
PHYSICAL REVIEW B VOLUME 23, NUMBER 11 1 JUNE 1981
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In earlier work by Chen and Gasparini it was found that leading-order finite-size scaling for
the specific heat of helium confined to films and pores did not seem to hold. We present here
an analysis which includes correction-to-scaling terms. We do this in two ways: First, we use

equations for the shift and value of the specific-heat maximum as suggested by Fisher. Second-

ly, we show that a bulk-plus-surface specific-heat model yields very similar equations for the
shift and maximum, and in addition suggests a simple power law for the scaling function near

Ti,. All aspects of the data can be fitted very simply with this model with only three parameters.

We find, however, that the surface specific-heat exponent Ot, does not agree with the scaling

prediction e, =a+ v. When correction-to-scaling terms are introduced to force agreement, we

find these terms to be very large, larger than the leading terms, and several orders of magni-

tude larger than the equivalent correction-to-scaling amplitudes for bulk helium. We believe

our analysis in terms of the surface specific heat is the first for an experimental system, and we

find that it is quite in keeping with the spirit of some theoretical calculations.

I. INTRODUCTION

Physical systems near a phase transition have a
marked dependence on dimensionality. This can be

l

explored experimentally with samples where one of
the physical dimensions becomes comparable to that
of the correlation length. Practically this might mean
film samples whose thickness is in the range of one
to perhaps 1000 atomic layers. For a fixed film thick-
ness, and as a function of temperature, one might
expect that far away from the transition the response
of the system would not be much affected by its fin-
ite extent. As one approaches the transition tempera-
ture, T„and the correlation length increases, one ex-
pects deviations from bulk behavior, and eventual
crossover into a two-dimensional regime; If one
measures a thermodynamic response such as the heat
capacity, which might display a sharp cusp or a diver-
gence in the bulk system, then one would expect a
rounded maximum at some temperature T, typically
below T,. One might expect, ' in the most simple
case, that the dependence of T on say the film
thickness, d, be given by a power law,

(T, —T )/T, —= t„=a Od"

Further, on the simple argument that the maximum
is associated with the bulk correlation length, g,
becoming of the order of d, one might conjecture'

A =1/v

where v is the exponent which characterizes the
divergence of g. The constant aa will depend on
geometry and boundary conditions. More generally

one expects correction-to-scaling terms to contribute,
and Eq. (1) to read2

d-l v(1 + & d
—~/| +& d

—(2m+1)/v+. . . ) (3)

where ~ is the correction-to-scaling exponent, and
A = 1/v has been assumed.

Also, in the case of the heat capacity, the max-
imum value, C, that is achieved at t is expected to
leading order to be'

C =A 81nd +const

where according to scaling

e=l/v .

(4)

Equation (4) applies if the bulk system has a loga-
rithmic divergence with amplitude A. 'If the bulk
heat capacity has a characteristic exponent o/ W 0,
then likely corrections to Eq. (4) will be of order a.
In addition, just as in the case of the shift, one ex-
pects corrections-to-scaling terms, hence more gen-
erally, ' but still for 0, =0,

C = A / l dv+nB + B~d "/" + B2d ' + , (6)

where the constants 8's are expected to be geometry
and boundary conditions dependent.

Equations (3) and (6) apply to the particular tem-
perature at which the heat capacity achieves a max-
imum. More generally however, one expects that in
the critical region near T, the heat capacity of the fin-
ite system would scale as a function of dt", where t
—= ~1 —T/T, ]i.

' The functional form is not known from
theory, neither are the corrections-to-scaling terms.
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Liquid helium near the superfluid transition is an

ideal system to study finite size effects because of its

ability to form thick films on surfaces in contact with

it. The substrate upon which the helium film forms

plays an inert role at the transition in the sense that
the pressure which results from the van der Waals at-

traction does not affect the critical behavior of the or-
der parameter. This does not mean, however, that
the substrate plays no role: in the case of Grafoil it

has been suggested that for thickness of -3 to 18
layers the films are unstable toward droplets forma-

tion thus giving an inhomogeneous confining
geometry. ' In the case of Vycor glass the geometry
of the substrate is such that to apparently induce
three-dimensional-like behavior even in films less
than a monolayer thick. 4

Many measurements of heat capacity for films of
helium, or for helium confined to small dimensions
have demonstrated qualitatively the finite size
behavior discussed above. ' ' It has not been possi-
ble until recently, however, to test quantitatively the
theoretical predictions. " One of the major difficulties

had been the lack of uniformity in confinement. In
the case of films, one runs into difficulties with capil-

lary condensation. This is especially true if one at-
0

tempts to measure films thicker than -10 A and em-

ploys fine packed powders as the substrate. Even in

the case of Grafoil, a most ideal substrate for studies
of films of the order of 1 or 2 layers, the data for
thicker films suggest capillary condensation9 in addi-

tion to, or perhaps as an alternate to the mechanism
of droplet formation. ' In the case of complete confine-
ment, i.e., helium filling a region of space of the order
of -1000 A, the problem of uniformity is even more
acute. Packed powders are clearly not a solution.

In the work of Chen and Gasparini, ""Nu-

clepore filters were used as the confining medium to
measure the heat capacity of both films of helium

and helium filling the pores of the filters. These data
afforded for the first time a test of finite-size scaling

for the specific-heat maximum and temperature
shift. " These were also the first data to show scaling

above and below the transition, in the neighborhood
t & 10 . It was found, however, that while the data
could be described by the leading scaling forms, Eqs.
(1), (4), the scaling exponent was not I/v = 1/0. 675, '3

but rather -1/0. 54."
In this paper we undertake a further analysis of

these data in an attempt to understand this discrepan-

cy. Specifically, we explore the possibility that
correction-to-scaling terms account for the difference.
We also analyze the data from the point of view of a
bulk-plus-surface specific heat, the latter character-
ized by an exponent 0, We show that this is a use-
ful way to look at the data and that it suggests very

simple scaling functions near the transition.
We can summarize the results of our work as fol-

lows: No aspects of the specific heat of confined

helium, the shift, the maximum, or the scaling near

T„, agree with leading-order correlation-length scal-

ing. When corrections terms are introduced to force
agreement, their amplitude is larger than the leading
term, and several orders of magnitude larger than
equivalent terms for bulk helium. In the case of the
bulk-plus-surface analysis, we find that all aspects of
the data can be characterized very simply by only
three parameters. In particular we find n, ( T & T~)
= a, (T ) T„), i.e. , scaling between surface ex-
ponents; but, o., 4 0, + v, i.e., failure of scaling
among bulk and surfaces exponents. One possible
conclusion from the results is that if one is unwilling
to accept these large correction-to-scaling terms, then
it would seem that the presence of confining surfaces
manifests a new critical length.

The remainder of this paper is organized as fol-
lows: We first discuss some of the more reIevant ex-
perimental details, and then briefly the results of the
analysis of Ref. 11. We extend this analysis to in-

clude correction-to-scaling terms, and then present an
analysis in terms of the surface free energy. This is
followed by a section where we comment on relevant
experimental results for helium and other systems, as
well as some theoretical results. Section VII is our
summary and conclusions. In an Appendix we dis-
cuss a model for the effect on the heat capacity of
the films due to the pressure gradient from the van
der Waals attraction.

II. EXPERIMENTAL DETAILS

The data we will be analyzing are for films of heli-

um formed on Nuclepore' filters of nominal pore di-

ameter of 2000 A; and data for helium filling pores
of diameter 2000, 1000, 800, and 300 A. Various as-

pects of the measurements have been published pre-
viously, ' and only the more relevant, and some
additional details will be mentioned here. The filters
were chosen as a substrate as opposed to other possi-
ble methods of confinement, because of the relative
uniformity of the pore size. For instance, a study of

0
electron micrographs of the 2000--A filters shows that
better than 80% of the helium filling the pores would

be within 10% of the mean diameter. " This diameter
is less than the nominal, manUfacturer value by
about 10—20%.' This is not a serious factor and
agrees with the manufacturer's specifications that the
nominal size reflects more correctly the upper bound
rather than the mean. In our own use of the filters
only the relative size is important, and not the abso-
lute value.

The calorimeter, of a similar design as used previ-

ously, "contained several hundred filters. They are
47 mm in diameter and 5 or 10 p, m thick. They were
packed with an average separation of 10—20 p, m with
no attempt to achieve uniform spacing. As it turns
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out, there is a natural tendency for the filters to keep
apart due to electrostatic charges. Measurements of
adsorption isotherms with both helium and nitrogen
established that there is no dependence on
manufacturer's batch, i.e., 1st and 2nd layer com-
pletion on samples of 50 to 2000 filters was found
strictly proportional to the number of filters. ' From
the helium isotherms it was shown that the deter-
mined adsorption area was consistent with Nq adsorp-
tion if the density of the second layer was equal to
the density of bulk liquid. The first layer behaved as
a 2D solid with a T' heat capacity. The number of
moles to form this first layer, of thickness —3 A, was

subtracted in later analysis when the liquid film thick-
ness is needed. Although we formally pI'oceeded in

this manner none of our conclusions depend on this
procedure. Indeed, in the case of the filled pores,
this first solid layer is totally irrelevant.

From the adsorption isotherms we also determined
the van der Waals constant which was found to agree
with a theoretical estimate. This was an important
result, because it allowed us to calculate the limiting
film thickness before a uniform film of helium would

capillary condense in the pores. " This agreed with

the experimental determination of this condensation
0

for the filters of 2000-A size. In Fig. 1 we show this
result. These are specific-heat data for which various
amounts of helium are condensed in the calorimeter.
We see that as the number of moles condensed in-

creases a peak begins to develop near T„which is dis-
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FIG. 1. Specific heat of various amounts, moles, of helium condensed in a calorimeter containing filters of 2000-A pore

diameter. The peak near 2.172 K is a signature of the helium beginning to fill the pores.



GASPARINI, CHEN, AND SHATTACHARYYA

tinct from a low-temperature maximum. This peak is
the result of a capillary condensed phase with a
characteristic confinement of the pore diameter. The
low-temperature maximum is due to the film, 56-A
thick, in equilibrium with the condensed phase. The
total heat capacity is, of course, a convolution of
these two effects. All the data on films which we will

be discussing are for film thicknesses smaller than
the limit for capillary condensation.

The specific heat of the films was obtained from
the measurments of total heat capacity by first sub-
tracting the empty cell contribution, and then correct-
ing for the vapor. %e used the following expres-
sion, "

+ ~~t dP ~&& dP
nlCPl= C+2T

BT dT+ T
BP dT

P 7
'2

—n„Cp„+2T " + T ",(7)
dI' ~~, dI'

where C 's are the heat capacities, n the number of
moles, and v molar volume. The subscripts v and 1

refer to liquid and vapor. In practice the terms in-
volving v~ can be ignored to an accuracy of better
than 0.1'k. The terms involving e„have to be
evaluated carefully and contribute as much as 700/o of
the heat capacity in the region of the specific-heat
maximum. The procedure we followed was to mea-
sure the vapor pressure as function of temperature
for each film. %e found that a reasonable approxi-
mation in the region of the specific-heat maximum is
to take P =fPO, where Po is the saturated vapor pres-
sure, and f varied between 0.96 and 0.34 for the
range of films we measured. '9 This procedure is not
strictly correct, but is adequate for our data. Most
importantly we found that the position (but not the
magnitude!) of the specific-heat maximum is not af-
fected at all by this analysis. We further note that

the use of Eq. (7) does not correct the data to a path
of constant film thickness. The actual thickness we
will need and use will be the value for the films at
the position of the maximum.

In the case of the helium completely filling the
pores of the filters, the correction due to the vapor
are much smaller, typically a few percent. The pro-
cedure we followed in this case was to condense just
enough, or slightly less helium than required to fill
the pores. This results in some degree of inhomo-
geneity in confining dimension because of the film of
helium present on the flat surfaces of the filters.
This effect is hard to estimate; however, if the films
on the flat portions are equal to the metastable thick-
ness of the film in equilibrium with the filled pores,
then the amount is small. It is about 3 x 10 " mol,
which is less than 1% of the amount in the pores in

0
all cases except in that of the 300-A filters where it
is -5'/o. Some of these facts, and other relevant
parameters of the calorimeter are presented in Table
I.

One of the important determinations in our study
is the shift in the transition temperature, or better
the position of the specific-heat maximum. The pro-
cedure we followed was to establish the transition
temperature T~ for a bulk sample of helium (-1
cm3) which had been condensed in the needle valve
space outside the volume of the calorimeter contain-
ing the filters. This determination was done by drift-
ing slowly through the transition and observing a
sharp break in the ~arming rate at T&. The needle
valve was then opened, and helium allo~ed to fill the
pores of the filters. We found that even upon recy-
cling the cryostat to change the filters for different
runs, T& did not change by more than -80 p, K. A

summary of specific-heat maximum and temperature
shift for films and pores is given in Table II.

We also measured the heat capacity of bulk helium
to check on our procedures. We found excellent

TABLE I. Some physical characteristics of the calorimeter. All the filters used have a diameter
of 47 mm.

Pore
diameter'

Filter
thickness'

Number of
filters used

Area per
filterb Moles in calorimeter

Total Vapor
(10-4)

1st
layer

2000
1000
800
300

450
666
693
630

S46+ 33
289+ 6
432+ 8
273 + 16

1.63
2.35
5.29
8.21

4.73
3.51
S.SS
2.93

'Manufacturer specification& see Ref. 14.
bObtained by assigning 15 A per N2 molecule, see Ref, 12.
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TABLE II. The shift of the temperature of the specific-heat maximum and its value for various
confining dimensions. In the case of the films the thickness is that above the first layer. In the
case of the filled pores, the size is the diameter as given by the manufacturer.

Film

(A)
Pore
(A)

TA
—

~in

(K)

Specific-heat
maximum

(J/mol K)

10.1'
17.2
25.0
32.8
37.9
42.2
53.0

300
800

1000
2000

0.569
0.425
0.202
0.126
0.102
0.075
0.050
0.0062
0.001 20
0.000 80
0.000 23

+ 0.03
+ 0.02
+ 0.02
+ 0.01
+ 0.005
+ 0.005
+ 0.004
+0.001
+ 0.0001
+ 0.0001
+ 0.00003

7.6 + 0.2
13.2 + 0.2
17.5+ 0.5
20.1 + 0.2
21.4+ 0.7
22.9 + 0.6
26.1 + 0.6
37.4+ 0.5
48.0+ 1

49.5+ 1

56.4+ 1

'Data for this thickness fall outside the applicability of Eqs. (1) and (4) and are not used in the
analysis.

agreement with earlier results, ' "and no systematic
errors. These data for bulk helium were also used in
later analysis where the difference between bulk and
confined specific heat was needed.

III. LEADING-ORDER ANALYSIS

An analysis of the data in which only leading-order
terms were used was done by Chen and Gasparini. "
Their results are listed in Table III. They found that
A = g W 1/v. Further they noticed that both films
and pores gave consistent results and could be
analyzed together by empirically assigning a thickness

d to the pore data of diameter D, such that
d =0.585D. The result of this analysis is also shown
in Table III. The fact that the films and pores data
give consistent results is an important check on the
experiment since the two types of data could be sub-
ject to quite different systematic errors.

In addition, they tested the data in the neighbor-
hood of T„, t 10 ', with the following equation

(C(r d) —C(r, ~)]r =g(d'r) —g(~) (8)

where a is the bulk specific-heat exponent, g(~) is a
constant, and the C 's are the specific heats of the
confined and bulk helium. They found that while the

TABLE III. Results of fitting the specific heat to expressions without corrections to scaling.

Shift
1/A

Maximum
1/e

Scaling
function

1/e Equations

Films
Pores
Pores and
films;
o. =0

Pores and
films;
nAO,
1/8 = cxg A

0.528 + 0.043
0.583 + 0.046

0,562 + 0.014

0.466 +0.015
0.502 + 0.025

0.489 + 0.013

0.546 + 0.007 0.54(+ 0.02)

(1),(4)
(1),(4)

(1),(4)

(16),(8)
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data did scale this way, the best exponent was not
1/8 = v =0.675, but I/8 =0.54. The error associated
with the value of 8 could not be established in the
sense of a standard error because of the lack of an
explicit form for the scaling function g(d't) A.
reasonable error might be +0.02; but, irrespective of
this, the scaling definitely favored I/O W v.

The conclusion from this work is that while the
data could be well described by Eqs. (1), (4), and
(g), the expected scaling with the correlation length
exponent i did not seem to hold.

t d'I'0675 = ao+ aoa&d +aoa2d
m

(9)

and Eq. (6) as

tudes of the correction terms are "reasonable. "
Again, there is no theoretical guidance as to their
magnitude or even sign. Equation (3) can be written

as

C —7.6lnd =Bo+Bid ' +B2d ' (10)

IV. ANALYSIS WITH CORRECTIONS
TO SCALINQ

To check if the deviations from the predicted ex-
ponents can be ascribe) to correction-to-scaling
terms, we have analyzed the shift and maximum data
according to Eqs. (3) and (6). The films and pore
data are analyzed separately, since the coefficients of
the correction to scaling terms can have a rather
more complicated dependence on geometry than the
simple empirical relation used in the leading order
analysis. Since our data are not precise, or extensive
enough to yield both c» and the prefactors in Eqs. (3)
and (6), the way we proceeded is to assume that the
exponent ao is known; we have used ao =0.5." The
goal of the analysis then is to see first of all if the
data can be fitted this way and secondly if the ampli-

We have used v=0.675, and A =11.7 J/molK as
the amplitude of the nearly logarithmic divergence of
the bulk specific heat for T ( T&. We ignore for the
moment the fact that the bulk specific heat cannot be
described by a logarithmic divergence in a way con-
sistent with scaling. ' ' ' This effe:ct is small for
our present considerations. A more proper analysis
for n ~ 0 will be done later.

In using Eq. (9) we assume that the term propor-
tional to d 35 is small, and in Eq. (10) we "absorb"
the d ' dependence in the d~' term. This is
equivalent to saying that a difference of 0.26 in the
power dependence of these correction terms cannot
be picked up by our data. With these considerations,
Eqs. (9) and (10) suggest that a plot of the left-hand
side vs d~ will yield straight lines whose slope will

x Shift
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l5- x Shift
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IO— IO

E

5
C

(D

F

5D

I

I

0.05
d-0.74
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FIG. 2. Data of the specific-heat maximum for the films
plotted to show corrections to scaling, Eq. {9)and {10). If
no corrections were present the data would lie along hor-
izontal lines. The variable d is the film thickness in
angstrom s.

FIG. 3. Data of the specific-heat maximum for the filled
pores plotted to show corrections to scaling, Eq. (9) and
{10). If no corrections were present the data would lie along
horizontal lines. .The 'variable d is the pore diameter in
angstroms.



23 CORRECTIONS TO SCALING AND SURFACE SPECIFIC HEAT. . . 5803

TABLE IV. Results of fitting the specific heat to expressions with corrections to scaling, Eqs. (9), (10), and (12). The errors
for the shift and maximum are not statistical but reflect the results of taking the exponent co=0.5+0.1. The confining dimen-

sion is in A, either the film thickness or the pore diameter.

Shift

a& Bp
(Jmol 'K ')

Maximum Equation

Films
Pores

4.7 (+0.6,—1.7)
6.6 (+0.9,—1.5)

70 (+30,—, 15)
580 (+800—280)

2.5 {+0.9-1.7)
0.4 (+0.6-1.0)

49 (+13—8)
380 (+42'0 —200)

(9)
(10)

b

(Jmol 'K ')

Scaling function
b2

(Jmol 'K ')

T(Tj,
T) T),

—25.2+ 1.0
—11.9+ 0.7

20.1 + 2.0
31.3 + 4.4

—0
—18+ 13

(12)
(12)

give the correction to scaling amplitude. This
analysis is shown in Fig. 2 for the films and Fig. 3 for
the pores. Clearly, within the errors, the data are
consistent with the analysis. The precision of the
data and the method of analysis do not warrant a
least-squares fit, rather what we have done is to test
the sensitivity of the results to variations of the
correction to scaling exponent ~. These results are
listed in Table IV.

We see from Table IV that the correction terms for

both films and pores are large. For ao =0.5, we have,
respectively, ai = 70, 580 and Bi =49, 380 J/mol K.
These are one to two orders of magnitude larger than

the leading terms. To get another perspective on
these results, we note that in the case of the bulk

specific heat, which can be described by

C = (A/at )(1+Dt")+8,
one finds that to achieve agreement with the scaling

prediction of n = a' the correction term is

D = —0.012.24 Also, in the case of thermal expan-

sion, which has the same singularity as the heat capa-

city, one finds by extrapolating to zero pressure that
D = —0.02." By these measures the corrections to
scaling in the case of finite-size effects is very large

indeed, three to four orders of magnitude larger!
The next question we address is whether all of the

data close to T& can be scaled with the correlation
length exponent i plus the addition of correction
terms. The following form for the scaling function

suggests itself from considerations in the next sec-
tion:

[C(t d) —C(t, ~)]d=bt "+ (1+btt")+b2 . (12)

The range of validity of Eq. (12) is expected to be

limited to not being too close to T„so that g & d, and
not too far so as to be away from the critical region,
i.e., T 10 . A more complete discussion of Eq.
(12) will be done in the next section. By using
~ =0.5, v =0.675, and n = —0.02, the parameters

b, bi„b2 were least-squares adjusted to achieve a fit
to the left-hand side of Eq. (12). The data were fit-

ted well by this equation, as will be seen more expli-

citly in the next section. The results for the parame-
ters are presented in Table IV. For the correction
terms, bi's we have 20.1 + 2.0 for T ( T& and
31.3 +4.4 for T & T&. These are obviously much
larger than 1, and very much larger than what is en-
countered in the case of the bulk.

We conclude from the work in this section that to
retain a description of finite-size effects as being
governed to leading order by the correlation length
exponent, one needs to introduce very large —three
to four orders of magnitude larger than in the bulk

case —correction terms. This is true for the position,
and value of the specific-heat maximum for both
helium films and helium confined to pores. This
conclusion is also strongly supported —to the extent
that we can justify Eq. (12)—by scaling of the data in

a neighborhood above and below T„.
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V. ANALYSIS IN TERMS OF A

SURFACE SPECIFIC HEAT

One may describe the thermodynamics of a finite
system in terms of a total free energy which is the
sum of a bulk part, F, and a surface part, F„'

F =—NF +NF, (13)

where N is the total number of particles and N, is the
number at the surfaces. Near a phase transition the
validity of this equation is limited to a neighborhood
in temperature such that the correlation length g is
less than, or perhaps of the order of, the smallest
sample dimension. The usefulness of Eq. (13) in the
present context is that it allows us to derive expres-
sions for the shift and magnitude of the specific-heat
maximum as well as —and this is important —a form
for the scaling function. This can be done, as we will

see, with a great deal of economy in terms of bulk
and surface specific-heat parameters. One can also
introduce a scaling assumption as well as correction-
to-scaling terms in the spirit of the previous section.
Another virtue of an approach via Eq. (13), is that
whether analyzing the specific-heat maximum, or the
data near the transition, the same parameters appear.
Thus one can check that the results obtained are con-

sistent. This might not seem significant, since all the
equations, as we will see, stem from Eq. (13). How-

ever, the range of applicability near T& of the scaling
function is limited to t ~ 10 2. This range does not
encompass the temperature of the maximum for the
films. Thus the maximum in this case gives indepen-
dent, but not new information. The reason for the
different range of applicability is presumably that the
scaling function for the specific heat involves two
derivatives of the free energy while the specific-heat
maximum involves three derivatives. Lastly, the ad-
vantage of Eq. (13) is that it will give expressions for
n AO which are particularly useful in analyzing the
maximum.

We now proceed as follows: We assume a power
law dependence for the bulk and surface specific
heats, i.e., for the bulk Eq. (11) and for the surface2~

(14)

We consider now a film of -~ lateral extent, in

which case N/N, is
2

the number of layers. For
helium, with 3.56 A/layer, N, /N =7.12/d where d is
in angstroms. From Eq. (13), by setting d'F/dT' =0
we obtain that the position of the maximum, t is
given by

7.12A,
Ad

] ~ —nt Gt) cks

ns n n ns
J

7 12A s

Ad
(15)

And, for the maximum we obtain

C. =—A
nsn

i

7.12A, 1+ ' D-
Ad ns 0!

7.12A,
s

es —n Ad

7.12B,+B+-
d

(16)

and

-)/(a -u). -su/(ag-e)
t -a()d * (1+a)d (17)

C =—lnd+nb(1+b'Ind)

The above expressions are correct to leading order in
the correction to scaling terms if these are small rela
tive to 1. To identify terms in these last equations
with Eqs. (3) and (6), respectively, we can write
them as

l

makes the scaling assumption"

ns n=V (19)

Equation (18) is also the same to leading order as Eq.
(16), but contains in addition logarithmic corrections.
Some of these appear because o. ~ 0 but others will

remain even in the limit of n =0.
As an overall scaling of the data in the neighbor-

hood of T), we obtain from Eqs. (11), (14), and (13)
that

+b)(1+b)' lnd+b)" alnd)d ' +b2d +b3
(C(t,d) —C(t, )] = '

t '(1+D t")+8
7.12 s s

(18)

The constants a's and b's in Eqs. (17) and (18) in-
volve of course the bulk and surface parameter
displayed explicitly in Eqs. (15) and (16). Equation
(15) is identical to leading order with Eq. (3) if one

This is of course identical to Eq. (12) once Eq. (19)
is assumed. It is indeed from the point of view of
bulk-plus-surface free energy that we suggested Eq.
(12) in the previous section. One can understand
more clearly now why Eq. (12), and of course Eq.
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A. Analysis with no corrections to scaling

To use the equations from this bulk plus surface
model, we start with the simplest assumption first:
no corrections to scaling, D = D, =0, and allowing

a, to be a free parameter. Equations (15) and (16)
can then be written as

lnt N
1

lnd + 1 ln—7.12M,
(21)

(20) cannot be applied to a region too close to T„:
the ansatz (13) breaks down once g ) d.

In the equations above the number 7.12 A refers
to the fact that we have considered a film. For the
case of a cylindrical pore this geometric factor would
change, but the form of the equations would still
hold. We should mention as well, that in the case of
the films one might distinguish between the surface
at the solid and that at the vapor. It is very likely
that the two cases give different amplitudes for the
surface specific heat. We cannot rule out this possi-
bility from our data. What would be required to
check on this would be a measurement on a film
which is completely bound by solid surfaces. We ex-
pect that the exponent 0., is not affected by these
considerations.

and

Cm = lnd 1 — ln—
Ag s 0,

7.123, + lnd
A 2(a, —a)

A——ln—
s

7.123, ln—
A 2(a, —a)

7.123,

7.12B,+ ' A+B+ ——
nn. , d

(22)

We remark that the limit of u =0 is not easily taken
in Eq. (22), but it is rather better to start with a loga-
rithmic function at the onset. We now fit the data of
the shift to Eq. (21) by treating the films and pores
independently. This is of course the same as fitting
the data to Eq. (1) only the results are now in terms
of n, and A, . These are given in Table V.

Next we look at the specific-heat maximum. An
inspection of Eq. (22) reveals that it is not easy to
extract information from this equation. In the first
place, unlike in Eq. (21), all three surface parameters
appear, and secondly, the form of the equation is
rather awkward. We proceeded as follows: We first
of all used the values of n., and A, obtained from the
analysis of t and then calculated B, from Eq. (22).
For both the pores, and the films we found that B, is
very small and could just as well be set equal to zero.

TABLE V. Results of fitting the specific heat to the bulk-plus-surface model. Values of parameters in parentheses indicate
that they are held constant. All errors are standard errors except when in parentheses. (A) Analysis without correction to scal-

ing„D, =0. 0.„A„B,are free to vary. (B) Analysis with corrections to scaling, a, =o. +v =0.655, 0) =0.5, D = —0.02. A, , B„
D, are free to vary.

(A)

A,
(Jmol 'K ')

Bs
(Jmol 'K ') Equation

Shift, films

Shift, pores
Maximum, films
Maximum, pores
Scaling function

(pores, T ( T„)
Scaling function

(pores, T ) T&)

0.508 + 0.043
0,563 + 0.046
0.53 + (0.05)
0.52 + {0,06)
0.450 + 0.013
0.452 + 0.012
0.433 + 0.016
0.444 + 0.016

—9.4, + 0.8
—13.5 + 3,5
(-9.4)

{-13.5)
—10.9 + 0.7
—10.8+ 0;7
-6.8+ 0.6
-6.2 + 0.6

(0)
(0)

—4.5 + 9.6
(0)
11.3 + 9.2
(0)

(21)
(21)
(22)
(22)
(20)
(20)
(20)
{20)

(J mol K )

(B)
B,

(Jmol 'K ') Equation

Shift, films
Shift, pores
Scaling function,

(pores, T (T„)
Scaling function

(pores, T ) Tz)

—3 ~ 1 +(0,2)
-3,4 + (0.2)
—2,32 + (0.09)

—1.10 + 0.04
—1.0 +0.06

2,9 Z (1)
42 + (10)
20. 1 + 2.0

31.3 + 4.4
27.3 + 4.0

(0)

—18.0+ 13
(0)

(23)
(23)
(20)

(20)
(20)
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This result will also be reinforced by our analysis with

the scaling function, as we will see shortly. To get
any information out of Eq. (22) we thus assumed
B,=0. Further, since the terms in the curly brackets
multiplying the lnd dependence are small corrections,
vanishing for a =0, we calculated these terms by us-

ing the results from Eq. (21). Using this procedure
we were able to extract o., from the prefactor of the
lnd term. These values of o., for films and pores are
listed in Table V. Here, to emphasize our procedure,
we have indicated by the numbers in parentheses that
the values for A, and B, are assumed. The values of
o., are in good agreement with those obtained in a
much more direct way from Eq. (21). The errors we

quote for o,, are not standard errors but reflect more
closely our procedure of analysis. Lastly, we point
out that to obtain e, we used the value of A =6,16
J/molK (Ref. 24) for the specific-heat amplitude of
bulk helium, Eq. (11). a„as obtained from C, is
thus subject to possible systematic errors in this
quantity. With all this, we can say that while the
values of C support the results from t and, as we
will see shortly the results from Eq. (20), they clearly
do not make by themselves a very strong case for the
value of u, .

Lastly, we fit the data in the neighborhood t & 10 '
to Eq. (20), with D, =0. We use the cutoff for small

t such that the correlating length is approximately
equal to the pore diameter. This in practice means
t & 10~. Only pore data were used in this analysis
since in the case of the films very little data fell
within the applicable temperature bounds. For
T ( T&, a least-squares fit yields values of Q.„A„
and B,; these are given in Table V. The quality of
the fit is quite good, as can be seen from Fig. 4. Not
only does Eq. (20) fit the data with no systematic
residuals, but also the scaling with size seems quite
good. In looking at Fig. 4, and Fig. 5 as well, one
should keep in mind that what is being analyzed is
the small difference between large numbers, this is

the source of the scatter of the data. As far as the
parameters obtained from the fit, we see that A,
agrees very well with the determination of A, from t
only. In the case of B„its value first of all is such
that, as can be verified from Eq. (22), it would con-
tribute negligibility to C . Secondly, its magnitude is

zero within the standard error. This justifies in the
case of the filled pores the assumption of setting
8, =0 when testing Eq. (22). Indeed one can set
B, =0 in the case of Eq. (20) and do a two-parameter

' —0.5
E

o+

O
X

C3
CI
U
I

0.5

'.0

l
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lOg lo

FIG. 4. Difference between the confined and bulk specific heats, b, C, fitted to the scaling function, Eq. (20). The solid lines are
results of least-squares adjustment of e„A„and B, independently on either side of T„. The symbols refer to x, P 300, +-800,
7-1000, a -2000 A.
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0.04 0.06 0,08 T &' T&, scaling among surface exponents!

'0.450+0.013, T & T),

0.433 +0.016, T ) TA,
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In both cases the results differ from the expected
scaling relation between surface and bulk exponents

n, = v+ n =0.655 +0.004

Our conclusion from the above is that the specific-
heat data of helium confined to films from 17.2 to 53
A, and to pores of 300- to 2000-A diameter are well

represented by a bulk plus surface model. This does
not require corrections to scaling to account for any
systematic deviations from the trial functions. The
model involves only three parameters, since B, =0
for T & T& and the exponents n, are equal. The cost
of this simplicity and symmetry is that the charac-
teristic exponent n, does not agree ~ith the scaling pre-
diction. This conclusion is no different from that
reached in, Sec. III, but is much stronger because of
the more explicit functions used.

I

0.2
I

0.5
I

0.4
I

0.5

FIG. 5. Data for the shift of the specific-heat maximum

plotted according to Eq. (23) to extract the leading ampli-

tude and the correction to scaling. The x's refer to the filled

pores and 0's to the films.

fit, i.e., vary n, and A, only. One obtains just as
good a fit as with three parameters. The result for
this is also given in Table V. One can see that the
values of n, and A, are hardly affected. The values
of n, we have obtained so far for T & T&, from Eqs.
(21), (22), and (20), should all agree. We see that
the differences are at most within two standard er-
rors. We consider this quite good in light of the
analysis. Further, we emphasize that in the case of
the maximum, and shift the data are handled quite
differently from the case of the scaling function. In
the former, one uses absolute values of C and t,
while in the latter, one uses the difference between
bulk and confined specific heats at various values of
t. These differences in procedure obviate possible
systematic errors. The temperature range, as already
pointed out, is also quite different for the films and
pores.

We now fit the. data for T ) T„ to Eq. (20) with

D, =0. The result of the fit is also shown in Fig. 4,
and the parameters a„A„and B, are listed in Table
V. Again, as for the case of T & T„we tried a fit
where B, is set equal to zero. The qual'ity of the fit is

just as good and n, and A, are hardly affected, see
Table V. From this analysis of the data for T ) T&

we find n, to be in good agreement with n, for

B. Analysis with corrections to scaling

Next we analyze the data to see if the scaling
prediction for a, can be retained by absorbing the
remaining temperature dependence in the correction
terms. For the shift, Eq. (15), we already know the
answer since it is of the same form as Eq. (3) which
we have used already. However, we can do a better
job now which does not involve the assumption that
the D, term is small. We emphasized that to obtain
Eq. (15) this was a necessary assumption. To avoid
this we proceed directly from the condition of the
maximum, i.e. , d'F/dT'=0, and we have

7.12As QJ as
t~d 1 — Dt~ = — '

1 — '
D, t"

n ns
i

(23)

By plotting the left-hand side vs t" we obtain A, and

D, . These values are listed in Table V for the case of
co =0.5. Indeed, as we remarked in the case of Eq.
(3), the data cannot discriminate very sensitively the
value of co. The case of ao =0.4 is shown as an exam-
ple in Fig. 5. If one performs the analysis with Eq.
(15) rather than Eq. (23) the results for A, are un-

changed within the errors, but the values of D, are
substantially larger, i.e., a factor of 6 for the films
and a factor of 2 for the pores. This is not surprising
in light of the fact that Eq. (15) is only the leading
order expansion of Eq. (23), and really only valid for
much smaller values of D, than in our case.
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FIG. 6. Difference between the confined and bulk specific heats, d C, fitted to the scaling function, Eq. (20). The solid lines are
results of least-squares adjustment of A, , B„D, independently on either side of T„. The symbols have the same meaning as in
Fig. 4.

In the case of the specific-heat maximum we are
again confronted with a rather intractable equation,
even more so than when we considered the case with

D, =D =0. We chose not to use Eq. (16) to obtain
values of A„B„orD„but rather only to check if
the results from Eqs. (23) and (20) are consistent
with Eq. (16). This indeed turned out to be the case.

Lastly, we fit the pore data near T„with Eq. (20).
We did this by varying A„D„and B, as independent
parameters above and below T„. The fits achieved
can be seen from Fig. 6 to be just as good as in the
case of D, =0 and e, a free parameter. Thus, on the
basis of the goodness of these fits, no preference can
be made between these two possibilities. However,
as we have observed all along, the correction-to-
scaling terms needed to retain the relationship
between surface and bulk exponents, Eq. (19), are
large. The amplitude is 20 to 30 times the leading
amplitude, or a factor of -103 larger than the
correction-to-scaling amplitude for the bulk specific
heat. In the case of the films, where only the value
of D, from the shift has been obtained, we find it
only -3 times the leading term, or -102 times the
analogous bulk term.

VI. COMMENTS

A. Other measurements of specific heat

There have been many measurements of specific
heat of helium films, and one might wonder whether
these data are compatible with the results discussed
in this paper. For almost all the data, which are in the
"right" thickness regime, we have already mentioned
in the Introduction their common, dominant qualita-
tive feature of a rounded maximum below T„. By
the "right" thickness regime we mean films thicker
than -4 layers where the physics of finite-size effects
are more clearly manifest. Clearly for thickness of
the order of a monolayer the dominant effects are
quite different. This perhaps can be best epitomized
by the very extensive data of near monolayer films
on Grafoil. Our focus with thick films is obviously
quite different.

The exception to the rounded specific heats of
films is the data of Bretz for multilayers on Grafoil. '
Some explanations have been proposed for this
behavior, ' but perhaps the simplest might be inho-
mogeneity of film thickness due to capi11ary conden-
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sation. This might occur in regions where the gra-

phite crystals are very close or touching. Among the
other data only those of Frederikse5 agree with the
determination of the shift in the maximum with

size. The value of the specific-heat maximum is not
in agreement, but this can be easily explained by a

slight error in the vapor contribution. This goes back
to our remark that the position of the maximum is

not affected very much by the vapor correction
(hence the agreement), while the maximum itself is

very sensitive.
The data for films in Vycor glass were historically

the first for which agreement with the scaling predic-
tion for the shift exponent was suggested. It seems
clear now that these data must suffer from capillary

condensation in the Vycor pores. The film thickness
used exceed the limit for capillary instability. This
explanation is also consistent with the observation of
a difference between the onset of superflow and the
specific-heat maximum. This would be, .due to the
difference in the confining dimension of the film and

the capillary-condensed filled pores. In addition to
these considerations, it seems clear that confinement
of helium in Vycor, whether films or filled pores, is a

rather unique situation. It has been observed for in-

stance4 that the superfluid fraction even for very di-

lute films (-0.06 of a full layer above an inert layer)

is three dimensional in character. In addition, in the
case of the specific heat of filled Vycor, it has been
emphasized that there is no way to reconcile it with

predictions of finite-size effects. '0

Lastly, as a general statement for all the data on
the specific heat of thick films we point out that none
are for films of constant thickness. The thickness
varies as the temperature increases and evaporation
takes place. Even a proper correction for this leaves

the data as the specific heat of a helium film along a

thermodynamic path unique to a particular calorime-
ter. This has little effect if one just compares say the
maximum, but it has a marked effect on the shape of
the specific heat. Thus there exist no data on thick
films on various substrates which can be said to agree
over a substantial temperature range.

geneity as in the case of the specific heat. Further in

the case of inhomogeneous confinement the flow
measurements yield a transition which is biased to
the smallest confining dimension as opposed to the
case of the specific heat which is biased toward the
largest dimension.

We will not review the flow measurements here,
but point out that recent data by Brooks, Sabo, Schu-
bert, and Zimmermann ' for the vanishing of p, ,in

Nuclepore filters favor a shift exponent of
1/0. 53 +0.08. This differs from the scaling predic-
tion of 1/0.675, and is very much in agreement with

our determination from the specific heat. Further,
Brooks et at. point out that their result is consistent
with other filled channel experiments which also
favor an exponent greater than 1/v. Thus, a more
global view of these experiments tends to support our
observation from the specific heat of a failure of
leading order scaling predictions.

In addition to the shift exponent there have been
recent measurement by Agnolet, Gasparini, and Rep-
py'4 of the superfluid density of helium confined in a

0
region -4000 A between sheets of Mylar. These
data suggest that the deviations from bulk behavior
in a region not too close to the transition,
t & 3 && 10, can be analyzed very much in the spirit
of bulk-plus-surface contributions. The resulting sur-
face exponent seems to disagree with the scaling pre-
diction in the same way as for 0,

C. Thermal expansion

The thermal expansion, which in bulk helium has
the same singularity as the specific heat, should mani-

fest similar finite-size effects. Measurements for
helium confined to packed powders, and Vycor glass,
have been reported by Wiechert and Wupperfeld.
Their data are consistent with Eq. (1) and A =1/v.
However, as we already discussed, packed powders
and Vycor do riot give the necessary well-defined
confinement to test Eq. (1). Hence, we would take
these data as giving only a qualitative support to
finite-size scaling.

B. Measurement of the onset
of superfluid flow

Measurements of flow onset and superfluid density
are another, and perhaps more relevant, way of deter-
mining the transition of confined helium. If one ac-

cepts the scaling prediction, the behavior of this on-
set with size should be governed by the same ex-
ponent, 1/v, as the shift in the specific-heat max-
imum. If one allows for a failure of scaling, then this
need not be so, and the two shift exponents might
differ. As a matter of experimental procedure we

point out that the determination of the confining
dimension is subject to the same caveat of homo-

D. Crossover in dimensionality

We have not used in our discussion of finite-size
effects the concept of crossover into a lower dimen-
sionality. It does not seem to matter, for the specific
heat, that the films, once the correlation length is of
the order of thickness, are really two dimensional
(2D). For the same reason the full pores would
cross over into a one dimensional regime. In the
case of the films, the 2D behavior, as far as the on-
set, is described well by the Kosterlitz-Thouless
theory. ' According to this theory one expects a
small maximum in the specific heat at a temperature
above the 2D transition. At the transition the specific
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heat is perfectly regular. "'8 What seems to be hap-
pening for the films we have analyzed is that the
maximum resulting from finite-size effects dominates
the 2D behavior, thus the data are more aptly
analyzed as we have done. Of course, a more com-
plete description would involve fUnctions which
display the full range of behavior, from finite size 3D
to 2D since, no real dichotomy in these points of view
exists.

In the case of thc filled pores, when the data are
analyzed according to the scaling function, Eq. (20),
the crossover into another dimensionality is ir-
relevant as far as the value of the exponent e,. The
only way in which the geometry enters is via the am-
plitudes A„B,. Another way of saying this is that if
we think of deviations from bulk behavior as being a
surface effect, then it matters little what thc
geometry is. At least as long as we are in a region
where the correlation length is smaller than the
smallest dimension. Of course if one wants to scale
the data with size, then the geometry does enter,
The confinement to say a 1000-A film is obviously
not equivalent to a 1000-A-diameter pore.

E. Measurements on other systems

There are no measurements of specific heat on any
other systems which have addressed themselves to
finite-size effects. In ihe case of nickel ho~ever,
there are measurements by Lutz, Scoboria, Crow,
and Mihalisin'0 of the resistivity near the ordering
transition for films in the range of 250 to 24000 A.
The derivative of the resistivty with temperature,
d p/dT is expected to be analogous to the specific
heat. An analysis of the shift of the maximum in
d p/dTwith size yields an exponent I/A =0.99+0.1
in disagreement with thc scaling prediction
I/A = p =0.70. It was also found that the data near
the transition did not scale statisfactorily.

In another universality class (Ising), there have
been measuremcnts of the coexistence of films of
methanol cyclohexanc by Jacobs, Mockler, and
0 Sullivan which seemed to give a logarithmic shift
in T,. This result has been called into question by
Meadows, Sheibner, Mockler, and O' Sullivan after
their measurements of 2,6-1utidine and water. With
this system they find good agreement with scaling
predictions both as far as the shift exponents, and the
scaling of the data with thickness. These data, how-
ever, also show a marked effect from the boundary
conditions of the fluid at the walls. A silvered mirror
results on an enhancement of the 3D transition tem-
perature, while a dielectric mirror showed a depres-
sion. This enhancement and depression they find are
not governed by the correlation length exponent.
These effects are possibly due to the van der Waals
field of the walls which couples directly to the order
parameter. This should have a marked effect on the

transition. This difficulty is not present in the ease of
the helium experiments.

F. Some theoretical results

There have been many theoretical calculations of
thermodynamic functions to look at size effects riear
a critical point. These have involved various
methods, series expansions, renormalization group,
Monte Carlo computer experiments, and rigorous cal-
culations. Overall the results tend to support the
scaling conjectures, and there is no case where
corrections to scaling have been needed to achieve
agreement. Nevertheless, there is no real ground to
find a serious discrepancy with the results of our
analysis. In the first place most calculations have
been done on systems of different universality class
from helium. Secondly, many calculations, which in-
volve either fully finite lattices in two or three
dimensions or semi-infinite lattices with a finite
number of layers, are done for cases where the small-
est dimensions are in a range which, judging from
our results, is outside the asymptotic region ~here,
say, Eq. (I) would hold. Thirdly, many theoretical
calculations lack the precision to test the scaling pre-
diction in a crucial manner.

We will not attempt a review of the theoretical
work, but will discuss some which are most relevant
to our own results. In thc case of the infinite 2D Is-
ing model with a surface there are exact calculations
by McCoy and Wu43 and Ferdinand and Fisher44 of
the surface specific heat. They find that it diverges
as t ' in precise agreemcnt with the scaling prediction
of o., = o, + v, n =0, v =1. In the case of the semi-
infinite 2D model, strips ~ && I., Au-Yang and Fish-

-er have found agreement with the scaling prediction
of A = I/v for strips in the range of 2 & L & 64.
They also find that a bulk-plus-surface decomposition
for the specific heat is quite reasonable for g/L & 0.5
for T & T„and g/L & 0.1 for T ) T, . For T ) T„
this is not significantly different in range to what we
have used in our own analysis if we take L approxi-
mately equal -to the diameter of pores. Further they
find that the residual of a surface-plus-bulk decompo-
sition decays exponentially in L/$ as one moves away
from T, .

In the particular case of the shift exponent Bray
and Moore46 have obtained an expression for A to
order ~ =4 —D. This result for A is directly relevant
to the experiment with helium. However, the pre-
cision of the calculation, to order e, is not high
enough to test the scaling prediction at the level of
our experiment. To see this, we note that the order
~ calculation for the bulk correlation length exponent
is less than the true value of v by —0.08. If one as-
signs this very likely error to the order e calculation
of A, then no real discrepancy exists. This theoreti-
cal result agrees both with scaling and our own expcr-



23 CORRECTIONS TO SCALING AND SURFACE SPECIFIC HEAT. . .

imental results.
In the case of the 3D Ising model there are calcula-

tions by Allen4' and Allen and Fisher' of the suscep-
tibility of films ~ x ~ x L. For a free surface boun-
dary condition the results for the shift in T, are con-
sistent with A =—1.56. However for periodic condi-
tions one finds A =—2.0. The results for the free sur-
face do not seem to exclude, however, a somewhat
lower value of A, possibly -1.3. Thc range of films
considered 2 ~ L ~ 7 covers a region where from
helium experiments substantial deviations from Eq.
(1) occur. On this same point, the exact calculations
of the magnetization of finite cubes by Binder and
Monte Carlo calculations-by Binder and Hohenberg
snd cubes 55 & 55 x L with L = 2, 3, 5, 10, 20 show
substantial deviations from Etl. (1), if L is too small.

Cspchart and Fisher4~ have calculated the suscepti-
bility scaling function for Ising films of ~ x ~ x L
with L up to 14 for periodic boundary conditions and
L =10 for free surface. Among their results they
have obtained an effective susceptibility exponent as
function of g/L One finds from Fig. 9 in their pa-

per, that by the time f =—L the effective susceptibility
exponents is -80'//0 of its crossover to the 2D value
for a free surface and -670k for periodic boundary
conditions. Onc conclusion which one might infer
from this is that the condition g less than or approxi-
mately equal to the pore diameter we imposed in fit-
ting our data to the bulk-plus-surface model is not
too unreasonable. Indeed thc success of the model
might argue for th'e boundary condition of a helium
film being closer to periodic rather than free surface.
All this, however, should be taken with a grain of
salt since one is indeed comparing not only different
universality classes, but also different thermodynamic
functions.

Landau50 has done Monte Carlo studies of the fin-
ite Ising square lattice L & L with L ~64. In the
case of the shift of the transition temperature as
determined from the specific-heat maximum the
results are consistent with scaling for both periodic
boundary conditions and free edges. In the case of
periodic boundary conditions good agreement is also
found with the calculation of Ferdinand and Fisher. "
If, however, one determines the shift in T, from the
maximum in the susceptibility, systematic deviations
from scaling seem to manifest for both types of
boundary conditions. Landau also finds that the
specific heat can be analyzed as a bulk plus a surface
contribution, and this scales as rL~, with 8-1/v.
The scaling function is a simple power with exponent
0/, =n+v. This scaling plot, Fig. 19, is very reminis-
cent of Fig. 3 of Chen and Gasparini, "although in

the latter's case, the scaling exponent was not 1/v. A
comparison of these two figures shows that the range
in which the theoretical and experimental plots yield
a power lsw is quite comparable tL' & 1 for the
Monte Carlo data and tL~ & 3 for the experiment.

From the analysis of the specific heat of confined
helium, the simplest picture which emerges is one in
which thc deviations from bulk behavior are ascribed
to a surface term in the free energy. This gives con-
sistent results for sll aspects of the measured specific
heat, snd is especially simple when it comes to the
scaling function near T&. A simple po~er law scales
all the data above and below T~. All aspects of the
data can be described by only three parameters: two
amplitudes and one exponent, o, This exponent is
found to be the same above and below T&, but in
disagreement with the surface scaling prediction of
n, =0, + v. One might conclude from this that the
presence of surfaces manifests a new critical length,
with exponent v, .

To getain the scaling prediction, the bulk-plus-sur-
face model gives a natural way to include correction-
to-scaling terms. The equations for the maximum
and the shift are very much in keeping with those
suggested by Fisher. An analysis which includes
these terms sho~s them to be very large, typically 20
to 30 times thc leading amplitudes, and very much
larger, by three orders of magnitude, than what is en-
countered in the case of bulk helium.

We find that the analysis in terms of the surface
specific heat, which we believe is the first for an ex-
perimental system, to be quite in keeping with some
theoretical work, especially as far as the range in tem-
perature where the model should apply. We also find
that our results, although not in agreement with scal-
ing predictions, are not, nevertheless in serious
disagreement with theoretical calculations.

ACKNOWLEDGMENTS

We are very grateful to Professor M. E. Fisher for
many helpful discussions. This research was support-
ed in part by the National Science Foundation,
Grants No. DMR 7711325 and No. DMR 8007302.

APPENDIX: EFFECT QF THE PRESSURE GRADIENT
QN THE SPECIFIC HEAT QF THE FILMS

We want to consider in this Appendix the effect of
the pressure gradient due to the substrate's attraction
of the helium film. One might think of this effect as
a possible source for the disagreement with leading
order scaling predictions we have discussed. That
this cannot be the case, can be quickly established by
recalling that our results of deviations from scaling
are manifest both with the films and the filled pores.
In the latter case the effect of the substrate potential
is negligible. Even in the case of the films, where
this potential is substantial for a good percentage of
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"smoothing function" in Eq. (A4). The solid lines
through the points-drawn by eye do just as well.
The main result of Fig. 7 is that the maxima are very
much closer to T& than in the case of the experirnen-
tal measurements. The position of the expeirmental
maximum is indicated for comparison as the first
number near each curve. The calculated specific heat
at the maximum is of the same order as the experi-
mental result —the second number near each curve.

One might now suggest that the total shift in the
maximum is a combination of a "trivial" effect due

to the pressure and one due to the correlation length.
%e have tried this approach and "corrected" the to-
tal temperature shift by subtracting the shift due to
the pressure only. This amounts to ~10'/o correction
to t . %e then reanalyzed the "corrected t " to ex-
tract the shift exponent. We found I/A =—0,55,
essentially unchanged from the "uncorrected t "
analysis which gave I/A =—0.53 (see Table III).

%e conclude that the pressure effect, although an
interesting exercise, does not explain within our
model the leading order disagreement with scaling.
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