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Anisotropic superconductors with repulsive average interaction
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Using Bardeen-Cooper-Schrieffer theory with a model interaction given by an anisotropic,
separable attraction plus an isotropic repulsion, we obtain an expression for the superconducting
transition temperature T, . It is found that, as long as some anisotropy is present, T, & 0 for all

values of p, , even when on average the effective electron-electron interaction is repulsive. Fur-
ther, in this regime, T, depends strongly on the mean-square anisotropy, (at). The free energy

is also considered briefly and shown to be less than that of the normal state. This represents a

new criterion for the stability of the superconducting state relative to the normal state.

I. INTRODUCTION

Both V,~ and Vc are assumed greater than zero. The
anisotropy is represented by the a-k, which when aver-

aged over the Fermi surface gives zero, i.e.,

d 0-k
a-k =0

4n
(2)

Physically, one expects the first term in Eq. (1) to
be due to the electron-phonon interaction, and the
second due to the Coulomb repulsion. However, one
could envisage each term as containing some of each
of these effects; for example, anisotropy in Vc could
be incorporated in the first term, and differences
between the anisotropic and the isotropic parts of the
electron-phonon interaction which are not adequately
represented through the separable model might be in-
cluded through a modification to Vc.

Recent solutions of the anisotropic Eliashberg gap
equations for materials with paramagnetic impurities
have indicated an enhancement of the anisotropy"
and a corresponding effect on the superconducting
transition temperature T, . This leads to the specula-
tion that certain pure materials which should not oth-
erwise superconduct at a measurable temperature,
may in fact do so because of the anisotropy. The fur-
ther possibility exists that even if on average the
Coulomb repulsion between electrons is stronger
than the effective attraction induced by the electron-
phonon interaction, a finite and measurable T, may
still occur.

To investigate this, we consider BCS theory in

which the effective electron-electron interaction is

represented by a separable attractive part, and the
repulsion by an isotropic term.

V, = (1 + a-„) V,~ (1 + a „,) —Vt.

The double Fermi-surface average of V, is given
k k

by

dO dO(V, ) = " " (1+a-„)V,s (1+a,) —Vq

=V. —Vc

In the absence of anisotropy (a-„=0), BCS theory

predicts

ks T, =1.13trun exp—,(4)

so that T, 0 as Vc V,p. Markowitz and Kadan-
off have considered another simpler version of Eq.
(1) in which Vc =0, and found

ks T, =1.13&tua exp— 1

NO V~ 1+ a'

where

(6)

Within each of these models, the average iriterac-
tion must be attractive for a nonzero T, . In the next
section we work out T, when both a-k and V~ are
nonzero, and show that for any V~, T, & 0 as long as
(a2) WO; of course for large V~t, T, is found to be
very small. Although this is perhaps a surprising
result, it is not without precedent. Kohn and Lut-
tinger' argued that even when the electrons in a met-
al interact only through a screened Coulomb interac-
tion, by taking advantage of the attractive region
caused by the Friedel oscillations, Cooper pairs can
be formed; thus giving rise to superconductivity. The
anticipated T, 's, though low, were finite.
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II. SCS THEORY OF T,

%e first derive the general expression for T„and then consider certain limiting forms. . As will be seen a little
later, focusing attention on the regime V~ & V,~ implies restricting interest primarily to the weak-coupling limit,
where the use of the BCS theory is valid.

With V„„given by Eq. (1) the usual BCS gap equation is

5-k= X'[ V,~(1+a,) —Vc] 5
k

1-2f(E,)
2E

1-2f(E„,)
+a-„X' V (1+a„,)a„,

~/
k

k k
k

where E,= (»', + h2, ) '~2 and the prime on the sum indicates it is restricted to the region ~»k~ «geoD,

where &a&D is the Debye frequency. Clearly 5k has the form

k k k k (g)

We now specialize to T„ in which case Eq. (7) can be linearized in the usual fashion by setting 5&=0. Substi-

tuting Eq. (8) into the linearized equation we then obtain

+a-„X' V,~ (1 +a „,) (60„,+ a „,4'„,)
k

tanh(-,
'
P, (» „,))

64k+a „5-'k = X' [ V,~(1+a, ) —Vg](60, + a,h', )—
k

tanh(-,
'
P, )» „,[)

2[»„,}

pfCttD

+a-k J N(»-k) d»,
fcoD k

where P, =1/ks T, The .next step is changing the sum over k to multiple integrals, resulting in

l»kkQso tanh(-, P, (»„,()
&

do
ZL+a-„Z-'= ' N(», ) «», t "

[ V„(1+a-)—Vc](&'- +a-d'-)
~ -»eD k' k'

k

tanh(-, P, (»-„i() d Q " V„(1+a,)(a', +a d, ', ) .

Because the energy integration is over a very small
interval on the scale of electron energies, we assume
the a-k has only angular dependence in this region,
which implies the same for 4-k, Hence 5Lk and 5-'k

are each constant (or zero), and can be written sim-

ply as 41.
A further simplification can be made by invoking

the usual assumption that N(»„, ) does not vary in

the energy range +A~a, so can be taken outside the
integral. 1f we then identify N(0) Vc = p,", define

k D tanh(-, 'p, )»))
F=J — d»

-kcsD
(11

and make use of Eq. (11), Eq. (10) simplifies to

do+ak4t =F [(N(0) V~ —p,"]ho —N(0) Vp (a2&g, }

+a-„FN(0) V~(do+ (a2&dt)

with (a2& given by Eq. (6). Averaging Eq. (12) over
the Fermi surface and simplifying, we obtain

[1 —F[N(0) v„—p "]}~0 —[FN(0) v„(a'&]d„=o .

Multiplying Eq. (12) by a-„, averaging and simplify-

mg leads to

[-FN(0) V, ]S +[1—FN(0) V, (a'&]a, =o .

Equations (13) and (14) constitute a pair of homo-
geneous equations for 40 and b,]. They have a non-
trivial solution only if the determinant of their coeffi-
cients is zero. Imposing this condition, and solving
for F we find two possibilities.
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N(0) V~(l+ (a2)) —p, + {[N(0)V~(1+ (a2)) —p, "]2+4N(0) V~p" (a2)}'~2

—2N(0) V~p, '(a') (15)

By inspecting Eq. (11), it can be seen that for T, real, F 0, so we must take only the solution with the negative
sign in Eq. (15).

The final expression for T, can now be obtained. The integral (ll) is just the usual one appearing in the BCS
theory, with result

F = In(1.13h&oD/ks T, )

so that

kg T, =1.13fmDe

(16)

(17)

(18)

then

+ 2, , N(0) V~(1+ (a2)) ) p,
'

In certain limiting cases, Eq. (17) must reduce to known expressions. It is straightforward to show that when

N(0) V~p, "(a2)
, 2

&(1
[N(0) V~(l + (a')) —p, "]2

F='
N(0) V„(1+(a')) -p'

N (0) V„(1+ (a') ) & p,
"

N 0 V~p'(a2)
(19)

From this it is clear that in the isotropic case, the
usual BCS expression [Eq. (4)] is recovered, and that
in the anisotropic case in which p,

' =0, the result of
Markowitz and Kadanoff [Eq. (5)] is obtained.

In closing this section we return to the question of
the applicability of BCS theory. Having identified p, ',
Eq. (3) can now be written

N(0) (V, ) =N(0) V,~
—p,

' . (20)

Hence focusing of attention to V,~
= Vq translates

to N(0) V,~
= p, ', and since p,

"
is generally & 0.2,

this is the weak-coupling range.

III. FREE ENERGY AND CRITICAL MAGNETIC FIELD

I -2f(E-„)
+X ek —Ek+~kk k k 2E

k k

(21)

is valid for both the superconducting state, and the

normal state for which one uses 4-k=o. At zero

temperature, the difference in free energy b, 0
=0,—ON is

T ( T„ the free energy of the superconducting state
is less than that of the normal state.

The following expression for the electron free ener-

gy

II = —2 ks T g ln ( I + e " )

Before proceeding to presentation and discussion of
the results for T, in this model, we consider the free
energy. An analytic expression for zero temperature
is first obtained, and then it is shown that for any

Q?
&II = X' l~-kl-E-k+k k 2E

k 2

which can be conveniently expressed as

(22)

dQ k
~'D

AA =2N(0) de- k- —(gt-+gt-)'~2+
O k k k k 2(~g +gr )I/2 (23)

Performing the energy integral first, and using the fact that fcuD )) 6-k, this becomes

dO„
d 0 = —N(0)

4m 2
(24)

(50+ (a') 6[)
2

(25)
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The zero-temperature critical magnetic field H, (0)
is then given by

He(0) N(0) (~g ( 2)~2)

At finite T an analytic form for 0, cannot be
derived. However, consider the difference AO,
which can be expressed using Eq. (21) as

IOO

IO

c(K)

1

-pE ~
1 +e5 0 = $' —2ks Tln

k ]+e k

tanh( —,pE -„)
+ (e-~ —E -+o'-

k k 2E k

. (27) O.I

A sufficient condition ensuring this difference to
be negative is that each term in the sum be no
greater than zero:

O.OI

—2k& T ln
1 +e

t

tanh(
2 PE-„)

+lek I-Ek+~~k
k

O.OOI
0 0.5 I.O

p'r N(O) V„

I.5

This can be simplified to the condition

PE-„p~e-k~
' ph+ pE-„

cosh «cosh tanh
2 2 4E- 2

(29)

FIG. 1. T, as a function of p, for different values of
la2). The different curves correspond to values of (a21 of
0, 0.025, 0.050, 0.075, 0.100, and 0.125. The region to the
right of p, N(0} V,~ =1 represents a potential which is on
average repulsive, The parameters N(0) V,~ and hcoD corre-
spond approximately to aluminum.

which can be verified numerically in a straightforward
manner. Hence this state is of lower free energy
than the normal state.

IV. RESULTS AND DISCUSSION

The main numerical results are summarized in
Figs. 1 and 2. In the first of these, N (0) V,s =0.28
and AcvD =32 meV which gives a T, corresponding
approximately to Al for p,

' =0.13 and in the second
N (0) V,s =0.40 and fr«tn = 21 meV which gives ap-
proximately the T, of Nb for p, '=0.12.

In each case the variation of T, with p,
"

is shown
for different values of (a2). The point p, "/N(0) V~
=1 corresponds to a potential which on average is
neutral. For large (a2), T, can remain 0.1 K for the
first example, and 0.7 K for the second. In fact, T,
remains above 1 mK well into the region
p,
' & N(0) V~, where the potential is on average

repulsive. We note further that for no value of p,
'

does T, become zero, so long as (a') is greater than
zero.

It is clear from these figures that T, depends sensi-
tively on (a') in these regions. For example, at
tu,

"= N(0) V~ changing (a') from 0.075 to 0.100 in-
creases T, by a factor of about 6 for the first materi-
al, and for p,

" & N(0) V,~ the effect is even greater.
This can be understood by examining the expression
for T, for the case p,

"=N(0) V~. To leading order
in the anisotropy, it becomes

ks T, = 1.13&«to exp
1

(30)

This equation exhibits two interesting features.
First it is clear that because the anisotropy enters in
the same way as V,~, it cannot be treated as a small
perturbation in Vs. Second, the fact that it is (a2)' t
and not (a') which is important here, is clearly
responsible for T, being as large as it is. Another
measure of this sensitivity is the partial derivative of
T, with respect to tu, ", evaluated at p,

'= N(0) V~,
which is given by
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FIG. 2. T, as a function of p, for different values of
(a ). The curves are the same as in Fig. 1, except that
N(0) V~& and h0)D correspond approximately to niobium.

FIG. 3. Partial derivative of T, with respect to p, , given

by Eq. (31) of the text. The limiting behavior, Eq, (32), is
also apparent.

1 QT,

~&' Bp, {)lp -&o
1 (1~( 2)) (a')((a')+3)

2[N(0) Vz]t(a2) [(a )((a ) +4)]'& (31)

This function has the interesting limiting behavior

1 ~~c

7& Qp, {a ))p N(0) vip

as a2 ~01

2(N(0) Va)2(rr~)
0, as (a') (32)

which agrees with the very rapid decrease of T, with

p,
' for small (at), but slower one for larger (a').

The full function (31) is illustrated in Fig. 3.

The strong dependence of T, on (a') suggests this
state will be very sensitive to the presence of non-
magnetic impurities, which are known to wash out
the anisotropy. This matter has been investigated,
and will be the subject of an ensuing publication. '
Briefly the result is that for T, to remain above 1

mK, with p,
")N(0) Va, the concentration of impur-

ities must be no more than about 0.001% to 0.01%,
depending on the material.

Systems with electron-phonon mass enhancement
factor A. comparable to p.

' are found in the alkalis
with X —0.11 to 0.19,7 and the noble metals (A.N0. 16
to 0.21).' Further, Daams, Mitrovic, and Carbottes

have shown that the effects of paramagnons in met-
als can be simulated by an effective )t,ff )t/(1+ X,)
and p,,"rr = (p, '+)t, )/(1+ )t, ) where h., is the
paramagnon mass renormalization. Since A., can be
at least as large as 0.3, '

A.,ff
- p,,'fq could be realized.
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