for
T «0.95 it is possible to have two coexisting super-
fluid phases.

0 0 I 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 I.O

X~

FIG. 7. Phase diagram for Ap. =0 in the T —L3 plane.
The single A. line is shown as a dashed line. Dots indicate
computed points. The couplings are the same as in Fig. 1.

2. hp, -O

For this situation there is no three-phase coex-
istence, as one sees upon looking once again at Figs,
1 —3. The two layers are identical, there being no
difference between p, ~ and p, q to produce the two
first-order transitions appearing in the case AIM, =2.0.

The phase diagrams in the p, ~

—T and L3 —T planes
are given in Figs. 6 and 7.

3. LLp, 1.8

This value of 4p, is chosen in order to exhibit a sit-
uation in which the three-phase coexistence occurs at
nonzero T. In Fig. 8 we show the p, ~

—T diagram.
Below T =—1.3 there is only a single first-order transi-
tion. Above T =—1.3 there are two first-order transi-
tions as indicated by the fork in the solid line. The
apex of the fork is a point of three-phase coexistence.

20—

I.5

Ag = 0.0

1.5—

Ap = 1.8

l- IO

I- IO-

0.0
0.0 I,O 2.0

I I I I I I

5.0 -I.O I.O

FIG. 6. Phase diagram for hp, =0 in the T —p, ~ plane.
Solid lines are first-order transitions and the dashed line is
the A. line. The couplings are same as Fig. 1, The dots indi-
cate computed points.

FIG, 8. Phase diagram for 4p, =1,8 in the T —p, ~ plane,
Solid lines are first-order transitions and the dashed line is
the X line. The couplings are same as Fig. 1. The dots indi-
cate computed points.
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l.6— Alt =
1,.8

l4, -

l.2-

1.0—

I- 0.8

0.6

,4I.

0 O. I 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1.0
X~

FIG. 9. Phase diagram for 4p, =1.8 in the T —J3 plane.
The single X line is sho~n as a dashed line. Dots indicate
computed points. The couplings are the same as in Fig. 1.

There is a single X line occurring for this case. A
slight increase in b, p, would bring the tip of the A. line
in coincidence with the apex. This is a case where
three first-order lines and a P line terminate at the
same point, and where three-phase coexistence oc-
curs in which one phase is superfluid and two are
normal.

Figure 9 shows the X3 —T diagram for Ap, =1.8.
Given the results summarized in Figs. 1—9, it is pos-
sible to speculate on what variation of the fixed
parameters K~, K2, K„, J&, J2, and J„would produce.
In our work on the pure 4He case increasing J„mere-
ly raised the A. temperature. In the present case in-
creasing J„ is then expected to raise the A, lines in the
X3 —T figures. Setting the Ising couplings in Eq. (1)
equal to zero so that E; = J;/2 (i = 1, 2,x) in Eq. (3)
is expected to move the left-hand A, line in our X3 —T
figures near to the top of the left-hand phase-
separation curves, as this occurs in the BNCS' one-
layer models. -Making K~ (& K2 could produce very
interesting behavior. %e speculate that this would
make the tip of the left-hand phase-separation curve
drop to lower temperatures so that the two A. lines
would merge into a single line passing above the
left-hand coexistence region and hitting the right-
hand coexistence region on its left side. This would
produce the phenomenon of critilcal phase separation
between two superfluid phases.

Phenomena similar to the two transitions seen in
Fig. 5 have been observed in lattice-gas models' '
for adsorption of classical gases onto substrates. In
these situations it is possible to have an infinite
number of transitions, one corresponding to each
added layer of adsorbed film. It is also possible to
have transitions corresponding to several layers at
once, a feature found in our model (see, e.g. , Fig. 7).
Further, the dependence of consolute temperatures

on the substrate field (Ap, in our case) in the adsorp-
tion models' is similar to what we find.

This concludes our description of the phase dia-
grams obtained from Eq. (7). We remark that our
results are based on an approximate renormaliza-
tion-group scheme. However, we feel that the quali-
tative features of these results are correct. In the fol-
lowing section we provide some detail concerning
how the diagrams were found. A discussion of the
superfluid density is deferred to Sec. V where we dis-
cuss our results in comparison with experiment.

IV. CALCULATIONAL DETAILS

The T =0 phase diagrams are easily obtained by
finding the ground state of H in Eq. (3). For T WO

our results follow from implementation of the
Migdal-Kadanoff recursion relation, Eq. (7). The in-

tegrals were performed numerically using a double
Simpson-rule method, the calculations being done in
real space as opposed to Fourier space because of the
difficulty of representing the sharply peaked function
8(rl) [see Eq. (11)]as a Fourier sum.

To determine whether or not a given phase is su-
perfluid we have examined the behavior of T~t"' [see
Eqs. (13) and (17)j under iteration of Eq. (7). The
analysis is identical to that of Ref. 8. Superfluid on-
set at A. lines was found to be universal as expected.
This universality does not, of course, apply to a
first-order transition to a superfluid state, where
o, (T)/T jumps from zero to a value larger than the
universal one ' applicable at a A. line.

The first-order transitions in our model are dom-
inated by the Ising couplings and chemical potentials
appearing in Eq. (3). How these behave under itera-
tion is simply understood by looking at the one-layer
problem in the absence of XY coupling. The recur-
sion relations for the Ising coupling K„and the
chemical potential p,„are in this case easily obtained
analytically. One finds a first-order line at p, =0 and
K = ~, terminated at a critical fixed point p,,'=0,
K,'=0.6094. Away from the first-order line K„al-
ways iterates to zero, while p,„ iterates to plus
(minus) infinity for positive (negative) initial values

po. This behavior occurs in each layer the full two-
layer model of Eq. (3), and allowed a quick approxi-
mate location of the first-order transitions, which
were then closely pinpointed by examining both
the behaviors of Ising couplings and chemical poten-
tials and of the 'He concentrations calculated from
Eq. (18).

In all cases considered, the variables J„~"~ —I/Tt "~

and K„" iterate rapidly toward infinity; they are thus
always irrelevant variables. For completeness, we
show in Fig. 10 the computed average concentration
X3 for T = 1.3 and hp, = 2.0 as a function of p, &

~ The
observed discontinuities are, moving from left to
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right, those occurring in Fig. 2 as one moves along
the diagonal line b p, =2.0 across AB and then across
BC. Note that the discontinuities are not perfectly
sharp, primarily as a consequence of not using an in-

finitely fine grid in p, ~. The actual value of p, ~ at the
transition has been determined from a plot of the
free energy F (inset in Fig. 10). The point of discon-
tinuity in the slope of F, determined by extrapolation
(see Fig. 10) from the left and right, has been used
to find p, ~ at the transition. The concentrations in

the two phases at the transition value of p, ~ are deter-
mined by extrapolation to this value of p, ~ from the
left and right of the J3 diagram. These extrapola-
tions are also indicated in Fig. 10.

In the following section we relate our results to ex-
periment, showing in detail a plot of o-, indicating
two superfluid transitions.

FIG. 10. Free energy is plotted vs p, 2 for T =1.3 and

4p, =2.0 on the right. On the left is the averaged concentra-
tion of 4He for the two-layer system as a function of p, &.

The coupling is the same as for Fig. 1. Dots indicate com-
puted points. vertical arrows locate the phase-separation
transitions. Dashed lines show extrapolations.

from zero with decreasing T as more and more of the
superfluid phase is created at the expense of the nor-
mal phase. Finally, the normal phase will cross the A.

line connecting the consolute curves and suddenly
become superfluid causing a large jump in o., for the
whole system. A plot of o, (T)/ o, (0) [see Eq. (17)]
for this situation is given in Fig. 11. Note that the
value lip, =2.0k~ for Fig. 5 is consistent with our es-
timate 4p, —k~ given in Sec. I.

It is expected that a value of J„considerably larger
than 0.05, e.g. , J„=1.0 could cause the two P lines in

Fig. 5 to occur at such high temperatures that they
would join above the left-hand consolute point, thus
eliminating the two-transition nature of the result.
An extrapolation of the pure He results' suggests
that this would happen, the X temperatures rising
about 60%. However, if when J„were increased, the
Ising couplings were also increased by 60%, the con-
solute temperatures would rise by about the same
amount, and the two-transition character would
remain. Such an increase in Ising couplings is con-
sistent with our order-of-magnitude estimates for the
couplings given in Sec, I. It thus seems likely that
there will be a range of parameters for which the two
transitions will occur. We were unable to investigate
this point; in fact, treating the case J„=1.0 was not
computationally feasible. "

It must be pointed out that the experiment report-
ed by Bishop and Reppy6 was done with a He film

having approximately one active layer to which was

added 10 at. % He. At 52=10% in Fig. 5 it is clear
that decreasing T would produce two discontinuous
jumps in o., (T) in contrast to the behavior viewed in

Fig. 11. The two-layer model which we have present-
ed thus does not quantitatively reproduce the experi-
mental observations. There is, qualitative agreement
with experiment, as illustrated in Figs. 5 and 11.
This qualitative agreement is a consequence of our
inclusion of the known discrete nature of 'He levels
in thin 4He films. This discreteness should perhaps

V. RELATION TO EXPERIMENT
1.5—

As mentioned in the Introduction, the BNCS
theory for a one-layer 'He-4He mixture film is inca-
pable of producing the two superfluid transitions ob-
served by Bishop and Reppy. ' Our two-layer model
has considerably more flexibility and can, in fact,
produce transitions qualitatively similar to those of

I.Oi

I
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be an essential feature of any better model of the
Bishop-Reppy experiment. A possible improved
model would be a two-layer model with 4He's and
two types of impurities, 'He's and vacancies. We
have not attempted to deal with this more complicat-
ed situation, but we anticipate that it would produce
behavior similar to but even more rich than the
model treated in this work.

We remark finally that there exist other experi-
ments' '9 on He- He mixture films which do not ap-
pear to show two superfluid transitions. These exper-
iments, however, were done at higher temperatures
with thicker films where the discreteness of 'He lev-
els might cease to be a factor. These experiments

also showed solubilities of up to 40 at. % for He in
4He in the superfluid phase of the films. The
BNCS" theories limit this solubility to about
20 at. %. The present work allows single-phase super-
fluidity up to concentrations of -50 at. %, as is seen
in Fig. 5. We encourage further experimentation.
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