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Reentrant phase transition of granular superconductors
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(Received 30 June 1980)

It is shown that the effects of the ch;irging energy on the me in-field tr;insition temper;itur» of
i gr'inular superconductor depend in i profound m;inner on the choice of the interv;il for the

phase $ of the order parameter. f or —~ & $ & oo a well pronounced reentr;int behavior is ob-

tained for the diagon il model, in which the Coulomb inter'iction is neglected. The reentr ince

disappears in this model when the interv;il is t iken to be —m & @ & m. Dipolar excit itions of
the nondiagonal model, considered recently by Efetof ire shown to diminish the extent of reen-

trance for the —~ & Q & ~ model 'ind to produce;i we;ik reentrince in the —m & @ & 7r c'ise.

The reentrant behavior is shown to be due to the therm;illy induced ph ise coherence vi i the

low-lying excited stites characterized by the v;inishing of the frequency of the please rotition.

I. INTRODUCTION

As first pointed out by Abeles, ' the electrostatic
energy necessary to add an electron to the grain of a
granular superconductor acts to disrupt the long-
range phase coherence. The first quantitative under-
standing of this effect comes from the ideas of
deGennes who proposed a pseudospin 5 =1 model
for an ordered array of grains. In the mean-field ap-
proximation this model predicts that the supercon-
ducting long-range order at T =0 is quenched when
the charging energy U ) zEt where z is the number
of nearest neighbors in the array and Ei is the
Josephson coupling energy. We have independently
considered a similar- model of an ordered array
described by the Hamiltonian'

X=—XB, +XE,[l —cos(d, —y, )],U

i ij

where'~; is the operator describing the deviation from
the average number of electrons on the ith grain and

E0 = E[5;,+ [. To calculate the effects of the charging
energy on the transition temperature T, we have used
a mean-field approximation which replaces the
second term of Eq. (l. l) by —2~E~(cosg) X,. cosg, .

The average order parameter (cos$) of the array is

calculated with the use of the expression

Xe '('p„~cos@~% )

(cosP) = -E /T
e

where 0 and E are the eigenstates and eigenvalues
of the mean-field Hamiltonian, describing the motion
of a fictitious particies of mass l/4U in a cos$ poten-
tial.

Including in Eq. (1.2) all periodic solutions of the
corresponding Mathieu equation up to»i = 2 the fol-
lowing self-consistency equation for the temper;iture
T, is obtained-'

1+ ( —+ 2x)e "——e-x 2 -4x
2 31=0.

1+2(e "+e ") (1.3)

and used the method of the "phase correl;itor" to
derive the self-consistency equation for T, in the
mean-field approximation. ln the diagonal limit,

U& = U5„", he does not find iny reentrant behavior,
which makes him suspect a numerical error in the
calculations of Ref, 3. For the nondi igonal c;ise he
shows that in important role is played by the low-

lying excitation, corresponding to the transfer of;i
Cooper pair between neighboring grains. By tiking
into 'iccount these dipolar excitations for an irr;iy of
close-packed grains„Efetof" reports a numeric;il evi-
dence for reentrant behavior.

The main purpose of the present paper is to cl;irify
the origin of the reentrant phase transition of the di-
agonal model predicted in Ref. 3 and to resolve the

where x = U/2T, and u =:E~/U. The interesting
feature of this equation is that it leads to a phase di-

agram with a pronounced reentrant behavior (see
curve a of Fig, 1). The relatively broad range of the
0. values over which there;ire double-v ilued solu-
tions for x and T, makes this result of consider;ible
experimental interest.

Recently Efetof' studied in extension of the above
model which includes the Coulomb interaction
between the charged neighboring grains. Specifically,
he considered a Hamiltonian

X = —'

X U» ii; Ii& + X E» [ l —cos( g„—g~ ) ] ( l .4)
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tonian of an atomic array. For a granular system it
has been previously postulated by Kawab ~ta' to dis-
cuss the metal-insulator transition in the normal
state. To see to what extent is the diagonal approxi-
mation valid we consider the charging energy needed
to transfer an electron between two equivalent
nearest-neighbor grains of the array

E,'''= —~ U; n;n, = U]] —U]2
Il

(2.1)

The energy E,"' has been estimated by Abeles et al. "

who considered a pair of grains embedded in a medi-
Um of effective dielectric constant /t' = e( I + d/2s),
where e is the dielectric constant of the insulator, d is

the grain diameter and s is the spacing between the
grains. For a large range of the ratio d/s Ref. 6

shows that E,"'= —,E,'"' where F.,' '= U~] is the en-

ergy to transfer an electron from one grain to another
one an infinite distance away, This result and Eq.
(2.1) imply that„ for a large range of compositions, it
is reasonable to assume

I

U]~ = —, U]] (2.2)

FIG. 1. The phase diagrams for the various models of a

granular superconductor. Curve a presents the solution of
the self-consistency equation (1.3) corresponding to the di-

agonal model with the phase @ varying from —~ to ~.
Curve b is the result of Eq. (4.3), corresponding to the non-
diagonal model including the lowest-energy dipolar excita-
tion and assuming —~ & @ & ~. The broken curve is the
solution of Eq. (2.4) for the diagonal model with the phase
varying from —n to m. The parameter e =zE]/U]~ and

T,'=;E~ is the mean-field transition temperature of a granu-
lar system without charging effects [Eq. (1.1) with U=0].
The superconducting phase is to the right of the above
curves.

discrepancy between the latter and Ref. 4. We also
investigate the effect of the dipolar excitations on the
reentrance of the phase transition in the nondiagonal
model. In Sec. II we discuss the diagonal model us-

ing the method of the phase correlation4 and show
that the reentrance of Ref. 3 stems from the inclu-

sion of special excited states resulting when the phase
of the order parameter is allowed to vary from —0o

to 0o. Section III is devoted to an analysis of the
physical mechanism underlying the phenomenon of
reentrance. The role of dipolar excitations in the
nondiagonal model is studied in Sec. IV. The self-
consistency equation of Efetof's formulation4 is, for
the sake of completeness, derived in the Appendix.

II. PHASE TRANSITION IN THE DIAGONAL MODEL

The diagonal form of the charging energy is the
analog of the Coulomb part of the Hubbard Hamil-

It is only when s )) 0 that the diagonal approxima-
tion holds, as easily seen from Ref. 6. This limit may
be difficult to realize in practice because of the small
Josephson coupling expected for such an array.
Nevertheless, the diagonal model is theoretically in-

teresting because of its simplicity, allowing a rather
accurate determination of its mean-field phase di-

agram.

A. Case of (—n & $& m)

2U (1+n, )

2U(1+ nt)

1-exp—
Un j~

exp
t

(2.3)

where»] is the eigenvalue of the electron number
operator rr, = —2if)/Bpr If the phase rtr.r is restricted
to the interval —m to m the mean-field approxima-
tion of the Hamiltonian {1.1) describes a plane rota-
tor model, for which the eigenstates must be 2n-
periodic functions of $]. This implies that only even
values of »] are allowed. This is also the case con-
sidered by Efetof. ' Including in the sum of Eq. {2.3)
the terms»] =0, + 2, and +4 we obtain the self-

We start from the self-consistency condition for the
transition temperature of the nondiagonal model
derived, using the method of phase correlator, in the
Appendix [Eq. (A14)]. By letting U& = US;, in this
equation we obtain its "diagonal" version
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consistency condition III. PHYSICAL ORIGIN OF REENTRANCE

~ e-4x
31=0.

1+2e ~x (2.4)

We note that we have retained in this equation only
the leading exponential terms. The phase diagram
resulting from Eq. (2.4) is shown in Fig. l (broken
curve). In agreement with the results of Refs. 3 and
4 it does not exhibit a reentrant behavior.

8. Case of (- & P( )

It is customary to assume that the phase-locking
transition of an array of superconducting grains is
isomorphous to the phase transition of the x -y
model. ' In the latter the angular variable defining
the orientation of the spins is restricted to the inter-
val —m to e. For the superconducting order parame-
ter [4;~e'a' of the ith grain in the array such a res-
triction does not necessarily apply, ' so that we may
extend the range of Q; to —~ & d; & ~. This has
important consequences for the phase transition of
the models described by the Hamiltonians (1.1) and
(1.4). The mean-field theory of the diagonal model
with the condition —m & $ & ~ has been formulated
in terms of the Mathieu equation in Ref. 3. It is
known that periodic solutions 'P„of this equation are
not all 2n-periodic functions of ltl, but there is a set
of 2m -antiperiodic (i.e., 4n -periodic) solutions

Such solutions are linear combina-
i rlsn )/2

tions of the eigenfunctions e ' of the Hamiltoni;in
(A2) where» t

= + 1, + 3, . . . , This implies that
odd eigenvalues of the electron number operator are
also allowed when the phase can vary from —~ to
oo. Including in Eq, (2.3) the configurations»~ =0,
+ 1, + 2, + 3, and + 4, we in fact obtain the self-
consistency equation (1.3), which verifies the correct-
ness of our previous result. ' Numerical analysis of
the solutions of Eq. (1,3) shows that the reentr;int
behavior (curve a of Fig. 1) is brought about by the
presence of the 2xe term in the numerator. This
can also be seen analytically by considering an ip-
proximate version of Eq. (1,3), valid for large values
ofx:

In deriving Eq. {1.3) from Eq. (2,3) we observe
th it the 2xe "term, essential for reentrant behavior,
origin ites from the configur;ition rr[ = —1. For the
latter the characteristic energy 2U(1+»~) vanishes
so that the corresponding contribution to (cosQ) be-
comes

1
—exp —— (1+»~)2U

T

2U(1+»~)
. (3.1)

l 2x
T U

The physical meaning of this result is th it the order
parameter [ql;[e'a.' in the excited configuration
»[ = —

1 can rotate freely thus exhibiting i Curie-like
pol;irizability with respect to the molecul ir field. An
'idditional understanding of this effect comes from
the inspection of Eq. (A13), The exponents, given
by the expression

2 UJ+ X Uljllj QJ(/11 llj)
J

(3.2)

can be interpreted is the angul;ir frequencies ~(»;, »&)

of the phase rotation in the excited state (»;, I~&) (see
Ref. 4). In the ground state (It; =O, It& =0) the
quantity co has a nonzero value of 2U&. The pres-
ence of in extra hole on the grain is therefore c ip i-

ble of canceling this "zero-point"' frequency of the
phase rotation. This result suggests th'it the phase
correlator theory, 4 leading to Eq, (A14), suffers f'rom

a lack of particle-hole symmetry.
In the Appendix we derive a version of the self-

consistency condition in which the latter defect is re-
moved. This condition [Eq. (Al6)] shows that it is

both the- extra electron»~ =1 and extra hole, »~ = —l

configurations which lead to terms proportion il to x.
We note that our previous formulation' of the di igo-
nal model also exhibits the particle-hole symmetry.
In the latter theory it is the doublet of the lowest ex-
cited states 4["'"and (Ii["", which splits under the ic-
tion of the molecular field, yielding the Curie-like po-
l;irizability proportional to x, The strongly pro-
nounced reentr;int behavior of the phase di;igr;im
(Fig. 1, curve a) is due to the low value of the excit'i-
tion energy of the above states.

1+ (2x+-,' )e-"
= [1+(2x—

—, )e "1
. a 1+2e" (2.5)

As long as x & —„, the right-hand side of Eq. (2.4) is
I

an increasing function of T, (its derivative with
respect to x is negative), This implies a decrease of o.

with increase of T„explaining the reentrant behavior
near the o. axis of the phase diagram of Fig. 1.

IV. ROLE OF DIPOLAR EXCITATIONS

We now consider the experimentally interesting
nondiagonal model described by Hamiltonian (1.4).
The mean-field theory of this model leads to the ex-
pression (A14). There are two types of excited con-
figurations to be considered in the summation over
(n, , n;) in the latter equation.

(i) Charge-nonconserving configurations
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I

U)2 2
Ul 1 (4.1)

which replaces the approximate relation (2.2) by an
exact equality.

A. (-e & P ( e) case

(n; 4 0, ng = 0) for which the terms on the right-hang
side of Eq. (A14) agree with those of the diagonal
model.

(ii) Charge-co'nserving configurations (n;, —n; ),
which are the dipolar excitations of Efetof's theory. 4

To see the most important trends we consider only
the lowest-energy excitation caused by the charge
transfer between the nearest-neighbor grains. To be
specific we also use the following relation

relation:

1+e-4 (2.x+-'z —-')
4 61=a,

1+(2z+2)e 4" (4.2)

The presence of the 2zx term in the numerator is due
to the above (»; = —2, )?j =2) excitation of multiplici-
ty z. Numerical analysis of Eq. (4.2) yields a phase
diagram with a very weakly pronounced reentrant
behavior. The double-valued transition temperature
occurs over a narrow range 0.99 ( n ( l. The main
reason for this is the relatively high value of the exci-
tation energy (equal to 2U~~) producing a small
Boltzmann factor e 4" in the expression (4.2). For
n ) 1 the phase diagram almost coincides with that of
Eq. (2.4) (broken curve of Fig. 1).

In this case only even values of »; and»j are al-

lowed. The lowest-energy configurations and the cor-
responding phase rotation frequencies defined by Eq.
(2.6) are displayed in Table I. %'e see that the dipo-
lar excitation t n; = —2, »j = 2) is characterized by the
vanishing of the frequency co and thus it is expected
to produce some reentrant behavior of the phase di-
agram. Using the configurations of Table I in expres-
sion (A14) we arrive at the following self-consistency

I

B. (—oo & alt (~) case

The configurations relevant for this case also in-
clude the odd values of )?; and»j They are displayed
in Table II, where we use the relation (4.1) to calcu-
late the energies of the configurations and the
corresponding frequencies ~(n;, n;) Includi. ng the
configurations of Table II in the expression (A14) we
obtain

I + e "(—+ 2x +4zl3) —ze '"+e "(2zx +zl4 ——)
1=o.

I + (2z +2)e "+ (2z +2)e '" (4.3)

Again the configuration (n; = —1,nj = 0), familiar
from the diagonal model, is responsible for the pres-
ence of the 2xe "term which produces the reentrant
behavior of this model. The part of the phase di-

agram for small values of T, and z =6 is shown as
curve b in Fig. 1. The reentrant behavior, obtained

in this case, is stronger than the one of the nondiago-
nal ( —e & $ & m ) model but still considerably small-
er than that of the diagonal model (cu'rve a). This is
due to the role of the dipolar excitations (»; =+ 1,
»j =+ 1) which are of the same energy as the
(»; =+ 1, 0) configurations but have a greater multi-

TABLE I. The ground- and excited-state configurations ()?),)») used in the evaluation of the
self-consistency condition (A14) for the mean-field theory of the Hamiltonian (1.4). The phase of
the order parameter is allowed to vary from —vr to n. The configuration energies and phase rota-
tion frequencies shown in the third and fourth columns, respectively, are calculated using the rela-
tion (4.1). The multiplicity of the configurations is denoted by N.

)?i )?j Uij )?/ )?j
ij

ao(n, , )?j)

0
2

—2

2
-2

0
0
0

-2
2

0

2U&,

2Ui,
6U„

—2U»
4Uit

0
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TABLE II. The ground- 1nd excited-st lte configur ltions (if, , i'�) included in the ev llu ~tion of
expression (A14) for the me;1n-field theory of H lmiltonian (1.4);1nd allowing the ph use of the or-
der p;1r;imeter to v lry from —0o to ~. Equltion (4.1) is used to ev;Ilu ate the entries of the third

Ind fourth columns.

I

2 Ufllll lli OJ( lll, lIJ )

2

—2

2
—2

0
0

—2

2

0
I—U ll
I—U'

II
I—U II
I—U 11

2 U I I

2U„
2 U I I

2U„
4UI I

0

2U

4UI I

0

plicity z. The finite phase rotation frequency of these
dipolar excitations masks the phase reinforcing effect
of the (»; = —1, 0) configuration. For smaller values
of z, which are perhaps possible in planar arrays
(z = 4) this masking effect is diminished so that the
reentrant behavior becomes somewhat more pro-
nounced.

From a practical point of view it is useful to con-
sider also the case when the equality (4.1) holds only

approximately, implying an incomplete vanishing of
the frequency cv(»i= —2, ii, =2). It can be shown

that the weak reentrance persists as long as
(8 « Ul l.

V. SUMMARY AND COMMENTS

It is shown that the effects of the charging energy
on the phase diagram of a granular superconductor
depend on the model Hamiltonian and the choice of
the interval for the phase of the order parameter,
The strongest reentrant behavior is obtained for the
diagonal Hamiltonian (1.1) with —~ & $ & ~. The
mechanism for the increase of the phase coherence
with temperature is found to be the thermal occupa-
tion of the low-lying excited states in which the phase
rotation frequency vanishes. When the phase is con-
fined to —m & @ & m the diagonal model is

equivalent to the plane rotator model and no reen-
trance is observed in accord with Refs. 2 and 4. The
low-lying dipolar excitations corresponding to electron
transfer between nearest-neighbor grains tend to di-

minish the reentrant behavior in the nondiagonal
model with —~ & $ & ~. For —vr & Q & n the ex-
citations caused by transfer of a Cooper pair induce a

weak reentrant behavior. At T =0 all the above

models predict the same critical value 1 for the
parameter o. . This parameter is expected to increase
with the metal volume fraction of the granular films.
Experimentally, the superconducting transition tem-
perature is known to decrease rapidly when this frac-
tion is decreased to the point where the sample be-
comes semiconducting. '" This behavior is in qualit i-

tive accord with the phase diagrams of Fig. 1. An ex-
perimental distinction between the ( —m & $ & m)
and the ( —~ & $ & ~) models can be perhaps made
through the different dependence of T, upon n exhi-
bited near the metal-semiconductor transition. This
will require an extension of the above theory to in-
clude the effects of disorder on the localization tran-
sition. Finally, let us discuss the various choices for
the interval of P from a physical point of view. First
we note that for a macroscopic wave function
~P~exp[i$( r )1 of a superfluid the phase Q( r ) need
not be single valued. The extension of its range to
—~ & P & ~ .is needed'to establish the notion of the
vortices and the phase slippage. ' " However, the
macroscopic wave function itself must be single
valued in the sense that it does not change its value
as the phase $ changes by 27r. In the present work
the macroscopic wave function is proportional to the
quantity (cos$) evaluated with the use of Eq. (l.2).
Since the matrix elements (P ~cos$~P ) are single
valued (even for m = l ) so is the quantity (cosd ) in

keeping with the above general requirement. Only
when the phase is restricted to the range ( —7r, vr),
the in = 1 solutions must be rejected on a mathemati-
cal ground since they do not satisfy the requirement
of continuity. For Josephson-junction arrays this re-
striction does not apply since the interval of the local
phase is ( —~, ~) as required by the ac Josephson
effect and phase slippage. However the 2vr-
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antiperiodic states are meaningful only for Cooper
pair tunneling as implied by the fact that they corre-
spond to an odd number of electrons added or
renewed from a neutral grain. In the case of a
Josephson tunneling of bosons such as that between
droplets of superfluid helium only the 2m-periodic
solutions have pphysical meaning. It is interesting
that single-electron excitations (similar to the m = 1

states) have been considered previously by Bari" in a
study of a superconductor-semiconductor transition
of a Hubbard model extended by a local BCS interac-
tion.

and

-P 3C0
Zp ——Tr(e "), P = l/T

(A5)

(A6)

Introducing for X ~
the expression (A3) we obtain

from Eq. (A4) the self-consistency condition of
Efetof

-ax
(cocr4l=Tr "I—

Jl X, l io coc4 /Z, , lA4)

where
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re
( =zEi J rr(r)dr

0

where
r '4

m(r) = Tr[e Pcositi(r) cosp(0)]2 .-PBC 0

ZQ

{A7)

APPENDIX
(e itic)e+ip(p-)) (As)

In this Appendix we derive the self-consistency
equation of the nondiagonal model, using the phase
correlator method of Efetof. 4 This result is based on
the mean-field approximation to the Hamiltonian
(1.4):

To calculate the phase correlator m(T ) we observe
that the phase qh;(T ) satisfies the equation of motion

(A9)

XMF 3C0 +X]

where

Ãp= —, X Ujn;nz
ij

(A13

(A2)

Using in this equation the commutation relation
between the phase and number operators

(y, ,fi, 1 = 2i 5;,

we have

(A 1 0)

and

Xi =-2zEi(cos4tl) Xcosp; {AS)

4/4; (r) =4t;(0) —2ixUel1~(0)T

With use of Eq. (A11) and the identity

(A11)

Near the transition temperature the average order
parameter is small and can be calculated using the
thermodynamic perturbation theory to first order in

-iQ,.(r) $,.(0) -ilg. (t) -$.(0)] I/2[/. (g), $.(0)]
(e ' e' )=(e ' ' )e

(A12)
we obtain the formula of Efetof'

n (r ) = X exp —2v U„+ X U& n&
— X U&n;n&

1 1

0 nn J iji J
(A13)

zEi

n.ni J

i

exp —(1/2T) X U;, n;n,
I/

(A14)
2 U;;+ XUJni

where n; and n& are all allowed eigenvalues of the operators ii; and6 J. Integrating this result over 7 the self-
consistency equation (A8) takes the following explicit form:

l

1 —exp —(2/T) U;;+ X U;;n,
J

As noted in Sec. III this result lacks the particle-hole symmetry. This formal defect can be traced back to Eq.
(A8) where a particular choice of signs in the exponents of the correlation function n (T) was made. The
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~(g) (eire(T)e —iqb(0) + e
—i re(~)eiy(0) )

2

Consequently the expression (A14) is replaced by

1 —exp —(2/T) U;;+ X U;, n,
./

r

1 —exp —(2/ T) U;; —X U;, n,
./

2 U„+XUJn, 2 U;; —XUJn,

particle-hole symmetry can be restored by taking m(~) in a symmetric form

r

exp —(1/2T) X U;, n;n;
I/

(A IS)

(A16)

For the diagonal model, we see that both the configurations n, =1 and —1 contribute in!Eq. (A16) a term pro-
portional to 2x, showing that the particle-hole symmetry is restored. Similar conclusions hold for the nondiagonal
model, where for example the configurations (nf =2, n, = —2) and (n, = —2, n~ =2) contribute symmetrically to
vanishing of the phase rotation frequencies [see Eq. (4.2)]. Although conceptually more satisfactory, this formu-
lation leads to the same numerical form of the final self-consistency condition as the original Efetof s expression
(A14). For the sake of simplicity we are using in this paper the latter equation.
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