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Tunneling spectra of hypothetical p-wave and conventional s-wave superconductors are ex-
pected to differ significantly. There is a bulk effect which arises due to the differences in the
structure of the Cooper pairs, and a surface effect, which dominates, and is associated with the
interface of the tunnel junction. %e calculate the tunneling density of states of a p-wave' super-
conductor in a magnetic field and discuss particular features which allow experimental identifica-
tion of p-wave superconductors.

I. INTRODUCTION II. THEORETICAL BACKGROUND

Experimental progress in superconductor research
over the last few years has rekindled theoretical
speculation as to the possible existence of p-wave su-
perconductors, In particular, the progressive techni-
cal mastery of difficult tunnel-junction experiments
by Merservey and his co-workers' has prompted
them to propose those methods as a likely means of
identifying and labeling triplet pairing, and of distin-
guishing it from the more common singlet pairing.

Following up this train of thought we would like to
present here a qualitative discussion of p-wave paired
Fermi systems emphasizing properties which would
allow an experimental discrimination between the two

forms of pairing. The features chosen for discussion
were response to magnetic fields, response to impuri-

ties, and behavior in the presence of a reflecting sur-
face (surface pairbreaking). It seemed apparent that
any of the experiments under consideration would in-

volve all three attributes (in perhaps undetermined
measure). A cogent interpretation of the results
would then presuppose a certain familiarity with these
effects, singly and combined, and our interest here is

to pursue that acquaintanceship further. The techni-
cal tools we employ are commonly recognized under
the nomenclature "quasiclassical methods. "We ex-
pect no significant strong-coupling effects and apply
these methods in the form correct to the accuracy of
normal weak-coupling theory. Approximations enter
only through the introduction of individual models
for each of the properties investigated.

We begin the discussion with a brief exposition of
the quasiclassical techniques used emphasizing the
general structures involved. The individual cases are
then presented, and we delineate details of the
models used and results obtained.

The characteristic scales of energy and length in su-
perconducting phenomena are set by k~ T, and

gp =/rug/'rrks T, . The quasiclassical formulation of su-
perconductivity proceeds by restricting one's attention
exclusively to variations along these scales. This is
effected by explicit elimination from the theory, at
the very outset, of properties determined by the Fer-
mi wavelength kJ; ' && (o, and the Fermi energy
F~ && k~T, . The advantage gained is a very consid-
erable simplification, elegance, and calculational ease.
An important aspect of the spirit involved is that,
since the traditional BCS approach is restricted in ac-
curacy by the quantity ks T,/EF anyway, one has
made progress by fully acknowledging this fact and
eliminating as many intermediate steps as possible.
One might add that the quasiclassical formulation
lends itself to immediate generalization encompassing
"strong-coupling" phenomena as well, However, we
anticipate no significant strong-coupling corrections to
the properties discussed in this paper and shall not
pursue this feature further here.

We next briefly introduce the general mathematical
framework employed in these calculations, relying
on Ref. 2 for the detailed derivations, discussions,
and notations. The underlying structure proceeds
from formal many-body perturbation theory ex-
pressed in terms of the thermodynamic (imaginary-
time) Green's functions. We use the 4 x 4 matrix
notation which contains the "anomalous" Green's
functions in the off-diagonal quadrants.

In what follows only the static limit will be impor-
tant, and consequently only one frequency, the ener-
gy variable, will appear as an argument. The basic
working tool is the "quasiciassical" or "g-integrated"11
Green's function g(k;R:e„). Loosely speaking, g has
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been derived from the full one-particle Green's func-
tion by integrating over the magnitude of the relative
spatial variable's Fourier components. As written, R
is the center of mass spatial coordinate, k is the
remaining direction of the Fourier-transformed rela-
tive spatial coordinate, ~„ is the Fourier-transformed
relative time coordinate at the Matsubara frequen-
cies, and the caret denotes the 4 && 4 matrix notation.
The importance of quasiclassical Green's functions
stems, first, from the fact that the theory may be cast
exclusively in terms of them, and second, that the
expectation value of all interesting observables may
be expressed through them as follows:

(A (R)) = T XN(EF)
A

x)t —Tr4[a4p(k )g (k;R:a„)]
(2.l)

~here a~ is, in the notation of Ref, 3, the quasiparti-
cle operator corresponding to the variable A (R).
The equations determining g are derived in turn from
the Dyson equation determining the full Green's
function. They take the form of a transportlike equa-
tion plus a normalization condition, In the static lim-

it they are

is„(r3,g(k;R:s„)) +iuFk '7ag(k;R:a„) —r3o(k;R:a„)

x g (k;R:a„)+g (k;R:s„)o (k;R:e„)r3 =0

(2,2a)

and

ty, all orbital effects of a magnetic field. The hy-

pothetical triplet superconductor will be characterized
by an order parameter of the 8%' type. This choice
suggests itself by the fact that, within the weak-
coupling theory and within the Eliashberg theory of
superconductivity, this is the most stable p-wave
state. Due to the symmetry of the order parameter
all spin-independent properties, in particular the exci-
tation spectrum of the pure bulk system, are exactly
the same as those of an ordinary BCS superconduc-
tor.

A magnetic field acting on the spins, however,
shifts the excitation energies of the single-particle
states k [, —k [:

1

k~ Ck 2 jeff+ 6kf 6k+ 2 PeffH

where the effective moment p.,ff accounts for the
Stoner enhancement as well as for the electron-
phonon mass renormalization. The equal spin-
pairing states,

~ [ [) and
~ / [), are not affected by this

shift and the corresponding excitation spectrum
remains unchanged exhibiting a single peak at the
original gap edge [Fig. 1(a)). [Since we restrict our-
selves to low magnetic fields, we can neglect the de-
formation of the order parameter which is of order
(i4.rrH/&)'. )

r3g (k;R;s„)egg (k;R:s„)= —4r'l (2.2b)
N(0)

with

4g(k;R,„,f e„)r3itg('. k;R,„,r e„)=0'. (2.3)

where o is the quasiparticle self-energy. Closing the
circle of equations requires defining cr as a functional
of g. This is denoted the "self-energy equation" and
will provide the order parameter "gap equation. "

The only remaining specification required is the
boundary condition at a reflecting surface, which we

excerpt from Ref. 2 as 0

Nato
N(0)

A

Ag = — „(T3rg —grr3)
v p-k ~ n

(2.4) 2.0-

where t is the surface t matrix. Equations
(2.2) —(2.4) serve then as the basis for all the calcula-
tions discussed here.

III. MAGNETIC AND IMPURITY RESPONSE lhl-Ihl lh, l lhl+ lhl
td

In the following section we discuss the density of
states of a bulk system with a magnetic field, coupled
only to the electronic spins. %e ignore, for simplici-

FIG. 1. Excitation spectra for equal-spin pairs and
opposite-spin pairs in the presence of a magnetic field.
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A pure opposite spin-pairing state,
(1/J2) (l] [) —

l j 1)), on the other hand, behaves
exactly like a singlet state as can bc seen from Fig.
1(b). %e observe pair breaking which is reflected in

a Zeeman-split spectrum.
In the case of a general triplet state the spectrum

exhibits more complicated features which can be cal-

culated easily from the transportlike equations,

in the self-energy

h o (—Z. a)icr2

I'a2/I o. (o,h a ) o2
(3.2)

%e solve for the normal part g, + g„o- of the
Green's function go. Introducing the abbreviations

1&»(r3 g0) &3og0+goor3
A

7'3g'r3g =—S' 1

where we included the Zeeman contribution

1

2 PegHeltt' 0 = h ' 0"

(3.1) d(k) =.2+lZ(k)l'+lhl',

x(k) = „ (d(k) —[d'(k) —rt'(k)]'~']
&(k)

wc obtain

(3.3)

d(k)+ld'(k) -~'(k)]'"
gs(k:an) = '&»

[d'(k) —rt'(k)]'~'( —,
' [d(k)+[4'(k)vp'(k)]'~')llll')'~'

(3.4)

A

For real frequencies eo and fixed direction II.
. the exci-

tation spectrum, —(1/n ) Img„may exhibit one, two,
or three peaks depending on the relative orientation
of the magnetic field and the order-parameter vector.
Secondly, if the direction of the order-parameter vec-
tor varies over the Fermi surface ihe quasiparticle
states will not be in general eigenstates of a spin pro-
jection.

The properties which distinguish the pure bulk trip-

let superconductor from the ordinary singlet-paired
one are also reflected in the total density of states
and the polarization which is shown in Fig. 2. The
total density of states should be compared with Fig.
1(b) since, as mentioned above, the corresponding
s-wave curve is identical to the one obtained for pure
opposite spin pairing.

In the triplet case the excitation spectrum has a
square-root dependence starting at the energy
co =

l 6( —
l h l. At the original gap edge we observe a

logarithmic singularity originating from excitations
from equal spin pairs. The second branch of the
quasiparticlc spectrum begins at a frequency
cu = (5'+ A~)'~2, leads to a maximum at
c» = l5l + lb l, and decreases for higher frequencies.

For the triplet superconductor the polarization,

Nt(cu) —Nt(co)
P(co) = (3.5)

Nt co +Nt co

is a continuous function of the excitation energy co,

in addition, its absolute value is lower than in its
(ideai) singlet-paired counterpart where the polariza-
tion is equal to 1 for the lower quasiparticle branch

3.0 I I. I I

N, (ttt)

N(0)

2.0-

1.0-

I I I I
I I I

P(hI)

0.4-

0.

I I I I I I I I I I

0.6 0.8 1.0 1.2 lA 1.6

FIG, 2. Total density of states, NT{~)/N(0), and polari-

zation, @{a),of an ideal bulk triplet superconductor in a
magnetic field.
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(4 —I't ~ co ( 6 + h), which jumps to —1 at cu = 5 + h

and then decreases to zero. The reduction of polari-
zation is due to the presence of equal spin-pairing
states because the excitations contribute equally to
Nt(co) and Nt(ru) A.s a consequence the polariza-
tion is reduced near the original gap edge co = {Z~.

These results for the pure bulk case confirm
Merservey's idea that one can distinguish singlet and
triplet superconductors by the density of states and
the polarization in a magnetic field.

In the presence of impurities the total density of
states and the polarization of an s-wave superconduc-
tor remain the same provided that spin-orbit scatter-
ing can be neglected. This is a consequence of the
fact that momentum scattering does not affect signifi-

cantly this type of pairing. In an anisotropic super-
fluid, however, it establishes an important pair-

breaking mechanism which tends to suppress super-
conductivity. This is in close analogy to spin scatter-

ing from magnetic impurities in a conventional s-

wave superconductor and, in the absence of an exter-
nal magnetic field we expect similar results in both
cases.

Impurities establish strong perturbations v —EF
varying on the microscopic length scale 1/kq. They
are accounted for by a scattering term which we

evaluate within the self-consistent t-matrix approxi-
mation. We calculate the single impurity t matrix
while we include the scattering from all other centers
in an effective medium which is- determined self-
consistently. This procedure is correct to leading or-

with

t =&+@got 0.6)

go is the quasiclassical Green's function in the pres-
ence of a magnetic field.

In the following we restrict ourselves to the' special
case of pure s-wave scatttering. The corresponding t
matrix does not depend upon the direction k on the
Fermi surface and Eq. (3.6) becomes

r , v=r+3,vNr3(0), g, (k ,„)I ..
4m

(3.7)

The anomalous parts of the matrix Green's function
are odd in the variable k; therefore they do not con-
tribute to the t matrix in the s-wave approximation.
Equation (3.7) is inverted easily yielding

ders in 1/Ikq where I and kq denote the electron
mean free path and the Fermi wave vector. We note
that this is not a perturbation expansion in powers of
the impurity concentration since all orders of I/$0 are
retained.

We proceed in the following way: first we calculate
the t matrix of a single impurity which allows us to
understand the very dilute limit and gives us some
insight into the structure of the spectrum. In the
second step we extend our calculations to finite im-

purity concentrations. We start from the convention-
al t-matrix equation

with

(g') + (g.) ~
I = rpT3 + rpT3v, N (0)

0 &g'& + ~2(g.)
O.g)

1 —[N (0),l'( (g,') —(g.&

*
{1—[N(0) v ]'((g') +1&g.& I)'] {1- [N(0) v ]'(&g'& —1&g! & I)']

(3.9)

Here we introduced the following notations and ab-
breviations

d2k o ~ d'k o
(g,') =J~'"g,a«:..), &g'.&=„i""g'.«:..) .

Since to~3 does not contribute to ~3crgo —goo-~3 this
term is ignored in the proceeding calculation. There
is a close analogy between this single impurity t ma-
trix and the one obtained for spin scattering from a
classical spin in an ordinary singlet superconductor. 4

ln the absence of a magnetic field, the t matrix (3.8)
has two poles at

cps =+ {1+[mN(0)v, ] ] !
corresponding to two bound states in the excitation

I

gap. This fact which is a direct consequence of the
singularity of go at the gap edge highlights the inade-
quacy of the Born approximation. In a weak magnet-
ic field one observes a Zeeman splitting of these
states.

For finite impurity concentrations these discrete
bound states will form bands which spread out until
the gaps disappear. For a more quantitative discus-
sion we characterize our system by the reduced
scattering cross section o. and the quasiparticle life-
time ~, in the normal state. The reduced scattering
cross section a is defined as the ratio of the normal-
state total cross section 0.„,divided by the maximum
value in the unitary limit

4n o„, [n N (0)v, ]'
kF' o'm. * 1+[~N(0) v, ]'
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it measures the strength of the single impurity poten-
tial. The single scatterer bound states in zero mag-
netic field are located at cps =+ (1 —o.)'~'. As a

second parameter we choose the quasiparticle lifetime
in the normal state

2n N (0)u,'—=C = 2 (J'
1+[nN(0)u, ]' rrN(0)

%e solve the coupled system consisting of the t-

matrix equation and the transportlike equations self-
consistently, i.e., we replace go in Eq. (3.6) by the
full quasiclassical g which is to be determined. This
Green's function g has the same structure as go and
the impurity scattering is accounted for in the renor-
malized arguments, cu and h. In the case of s-wave

scattering we obtain two coupled scalar equations
which determine the complex frequency co and mag-
netic field strength h

(g. ) 1 —o.[1 + (1/n') (g t ) (g [)j
2rs ~ [1 —o[1 —(1/1r )((g[)) j) (1 —0[1—(I/n' )((g/)) jj

h =h+- (g.) 1 —o [1 —(1/n') (g t) (g [)1

(I —o [1 —(1/n') ( (g [))'] [ [I —o[1 —(I/~') ( (g [))'j)

(3.10)
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FIG. 3. Total densities of states, NT(io)/N(0), and polarization, p(co), in a bulk triplet superconductor doped with

impurities (a) 1/2~, =0.01, (b) 1/2v, =0.20.
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where we introduced

&gt&t,

(g)&
'= «.&

+ (g.&

For a fixed quasiparticle lifetime ~„ the shape of
the excitation spectrum may depend quite substantial-
ly on the strength of the individual scattering poten-
tials o- which determines the position of the impurity
band. This parameter dependence may be estimated
from Ref. 5 where pair breaking from magnetic im-
purities in conventional s-wave superconductors is
discussed.

In the presence of a magnetic field the quasiparticle
excitations of the isotropic BW state are not eigen-
functions of a fixed spin projection and consequently
potential scattering from the impurities mixes togeth-
er different spin states. Characteristic features of the
excitation spectrum fe.g. , the two peaks at 0) = ~Z~

and ru = ( ( Z) +
~
h

~
) l are smeared out by quasiparticle

lifetime effects and spin relaxation as can be seen
from Fig. 3. For sufficiently high inverse lifetimes
I/r, these two peaks merge together into one broad
hump. The critical value depends upon the strength
of the individual potentials and on the magnetic field.
For ii = 0.2~ X~ the two peak structure is observed up
to a value of I/2r, (0.10 in the unitary limit o. =1
whereas it disappears for I/2n, & 0.025 in the weak
scattering (Abrikosov-Gorkov) limit. Similar
behavior is encountered in singlet superconductors
when spin-orbit scattering from nonmagnetic impuri-
ties becomes important. There is, however, a crucial
distinction between these two cases: Spin-orbit
scattering does not suppress s-wave superconductivity
since it does not violate time reversal invariance
whereas momentum scattering in an anisotropic su-
perfluid leads to pair breaking. This is reflected in

the formation of the impurity bands the shapes of
which are only weakly affected by the magnetic field.
(The splitting of the impurity band is observed only
in the extremely dilute case, e.g. , h =0.2, o-=0.75,
I/2r, =10 '.) From these results we conclude that
also in the presence of nonmagnetic impurities a
measurement of the bulk density of states would al-

low us to identify triplet pairing unambiguously.

IV. SURFACE RESPONSE

Tunnel junction experiments measure directly the
surface density of states at a junction wall. In the ex-
pectation that this fact might be exploited, we have
focused our surface calculation, to date, on exploring
features of this quantity.

For the adoption of a model describing surface ef-
fects we once again relied on experience with super-
fluid 'He. The gap function is assumed B phase in
the bulk of the form iIi(k) = hk oio2 but which.

then in the vicinity of the wall generalizes to

A(((R) k(( oicr. 2+ hq(R) kg (r l(r2

where k~~ refers to components within the surface.
The self-energy entering Eq. (2.2) takes the form

0~=a'0

where g is a coupling constant and f the anomalous
Green's function. Finally, the wall itself was as-
sumed to be a specularly reflecting surface. Whether
or not this is the optimal model available is certainly
open for discussion, but we may at least reasonably
hope that most of the pertinent surface phenomena
will appear here as well. The boundary condition in
this case takes the simple form

g(k) =g(k), (4.2)

on the surface, where k = k 2n (n —k)(n is the
unit normal into the bulk) is the mirror reflected
k vector.

The first step in the numerical computation is an
explicit specification of the spatially dependent gap
function. We chose to solve Eqs. (2.2), (4.1), and
(4.2) self-consistently yielding 4(R) for a specular
wall. Concurrently, we employed simple test models
for h(K) to probe the sensitivity of the system
against perturbations. No in depth study of tempera-
ture dependence was attempted for this paper, rather
we chose two values of T, T~ =0.647 T„and
T2=0.838T, for which the self-consistent gap evalua-
tion was conducted. The structure of the ensuing
results is displayed in Fig. 4. To facilitate compar-
ison, the units of energy and length were chosen to
be the temperature-independent quantities
50 ——hb„(k( T =0), and $0 =gvF/rr/to In general, t.he
perpendicular component of the order parameter is
suppressed to zero and the parallel components are
slightly enhanced as they approach the wall. Roughly
speaking, this depression of the perpendicular com-
ponent acts as a potential well for quasiparticle excita-
tions, and is responsible for the unique and distin-
guishing character of the density of states. In con-
trast, s-wave pairing is not disrupted by a (nonmag-
netic) surface; i.e. , a wall does not act as a pair
breaking scatterer. Consequently, the order parame-
ter will not be diminished which is the crucial distinc-
tion.

For purposes of comparison we present alongside
the self-consistently determined data the test case
where 4~~ is held constant at the bulk value and 4q
proceeds linearly from zero to the bulk value over a

and the p-wave gap equation may be written

A(k;K) = —g)'x' f . )k kf(k;R: „), (4))
7r
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I

~ll(Tl)
6 b{Tl)

h, b

0.0 2.0 4.0 6.0

rameter vector near a specularly reflecting surface forFIG. 4. Parallel and perpendicular components of the order-parame er

T& =0.647T, and T2=0.838T,.

distance 4g( T).
Temperature dependence enters the real frequency

results only through LL(T), which acts as a scaling
factor for energy and length. Consequently, the
model's results offer a comparison of density of
states behavior at each temperature merely by rescal-
ing the energy variable. The use of these models was
intended principally at observing the sensitivity of the

results to the precise shape of the order parameter,
and their display will be labeled "model. "

For a given k vector the density of states n (k, cu)

[measured in units of N (0) ] may contain consider-
able structure. Dependence on the direction of in-
cidence enters through the angle to the normal
cosH = k '~. Results for various angles at tempera-
ture T~ reveal typically observed characteristics, and

4.0-

N&(u);8)

N(0) 0

Tl = 0.647

09

tt

1.0 1.2 1.4

FIG. 5. Comparison of the densities o states, & co,f N (~'8)/N(0) near a specularly reflecting surface for T& =0.647 T, and for
various angles of incidence.
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0.8 -
Ti

&(Tj)

-0.S
NT(e, (t))

-0.6 N(0)

FIG. 6. Dependence op angle of incidence of the position of the bound state, coo(8), and its ~eight, NT(~o, g)/jV(0), for

are displayed in Fig. 5. Incidence at angles between
zero (normal) and = 1.3 rad yields two particularly
conspicuous features. First is the presence of a single
bound-state 5 function peak of significant weight at
energies cus less than Ab„ik( T). And second, the gen-
tle curve for ~ & 5 betrays no square-root singularity
that would be typical of the s-wave case. This curve
overshoots the bulk value in its climb and then re-
laxes to it over an energy width of a few 4.

The energy of the bound state increases with angle
until at a value 8 =1.3 rad the spike merges with the
curve above and fades away. For angles nearing this
merging value (ever more grazing) one observes, as
well, that the "overshoot" mentioned above is
developing into a real peak at an energy above
=1.14. This peak ~ould be the analog of that
observed in s-wave pairing though no singular
behavior is observed here. Figure 6 details the posi-
tion of the bound-state peak and its ~eight. The

strong angular dependence manifested here is a direct
consequence of the anisotropic nature of the gap on
the surface. At non-normal incidence the perpendic-
ular component of 6 is "perceived" more strongly
than the parallel ones. Since Ai has been greatly di-
minished excitations are possible at energies below h.
Kith increasing angle the parallel components play an
ever more important role. Near parallel incidence
they are dominant, as evidenced by the appearance of
an s-wave-like peak and its position above hb [k (ln
response to the enhancement of hei on the wall). The
model calculations substantiate this picture in detail.

An actual experiment would presumably measure
n (k, cu) folded against some other quantity. Were
the experiment especially sensitive to particles collid-
ing at near-normal incidence, where the discrepancy
with s-wave pairing is particularly apparent, one
might hope that p-wave pairing could be clearly
marked.

3.0-
NTI~)

N(O)

T) =0.6&7 Tc

4.0-
N, (e)

N(G)

0.0
0.0

j

0.5 l.0 l,5
4)

~(T, )

FIG, 7. Integrated density of states near the specularly re-
flecting wall for Ti 0.647 T~.

G.G
0.0 0.5

FIG. 8. Density of states obtained from the model order
parameter.
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We present as well (see Fig. 7) the total density of
states integrated over angle. The "model" results
(Fig. 8) are quite markedly different and indicate the
importance of the most accurate input data possible.
An improved calculation would include the effects
arising from a diffuse wall. Diffuseness would
presumably lead to a suppression of both components
at the surface. Test calculations then indicate, in
fact, an intensification of the two principal distin-
guishing features. First, were b,

~~ suppressed we
would expect the peak in the integrated density of
states above ~ = 4 to vanish and, second, we would
expect yet more bound states to appear at energies
cu & b, .

In summary, we may reaffirm the speculation of
Merservey mentioned at the beginning that surface
response ought to serve as a useful tool in the search
for p-wave superconductors.

V. CONCLUSIONS

The central result of this paper is the confirmation
of Mersevey's idea that a hypothetical triplet super-
conductor might be identified by means of a tunnel-
junction experiment. A magnetic field causes distinc-
tive structures in the excitation spectrum of the ideal-
ly clean bulk system. Pair-breaking effects at non-
magnetic impurities will tend to wash out these
features. This effect is, however, accompanied by
the formation of impurity states which allows us to
distinguish a triplet-paired system from a singlet su-
perconductor with strong spin-orbit scattering. The
bulk effects cannot be measured directly in a tunnel-
ing experiment. The reason is that the anisotropic
I 4 0 state is, unlike an I =0 state, radically altered
by surface effects at the tunnel junction. Our fully
self-consistent calculation for the order parameter
near a surface showed that the perpendicular com-
ponent is suppressed at the specular wall, as was to
be expected from its behavior in the Landau-
Ginsburg regime. ' Consequently, bound states ap-
pear filling up the excitation gap, and the square-root
singularity vanishes. Thus the total density of states
curve at the wall definitely differs from the well-
known s-wave shape, even in the field-free case
where the bulk densities of states do not differ at all.
However, a remarkably sharp maximum remains and

accounting for finite energy resolution one might ob-
ject that this structure is not likely to be distinguished
experimentally from an s-wave singularity. In this
case, a clear distinction between s- and p-wave pairing
is possible through the magnetic effects discussed in
Sec. III. The situation changes when a finite surface
roughness, probably unavoidable in tunnel junctions,
is taken into account.

The appearance of pronounced bulklike structures
in the surface density of states is an artifact of the
specular wall model, and this prominent feature
ought to disappear near a rough surface. Unfor-
tunately, detailed numerical investigations are still
lacking, mainly because of the highly complex surface
problem, but the qualitative behavior can be inferred
from the following considerations: A careful analysis
of the angular dependence evidenced that the main
contributions to the prominent peak come from
quasiparticle excitations at almost grazing incidence
for which the parallel components of the order
parameter dominate. For specular reflection, these
components do not vanish at the wall but are even
slightly enhanced. A diffusely reflecting wall tends to
suppress all components of the order parameter.
Consequently quasiparticles at all angles will experi-
ence the effects of a surface-suppressed order param-
eter and the corresponding total density of states
curve should parallel the one encountered at normal
incidence at a specular wall where no pronounced
structure above 6 survives. This yields a very defi-
nite and easy to measure difference between s-wave
and higher I pairing. With a rough tunnel junction,
and we expect all conventional junctions to be rough,
it will be impossible to see a well-defined gap for an
I WO superconductor. The density of states is too
much deformed by surface pair-breaking effects to
resemble anything like a BCS-type structure, an ef-
fect which is absent for s-wave superconductors. The
exact details, however, require further investigations
including a quantative study of surface roughness and
its influence on superfluid properties near a wall.
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