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Anticrossings in solid-state laser spectroscopy
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%e report the first observation of anticrossings in solid-state laser spectroscopy. Measure-
0

ments are performed on the 6105-A zero-phonon transition 304(I"i)~'.D2(l i) of Pr + in a

YA103 crystal at 2' K where both ground- and excited-state anticrossings appear. A perturbation

theory of the anticrossing signal is derived from the wave equations of motion for a three-level

quantum system subject to a static interaction Vbetween two neighboring levels (1 and 2) while

a laser field resonantly excites the inhomogeneously broadened 2 3 transition. Ground- and

excited-state gyromagnetic ratios yI(i =X, Y,Z) and the interactions Vare obtained by fitting

the observed anticrossings to a diagonalized hyperfine-spin Hamiltonian for 'O'Pr3+ which in-

cludes second-order ligand field corrections in terms containing the electron orbital angular

momentum. Under certain conditions, one anticrossing signal develops into a strongly modulat-

ed oscillation with a period of -20 6, an unexpected feature which appears to be a nonlinear

optical coherence effect. Thc influence of anticrossing state mixing on optical free-induction-

decay observations is also discussed.

I. INTRODUCTION

The related phenomena of level crossing and an-
ticrossing have proved to be important spectroscopic
techniques in atomic physics and constitute an area
which predates both optical pumping and lasers. In
level crossing, the resonance fluorescence of a suit-
able pair of degenerate Zeeman levels exhibits spatial
interference as an external magnetic field is slowly

swept through zero field (Hanle effect') or a crossing
at nonzero field. ' In anticrossing, ' a pair of excited
Zeeman levels are subject to a small static interac-
tion, and when an applied magnetic field is swept, the
levels first approach and then repel each other rather
than cross, causing the emission intensity to vary.

Most level crossings' and anticrossings are detect-
ed in spontaneous emission although some absorp-
tion studies in atoms and molecules have now been
performed using laser sources. The signals can then
show both a linear or nonlinear7 " dependence on
laser intensity. A recent example is the optical Hanle
effect, "a light-shift-induced zero-field level crossing.

With a few exceptions, optical measurements of
level crossings and anticrossings in solids are almost
nonexistent. One exception is the photon echo study
of ruby'3 which reveals a remarkable variation in the
decay behavior when the Zeeman levels are tuned
through a level crossing region. A related case is the
detection of anticrossings and cross relaxation effects
in molecular crystals of photoexcited triplet states us-

ing microwave spectroscopy. '

In this article, we apply the level anticrossing tech-
nique to solid-state laser spectroscopy, choosing the
impurity ion crystal Pr3+:YA103 as an example.

Several anticrossing signals are observed by linear ab-
sorption for the Pr + zero phonon transition
04(I ~) ~'Dq(I'~) where both ground- and excited-

state anticrossings appear. In Sec. II, we derive an
expression for the anticrossing linear absorption sig-
nal of a transition subject to strong inhomogeneous
broadening. In Sec. III, the detailed form of the '"'Pr
nuclear quadrupole and Zeeman interactions, which
give rise to anticrossing, is treated by a numerical di-

agonalization routine. The utility of anticrossings in
determining solid-state hyperfine parameters is dis-
cussed in Sec. IV. %e also comment on an
anomalous modulation of the anticrossing signal
which appears when certain experimental conditions
are satisfied, and finally, the effect of anticrossing on
optical free-induction decay is discussed.

In this section an expression for an optically detect-
ed anticrossing signal is derived. The predicted signal
applies to the experimental configuration of Fig. 1

where the intensity of a laser beam is monitored after
passing through a sample containing resonant Pr'
impurity ions in a YA103 host crystal. By application
of an external dc magnetic field, certain pairs of Pr +

states approach each other and then exhibit repulsion
or anticrossing behavior (Figs. 2 and 3) due to the
combined influence of, hyperfine and Zeeman interac-
tions. As the magnetic field is swept through the an-
ticrossing region, the anticrossing states mix and
under appropriate conditions produce a corresponding
intensity variation in the transmitted beam. %e wish

23



5734 A. WOKAUN, S. C. RAND, R. G. DeVOE, AND R. G. BREWER 23

Detector
Magnet Sample

6.0

To Lock-In
Amplifier

Cw Ring
Dye Laservssrssssssa~

Modulation
Coil

FIG. l, Schematic of the experimental arrangement for
detecting anticrossings.
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E„(z,t) = e„Epcos(0t —kz) (2.l)

resonantly excites the 1 3 or 2 3 transition and
the states 11) and 12) anticross due to the perturba-
tive interaction X~, the matrix element being

to show, contrary to some discussions, " " that an-
ticrossings can be observed in absorption in solid-
state laser spectroscopy even in the linear intensity
regime. While nonlinear behavior is possible also, it
is not essential.

For the purpose of this discussion assume the
three-level quantum system of Fig. 4 where a laser
field
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where p, is the induced dipole and we assume that

X~ &&Xy &&Xd &Xp (2.5)

FIG. 3. Computer diagonalization of ' 'Pr + Zeeman-
hyperfine Hamiltonian, Eq. (3.8), showing the excited-state
'D2(I ~) zero-field crossings a and the anticrossing b.

V= (1 IXvl2)ltt

The detailed form of this interaction will be con-
sidered in Sec. III. The total Pr'+ Hamiltonian

X=X~+Xy+~+Xp

(2.2)

(2.3)

We further assume that the two transitions 1 3
and 2 3 are strongly inhomogeneously broadened.
Because of the perturbation Xv, the two transitions
are split, the minimum spacing being 21 V1 as sug-

also contains an electronic component X„adamping
term 3.'q and the optical interaction 3

Xp= —
t7, E„(z t) (2.4)
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FIG. 2. Computer diagonalization of the '"'Pr +

Zeeman-hyperfine Hamiltonian, Eq. (3.8), showing the
ground-state 84(I ~) zero-field level crossing a and an-

ticrossings c, d, and e. The parameters of Table I are uti-
lized.

IVI

IVlagnetic Field

FIG, 4. Levels l and 2 exhibit anticrossing due to the in-

teraction Vwhere co» is the level splitting in the absence of
an interaction ( V=o). A light wave of frequency 0
resonantly excites the 2 ~3 transition and thus monitors the
anticrossing tuning behavior as the magnetic field is swept.
The quantities eo», V, and 0 are in angular units.
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gested in Fig. 4. Because of the inequalities (2.5)
and inhomogeneous broadening, the laser field ex-
cites one packet in the 1 3 transition and a second
packet in the 2 3 transition. Hence, a single packet
is not excited simultaneously in both transitions as in

a double-resonance experiment. This situation affords
a simplification allowing the two transitions to be
treated independently in first approximation.

We seek a solution to the wave equation

if = Hi]i
8$
Bt

of the form

y(t) =c)(1)e "' ll) +c3(t)e '"'l2) +c3(t)e 'I3)

8E~
2rrikN—pe((pit(t)), )i (2.i3)

(ji=13,23)

for an optically thin sample of length L. Here, the
slowly varying part p~ of the density matrix p&

= c;c,'
is defined by

some generality is lost due to the absence of damping
in the off-diagonal terms.

The two packets corresponding to the 1 3 and
2 3 transitions generate a field amplitude signal

E, (z, t) =[E)3(z,t)+E33(z, t)]e' n' + +c.c. , (2.12}

which obeys Maxwell's wave equation

Considering first the 2 3- transition, the equations
of motion are pit(z, t}= pe(t)ei(ni kt) —(ji13 23) (2.14)

~ I ] ' IOI2)l
c~ = —c~ —iVe c2

2

+ e-I(~i+I )c
~ I 2 ~, l4tl2)

f

2
' '

2
3

(2.6a)

(2.6b)

and His the Pr'+ atomic number density. Because
we are interested in steady-state solutions of Eq.
(2.6), the inner bracket of Eq. (2.13) performs the
average

C3 C3+l e C2
~ 3 & i(xi+a )

2 2
(2.6c)

pt

(p (tt)),,=K Jl p„(t tp) ctp— (2.15)

The rotating-wave approximation has been applied;
the zero-order eigenenergies are

&jIX.lj&=it~, and ~o=~, (2.7)

the Rabi frequencies for the 1-3 and 2-3 transitions
are

over all times to that Pr + ions enter the absorbing
levels i or jand thus commence absorbing laser light.
The constant E is the rate that ions enter the absorb-
ing state, due either to optical spontaneous emission
or other forms of relaxation.

The outer bracket of Eq. (2.13) performs the aver-

age

x~ = p. ~3Eolti =I &1 l&ol3)Ilia

3tz = pz3Eoltt =
I &2 l&o 13 & Ilia

(2.8) (pit(h) )(=~ G(5)pit(h) d6 (2.16)

over the Pr'+ inhomogeneous line-shape function

and the diagonal damping rates are given by

jI+ li
I (2.9)

-(a/o) 2
e f

CT

(2.17)

Q + cl)32 +n fOr o)2 & ao] )& ~3 (2.1 1)

and we replace in Eq. (2.6) e-+'~ by e+'~.
A set of equations similar to Eq. (2.6) is obtained

for the transition 1 3 by the index interchange
1 2. We see that three wave equations of motion
offer a simplification over the nine equations of
motion arising in a density-matrix treatment, but

Furthermore, the tuning parameter

6= —0+o333+i3. for tp3 » p33 &ro, , (2.10)

where o( is the shift in the Pr + transition frequency

co32 due to an inhomogeneity in the local crystalline

Stark field. When the energy levels of Fig. 4 are in-

verted, the counter rotating field component is
resonant and Eq. (2.10) becomes

which is assumed to be Gaussian with 4 = + 0
+ QI33 +n corresponding to Eqs. (2.10) or (2.1 1 ) .

In an experiment, the observable is the square of
the total field,

&E,&.„=&IE, +E„l'),„, (2.18)

~here the signal field E, and the laser field E„are
given by Eqs. (2.12) and (2.1) and ( ),„denotes a
time average over an optical period. Equation (2.18)
contains the cross term

1 =2Ep Re(Ei3 +E33) (2.i9)

which is the desired signal intensity where Re speci-
fies the real part.

It now remains to evaluate E]3+E23. We solve Fq.
(2.6) by iteration using the Laplace transform
method. " First, the wave equation is solved in first
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order by neglecting the optical interaction 3'.o. With

the transformation c(z) =f c(t)e *'dt, Eqs. (2.6a)
and (2.6b) become

(z+I')/2)c) ) (z) =c((0)—i Vcj' (z+io&q)), (2.20a)

(z + I' /2) cd'~ (z) = c (0)—i V c) ' (z —i', ), (2.20b)

where the poles are

(&)z)t'l =
&

[i0)» —
~ (r, +r()]

and c) q(0) specify the initial conditions at t =0.
Equations (2.20) yield

(z + rp/2) c) (0) —i Vcq(0)c)(z —ice») =
(z —z)) (z —zq)

(2.22)

(z —i ~q) + r)/2) cq(0) —i V"c)(0)
cp(z) =

(z —z) ) (z —zq)

By the inverse transform
+ —[lo) + —(r, —r))' —41 vl']'"

zp" = , [ia)—))——,(rp+r()](l)

(2.21a)
ioo+r

c(t) = e"c(z) dz
2mi -I~+~

[tet)21+ (r2 rl)' —41 vl']' ', (2.21b) Eq. (2.22) reduces to the first-order solutions

tol2l t

c, "(t)= ' ([(z, +r,/2)c((0) iVcq—(0)]e ' —[(zq+rq/2)c)(0) —tVcq(0)]e ')
Zl Z2

(2.23a)

cP'(t) = ([(r)/2+z) —io)»)cq(0) —iV'c ()0)]e ' —[(r)/2+zq —io)q))cq(0) —iV'c)(0)]e '
I . (2.23b)

Zl Z2

.,&'& =—'+-'[-„+( l, +41 VI')'t'],
2 2

z2 + [(t)21 ((t)21 +41 Vl') '"]
2 2

and Eq. (2.23) assumes the form

loll l

c)"' ( t) = ' (me ' + ne*' )
Zl Z2

(2.24)

(2.25a)

cp" (t) = ' (pe ' +qe '),
Zl Z2

(2.25b)

The above derivation simplifies somewhat with the
realistic assumption that

r, =r, -=r .

The poles then become

where

m = ac) (0) —vcr(0), n = —bc) (0) + Vcg(0)

p = —[ V'c)(0) + bc'(0) ], q = V"c)(0) +acq(0)

a = —[tt)g) + (0)p) +41 Vl ) ]

b = —,
'

[~~) —(.~z) +41 VI') ' '] .

(2.26)

Note that the wave functions (2.23) agree identically
with lieder and Eck4 who derived the transition
probability for the case of spontaneous emission of
the anticrossing levels l and 2.

%e treat the case of absorption for inhomogene-
ously broadened transitions by formally integrating
Eq. (2.6c), obtaining the second-order result

t

t I

c,t» (t) = e 3 C"' (0) +—e'~ c,t'l (t')e ' dt'
2

(2.27)

in terms of the first-order solution cd'l (t). Substituting Eq. (2.25b) into Eq. (2.27) allows us to evaluate the bi-

linear product

c (t)c'(t) =p (t) =p (t)e""' (2.2g)

and the superscripts are now dropped. Performing the time average (2.15) of the slowly varying component p3g,

we obtain
t

21z, —zql ib +r /2+z —ih —I' /2+z lk I /2+z,"

P q'
tit+r, /2+z, —ta —r,/2+z, ti) r, /2—+z,—4' ~ 4'

+ 1 PP + W p q + qq (229)ih@ /r23+z z)) +z(' z) +zq' id@ /r3+2qzz)" +zq zq+zt"
) t t )
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where it is assumed that the coherent preparation terms c3(0)c2" (0) =0 and e3(0)c] (0) 0.
To average Eq. (2.29) over the inhomogeneous line shape, we apply Eq. (2.16) evaluating the integrals by con-

tour integration under the assumption that the Gaussian is slowly. varying and can be factored outside the integral
when a )& (I'+4~ V~')'/'. Consider first that the three states are ordered in energy according to Eq. (2.11) so
that the decay rates of lower and upper states satisfy I'3 & I'. Then the poles of I/(i5+r3/2+z& z) in Eq. (2.29)
reside. in the lower half plane (lhp) while the remaining poles lie in the upper half plane (uhp). When the level
structure is inverted satisfying Eq. (2.10), we similarly assume that I' & I'3 and then all poles are in the uhp. In
either case, we find that

((632«))t,)r = i m—X2G (1«)321 —II )K
2(r«2 +4i Vi2)

2[ V)zc~'(0) +(rozzq+2) V(2)czz(0) 21 [ V(z[czz(0) —cd(0)]
I' o)zz)+rz+4( V(z

(2;30)

For the I ~3 transition, the quantity ((p3~(r) ), ) I is derived from Eq. (2.30) by the index interchange 1 2.
A trivial integration of Eq. (2.13) for both transitions, 1 ~3 and 2 ~3, yields the linear absorption anticrossing

signal (2.19)

2 V

r r(~'„+r'+4) v)') (2.31)

Ar« =(I' +4i Vi )' (2.32)

%e now see that the anticrossing signal vanishes
when either the dipole matrix elements or the popu-
lation difference of the anticrossing states satisfy

X~i —X22=0 or cq~(0) —ci'(0) =0 (2.33)

This occurs even though the wave-function admix-
ture of the anticrossing states varies as eo2~ is tuned
because the gain of light intensity in one transition is

just lost by the other. Ho~ever, linear absorption an-

ticrossing signals can be detected in systems such as
Pr3+:LaF3 or Pr3+'YA103 due to the fact that Eq.
(2.33) is often violatedi. e., , X~~ & X22and optical

pumping redistributed the population among the Zee-
man substrates so that cz (0) & c~'(0). This con-
clusion seems to disagree with earlier work which
states that linear absorption anticrossing signals van-
ish for inhomogeneously broadened transitions. s'0 "

In contrast to anticrossing signals detected by spon-
taneous emission, the absorption signal predicted by
Eq. (2.31) is equally valid for anticrossings in lower
and upper transition states, consistent with Eqs.
(2.10) and (2.11).

In addition, the anticrossing term goes to zero in
the limit V 0, and therefore Eq. (2.31) does not
apply to level crossing which requires that V =0.
This result is expected since Eq. (2.31) fails when

where it is assumed that

G(l~»l —II) -G(I~3il —fI) —= G .

As the level splitting co2I is tuned, the first term of
Eq. (2.31) remains invariant and provides a constant
background signal whereas the second term displays
anticrossing behavior in the form of a Lorentzian line
shape of angular 1Hlewldth

4~ V~z & I z as then the two transitions 1 3 and
2 3 are coupled and cannot be treated separately.

III. HAMILTONIAN: ZEEMAN AND
QUADRUPOLE INTERACTIONS

To predict the magnetic field dependence of an-
tlcfosslngs of Pf:YA103 ln the H4(ri) and D2(I i)
states, it is necessary to diagonalize the Hamiltoni-
an]6, ]7

K'=gpB 3 +aJ J I —g~pN8 I

+P[I2, —
—,
' l(l+I) + —,

' q(l,', —l„', )] . (3.1)

which we treat as a perturbation on the ligand field
interaction. The first term describes the Zeeman in-

teraction of a Pr'+ ion with angular momentum Jt;
the second term is the magnetic hyperfine interaction
of '4'Pr with nuclear angular momentum N where
I = —,; and the third term is the nuclear Zeeman in-

teraction. The remaining terms are the nuclear elec-
tric quadrupole interaction where P is the quadrupole
coupling constant and the asymmetry parameter.

q = ( Vz z
—Vr. „)/ Vz z, is given in terms of the di-

agonal ~ensor components of the electric field gra-
dient at the nucleus in the principal axis system
(X', I",Z').

Following Teplov, '6 we expand Eq. (3.1) in the
principal axis system (X, I;Z) of a pseudoquadrupole
tensor A;~, defined below, so that

X'= $ [gp(BIJ) +aj(Jl ) gNpg(Bl()]—

+P [I', ——,
' l (I +1)+ -,

' q(l'. —l'. ) ] 0.2)
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derive the second-order eigenenergy correction

(,) X
I(&l3.'lo)l'

n &o &n &o
(3.3)

where Io) and (nI represent the lowest state and an
excited state of a crystal-field Stark split manifold.
The only nonvanishing matrix elements of Eq. (3.3)
are those involving the electron angular momentum
operators J~, yz which appear in the first two terms of
Eq. (3.2). We thus obtain

(gPB;)'
IV tt = — x 2gp(B;I;) + —+aJIi Ai;

i XYZ QJ

(3.4)
where only the diagonal terms

diagonal terms A;, appear in Eq. (3.4) because the
coefficients aJz which are unknown for Pr +:YA103,

are not restricted by symmetry. Of course, when
when the coordinates (XYZ) are selected so that A&
is diagonal, we recover Eq. (3.4) but then (XYZ) and
(X'Y'Z') are no longer coincident. The reflection
operation of Ciq only specifies that the coordinate
systems (XYZ) and (X'Y'Z') be coincident in one
principal axis while the other two axes are related by
a rotation. '"

A simplification results, however, when we recog-

I I I I

aJI(0 I Jil n )I

n wo &n &o
(3.5)

0.6

0.5

survive in the principal axis system (XYZ). In Eq.
(3.4), the first term is a linear Zeeman term which

produces an enhanced ' 'Pr nuclear magnetism, ' '7
and the second term is the quadratic Zeeman effect
or Van Vleck paramagnetism. The third term is a
pseudoquadrupole interaction' ' that can be cast in
the form

aJIi~A, i=D, [lz 31(1+1)]+E,(I» Ir)—
l-X, Y,Z

(3.6a)

N

0.4—

0.3

0.2—

0.1—

140 152 164 176 188 200 212 224 236 248 260
Field (gauss)

3.036

3.029

where

D, =aJ[(A»»+Arr)l2 —Azzi

QJ
(AYY Axx)

2

(3.6b)

(3.6c)

3.022

3.015

3.008

3.001

Teplov's Hamiltonian assumes that the Pr + ion is
in a crystal field of orthorhombic symmetry. This
symmetry is sufficiently high that all tensors, such as
the pseudoquadrupole tensor A&& and the field gra-
dient tensor VI~, can be diagonalized in the same
principal axis system, making the above coordinate
systems (XYZ) and (X'Y'Z') coincident. For the
case of Pr'+:YA103, the site symmetry C~l, is lower,
and rigorously it is no longer always possible to diag-
onalize AIJ and VI& in the same coordinate system.
This can be seen by first selecting a coordinate sys-
tem (XYZ) for the Cia symmetry-adapted wave
functions'

I J, I'&) = X aJ I J.Jz)
JZ even

-4.5

-5.0—
Nr

-5.5—
LU -6.0—

-6.5—

-7.0
1000

I I I I I

1030 1060 1090 1120
Field (gauss)

2 994 I I I I I I I

535.5 535.9 536.3 536.7 537.1

Field (gauss)
I I I I I I I I I

537.5

1150

IJ, &2) x aj IJ»z)
JZ Odd

which is coincident with that of the principal axes
(X'Y'Z') of the field gradient tensor Vi;. Here,
I J,Jz) is the spherical harmonic YJI . Now off-

FIG. 5. Blowups of the anticrossings b, c, and e of Figs. 2
and 3 where the gap spacing or interaction I Vl, listed in
Table II, is more clearly shown. The anticrossing c shows a
Lorentzian line shape signal in derivative form which is
derived from Eq. (4.1); the peak-to-peak linewidth of
-0.4 6, which utilizes the parameters of Table I, does
not explain the observed width of —10 6 as discussed in
the text.
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TABLE I. Hyperfine parameters of Pr +:YA103 for H4(I ~) and 'D~(I'~).

'H4(r)) 'D2(I ~)

D (MHz)
E (MHz)

yz/'2m (kHz/G)

(y&=yx)/2m (kHz/G)

3.5255 +0.0006'
0.032 +0.008'

11.910 +0.10
1.75 +0.75

0.3899 +0.0057'
0.0824 +0.0040'
2.50 +0.5
2.0 +1.0

'L. E. Erickson, Phys. Rev. B 19, 4412 (1979).

nize that the Pr'+ pseudoquadrupole moment is ex-
pected to be larger than the pure quadrupole mo-
ment, fD, f » fP f. Then, the A&; tensor is dominant
and with little error we can assume that (XYZ) and
(X'Y'Z') are coincident. This approximation is well

satisfied by the Pr'+ ground state 'H4(1 ~) and less so
by the excited state 'D2(I'~) as discussed in Sec. IV.

With Eqs. (3.4) and (3.6), Eq. (3.1) becomes

X'=—h $ y(BiI(+D[Iz2 I(1+I)~—
i XYZ

(g/3B2) A
+B(12—I )+ X (37 )

x, vz

where

pears with a plus sign, in agreement with Bleaney"
but not Teplov' or Erickson. ' Since the hyperfine
constant for ' 'Pr'+ is positive, aj =+1093 MHz, " it
follows that A;; )0 and the enhancement of yg in
Eq. (3.7b) is positive.

Considering only the linear Zeeman arid quadru-
pole terms of Eq. (3.7a), we rewrite the components
of the field 8 in polar coordinates and obtain

X' = —Bag( y»I» sin8 cosQ

+ 'y yIysin8 sing + y zIz cos8)

+D[Iz — 1(1+1)j +—E(I)—Iy) . (3.8)

y; = (g~/3„+2g/3As)/g,

D =D, +J'

E=E, +
3 Pv)

(3.7b)

(3.7c)

(3.7d)

The diagonalization of the 6 x 6 energy matrix arising
from Eq. (3.8) assumes that the axis of quantization
is along the principal Z axis and the operation

Izl=mg

Note that the g values as defined in Eq. (3.1) are
positive and that the term 2gPA;; of Eq. (3.7b) ap-

defines the ' 'Pr nuclear spin eigenvalue m. The
off-diagonal matrix elements of Eq. (3.8) are gener-

TABLE II. Anticrossing position, linewidth, and I Vf of the Pr3+ YAIO3 transition 3H4(I'~)
-'D, (I,).

Anticrossing State
Angles

u, y (deg)
Field (G)

Observed Calc.

Observed
linewidth'

(G) I VI/w (kHz)

ab

b

c

cc

'H4, 'D,
1D

3H4

3H4

3H4
3H4

0,0
0,0
0,0

0,0.9

0,0
0,0

0
200
536.5

f524

550

535
1073

0
200
536,5

524

550

530
1073

50
80
10

f7.8

f7.S

105
120

0
195

9.2

9,2

866
442

Peak to peak values of derivative line shape, Due to the field modulation, anticrossings a, b, d,

and e are broadened by -25 G while c is broadened by -8 G.
'This is a zero-field level crossing rather than an anticrossing.
'Because of the y rotation, two anticrossings appear corresponding to the two inequivalent Pr +

sites.
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(m kllIglm) =[(1+m)(1+m+I))'i
The quadratic terms are given by

(m'l&i'lm) = (m'IIilm") (m" II lm)

(i=X, Y,Z)

where m'=m for Iz and m'=m, m +2 for Igq. The
results of this numerical. calculation are sho~n in

Figs. 2, 3, and 5 and Tables I and II,

IV. DETECTION OF ANTICROSSINGS

A. Experimental technique

Bo

I
/

l

/
/

/

Laser
Beam

Anticrossings are monitored with the experimental
arrangement of Fig. 1 which assumes the YA103 crys-
tal geometry of Fig. 6. The beam of a single rhode
cw ring dye laser progagates along the c axis of a
crystal of 0.1 at. 'k Pr3+:YA103, immersed in liquid
helium at 1.8 K, and thereby resonantly excites the
Pr3+ transition 'H4(I ~) ~'D2(I'~) at a wavelength of

610,5 nm. The laser field is polarized parallel to the
crystal a axis, is focused slightly within the sample to
a 200-IM, m diameter, and has a power in the range 10
to 80 m%. %hen an external dc magnetic field is ap-
plied to the crystal along the b axis and is slowly

swept through an anticrossing, in the region 0 to 2

kG, the intensity of the transmitted beam changes.
The magnitude of this change is typically 0.1 lo and is
detected with a PIN diode (EGG-SGD160) using
phase-sensitive detection. For this purpose, the mag-
netic field is modulated sinusoidally in the range 8 to
25 6 peak to peak at a frequency of a few kilohertz,
and the anticrossing signals are displayed as a deriva-
tive line shape on an XYchart recorder. Signals in
quadrature were too small to be detected.

The space group of YA103 is D~q = I'bnm and has
an orthorhombic unit cell. ' The yttrium ions are lo-
cated in the two inequivalent sites, and the prase-
odymium ion substitutes for yttrium, retaining the
orginal C~l, site symmetry. The crystal was cut and
polished in the form of a platelet with dimensions
5 x 5 x 1.1 mm3 parallel to the crystal axes a:b:c. X-
ray patterns confirm that the crystal axes are parallel
to the faces as in Fig. 6 to an uncertainty of 1 . The
crystal can be oriented in either of two orthogonal ro-
tations, through the angles y or 0, of Fig. 6, allowing
the fixed Zeeman field to make various angles with

the crystal axes. In this way, the angular dependence
of the magnetic field position of the anticrossing sig-
nal can be determined and compared with theory.

The dc magnet (Varian V-4005) was calibrated with

a Hall probe (Bell 640) which in turn was calibrated
with a reference magnet (Varian 2100) locked to the
proton NMR resonance at 23 MHz. In the range of
these measurements, 0 to 2000 G, the field is known
to an uncertainty of +1'k.

As noted previously for the case of Pr'+:LaF3, opti-
cal pumping depletes the population of the hyperfine
packets which absorb laser light and reduces the sig-
nal to nondetectable levels. " ' As in the past, ""
we s~eep the laser freqeuncy slowly at —16
Mhz/msec so that the optical pumping process is par-
tially reversed and a sizable population is maintained.
Anticrossings were also detected in Pr +:LaF3 but were
not studied in the same detail as Pr +:YA103.

8. Observations and results

FIG. 6. In Zeeman studies, the YA103 crystal is rotated
either about the c axis through the angle y or about the a
axis through the angle a. %hen the angles 0.=0' and
y-0', the magnetic field 80 is parallel to the b axis and the

laser beam propagates parallel to the c axis. For the
304(I'~) state, P =56.50', and for the 'D2(I )) state, P-40'
where the principal nuclear Z axes of the two inequivalent
Pr3+ sites lie in the ab plane.

Figure 7(b) is an example of anticrossings ob-
served in Pr +:YA103 for the case 01, =0' and y =0'
where the signals appear as derivative line shapes
with an intensity that varies approximately linearly
with laser intensity. The first signal, labeled "a," is
a zero-field level crossing and as the magnetic field
increases, four anticrossings appear labeled b, c, d,
and e. These five signals are in perfect agreement
with the number predicted by the diagonalization cal-
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FIG. 7. Lower trace: Observed zero-field level crossing and anticrossings of 0.1 at. olo Pr +:YA10 at 2' K where the rotation
angles are 0.=0', y =O'. Upper trace: The sharp anticrossing c which rides on the broader d anticrossing splits into two well-

resolved anticrossings when cx =0', y =0.9' (see Table II). The scale is in kilogauss.

culations shown in Fig. 2 for 'H4(I'~) and in Fig. 3

for 'D2(I'~) where the features are labeled in the
same way as in Fig, 7. The calculations assume the
hyperfine parameters of Table I and allow us to iden-
tify that the b anticrossing occurs in the 'D2(I'~) ex-
cited state while the c, d, and e anticrossings occur in
the 'H4(I'~) ground state. The characteristics of
these anticrossings are summarized in Table II which

gives the position of the anticrossing line, the
linewidth, and the calculated minimum level spacing
at the anticrossing expressed by a parameter 2} V}.
Note that since the exact diagonalization involves all

states, Vcannot be correlated rigorously with a matrix
element just between two states as in Eq. (2.2).

The fact that the interaction Vis nqnzero (Table
II) proves that features b through e are all anticross-

ings, i.e., as a pair of levels approach each other, they
ultimately repel one another rather than cross.
Group-theoretical arguments also predict this
behavior. Since the symmetry of a general electric
field gradient tensor (rt W 0) is Dqq and the sym-

metry of the Zeeman interaction is the one-
dimensional rotation, group SU(l), the symmetry of

the combined interaction is
'

C2 if magnetic field is along
D2q Q C = a principal axis

{E } otherwise

The group {E} possesses no symmetry element
beyond the identity operation so that all functions
transform identically according to one irreducible
representation and all basis states can mix or give rise
to anticrossings. This is a manifestation of the non-
crossing rule where states of the same symmetry do
not cross. For the experiments reported here, only
anticrossings are expected since the field never lies
along a principal axis. Should the magnetic field lie

along a principal axis, then the rotation operation
R, ($) {m ) = e ' ~{m) for C2 symmetry ($ = m)

yields two groups of states {} —, ), } —, ), {
——, ) }

and {{
—

—,), {
——, ), {—,) } which transform according

5 I 3

to different irreducible representations. For this case,
two eigenstates derived from the same group can an-
ticross while two eigenstates derived from the two
different symmetry groups can cross.

The tuning behavior of the anticrossing is dominat-
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ed by the yz term in the Hamiltonian since it gives
rise to a first-order Zeeman effect. The y~ and yy
terms, which we consider later, produce a small
second-order Zeeman effect for fields 0 to 2000 G,
and while these terms broaden the anticrossing line,
they do not result in a noticeable shift of line center.
The magnitude of yz is determined from calcula-
tions, as shown in Fig. 5, which reproduce the ob-
served line centers listed in Table II. For the
H4(r~) state, the calculation assumes Erickson's

values" of the quadrupole parameters D and E and
his determination that the principal Z axis of the
quadrupole tensor lies in the crystal ab plane and at
an angle p = + 56.50' to the b axis (Fig. 6). It fol-
lows that-for C~l, site symmetry the principal X( Y)
axis also lies in the ab plane while the Y(X) axis is
perpendicular to it. The resulting value
yz/2m=11. 910+0.10 kHz/G agrees well with
Erickson's low-field-corrected value' "11.7 +0.04
kHz/G. The precision of our fit, as indicated in
Table II, is uncertain by about 0.2% but the absolute
error is of the order of +1% due largely to the limit-
ing signal-to-noise ratio and the uncertainty in the
magnetic field.

The anticrossings also shift in a predictable manner
when the YA103 crystal is rotated about the a axis
through the angle cx or about the c axis through the
angle y (see Fig. 6). The angular dependence further
corroborates the validity of the diagonalization rou-
tine, the choice of parameters, and the existence of
two inequivalent Pr'+ sites. Figure 7(a) shows the
pronounced effect of a small rotation of y =0.9'
(a =0') on the sharp 3H4(r~) anticrossing c which
lies on top of the broader d anticrossing. This feature
which is initially at 536.5 6 when y =0', splits into
two components at 524 and 550 G corresponding to
the two inequivalent Pr'+ sites indicated in Fig. 6.
Table II shows that the calculations agree identically
with these results.

In Fig. 8, the rotation angle u is varied (y =0')
where the observed anticrossing positions agree
reasonably well with theory. When n becomes suffi-
ciently large, the calculations reveal that the an-
ticrossings are no longer distinct at which point sig-
nals cannot be detected.

For the 'D2(r~) state, the orientation of the princi-
pal axis system is unknown although C~I, symmetry
dictates that one principal axis must be perpendicular
to a plane of symmetry, the ab plane. The 0. rotation
pattern of Fig. 8 shows that the 'D2 anticrossing b
changes position very slowly with angle as do the 'H4
anticrossings c and e and can be fitted approximately
with the 84 principal axis system indicated in Fig. 6,
A more critical test is the y rotation pattern where
0. =O'. We find that the b anticrossing splits into
pairs of lines as follows: 200 G (y =0'), 240, 170 G
(y=10'), and 310, 160 G (y=20'). This case can
be fitted if the principal axis Z lies in the crystal ab

1600

1400-

1200—
(ej

1000-

g 800-
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~
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400-
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0
0 10 20 30 40 50 60 70

n (degreesj

FIG. 8. Zeeman rotation pattern for the anticrossings b,
c, and e where the angle o. is varied and y =O'. Experi-
ment: ~. Theory:

plane as shown in Fig. 6 but p = +40', instead of
+56.50', and yz('D2)/2rr =2.5 kHz/G. The twofold
symmetry of the two inequivalent sites is required by
the YA103 crystal symmetry since one yttrium site
can be transformed into the other by a glide plane.

In Table I, we note that the only splitting factor
that is significantly enhanced is yz('H~) as y~/2n
=1.3 kHz/G.

Equation (2.31) predicts that the anticrossing line
shape is a Lorenztian of the form

I, — 1 (4.1)
&82/+41 V1 +r

While the anticrossing line center is determined by

yz, the angular linewidth

hN =(41 V1'+r')' '

can be determined by the effect of yy and y y on the
interaction 1V1, i.e. , one-half the minimum level
spacing derived from the Hamiltonian (3.8). The ob-
served linewidths of anticrossings b, d, and e given in
Table II are strongly affected by 1V1 since
41 V12 )) I' where the population decay rates
I'('D2) -5.4 && 10' sec ' (Ref. 19) and I'(3H4) ~0.02
sec '.' One wonders why the linewidth should be
influenced by the static interaction V since Lorentzi-
an line shapes are usually broadened by dynamic
processes of a stochastic nature. The answer lies in
the detection process. As the magnetic field is swept
through the anticrossing region, the degree of mixing
of the anticrossing states changes and consequently
the transition probability for optical excitation
changes correspondingly. Since the mixing process is
confined to the region 1 Vl, the optical response is also.

A fit of the linewidth is achieved by replacing
(~Ii +41VI') In Eq. (4.1) by the square of the
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eigenenergy derived from the diagonalization routine
and by varying the parameters y~ and yy. Indeed,
this fit yields the minimum level spacing parameter

~ V~ given in Table II. Since the quadrupole parame-
ter E —0, it follows from Eqs. (3.5) and (3.6c) that

y&
—yy. The resulting y~ and y~ values are given

in Table I and the interactions ) V~/m in Table II.
The calculated peak to peak derivative linewidths for
the b, d, and e anticrossings are 46, 100, and 52 6,
respectively. The agreement with the observed
widths is only suggestive. Instrumental limitations,
such as the rf magnetic field modulation of 8 to 25
G, appear to mask the width of the narrow c an-
ticrossing (~ V~/m =9.2 kHz) and the zero-field level
crossing (~ V~/m =0), feature a, which cannot be ex-
plained by the

~ V~ or I' terms in Eq. (4.1). Laser
frequency jitter should have no effect on the
linewidth measurements, and indeed, the anticrossing
linewidths were unaffected by laser frequency locking.

C. Anomalous wiggle effect

In the region of the c and d anticrossings, an unex-

pected oscillation (Fig. 9) occurs when certain condi-

tions are satisfied. First, the laser power must exceed
20 mW, and second, the laser frequency sweep rate
must be at least 250 MHz/msec corresponding to a
+ 85 MHz sweep at a repetition rate of 1.5 kHz or
higher. The period of oscillation is about 20 6 and

remains invariant to changes in laser power or sweep

rate. However, the amplitude of oscillation is re-

markably affected showing a quadratic dependence on
laser intensity and a vanishing amplitude when the
sweep rate falls below 0.75 kHz.

The 20-6 interval appears to be unrelated to hy-

perfine or superhyperfine splittings or Rabi oscilla-

tions and is probably a nonlinear coherence phenom-
enon. Since the D2(I'~) radiative lifetime is 0.185
msec (Ref. 19) and the hyperfine splittings are of the
order of a few megahertz, the laser frequency sweep
is large enough to coherently prepare packets of
three-level quantum systems (Fig. 4). Thus, the
theory of Sec. II does not apply. The dynamics of
coherent two-photon processes in three-level quan-
tum systems has been investigated previously" for
certain cases and suggests a quantum beat effect
which produces two sidebands shifted by the 1-2 level

spacing —2~ V~. However, this is not an oscillation
and the physical origin of these anticrossing oscilla-
tions remains mysterious.

D. Optical free induction decay

Compaan et al. ' have reported that the photon
echo decay rate of the Cr'+ ion in ruby undergoes
dramatic changes in the region of a level crossing.
The effect is due to the mixing of Cr spin states
which modifies its dipolar interaction with a sur-
rounding Al nuclei. We were tempted, therefore, to
see if the Pr'+:YA103 system exhibits a similar
behavior in an anticrossing particularly since the an-
ticrossing curves (Figs. 2 and 3) can exhibit a near
zero slope causing the Pr + magnetic moment and its
magnetic interactions to vanish.

Optical ft ee-induction-decay (FID) measurements
were conducted using the method of laser frequency
switching a cw ring dye laser that is frequency locked
to an external reference cavity. ' For nonzero fields
either on or off an anticrossing, the optical dephasing
time is T2=76 p,sec, corresponding to a 2.1-kHz
half-width at half maximum linewidth. Using the
same experimental setup and a two-pulse laser fre-
quency switching sequence with optical heterodyne
detection, we find that the photon echo yields pre-
cisely the same dephasing time as the FID, to within

a few percent uncertainty, in contrast to a previous
report" which asserts that echoes and FID give dif-
ferent results. The absence of a change in the decay
rate due to the anticrossing has two possible explana-
tions. First, the FID signal arises from all possible
optical transitions among the Zeeman substates
whereas an anticrossing only involves one pair. This
is a dilution effect. And second, the residual line-
width of 2.1 kHz might not be magnetic in origin. At
present, it is not possible to decide which explanation
prevails.

I I I I I I I . I I I

0.45 0.50 0.55 0.60 0.65
Field (kilogauss)

FIG. 9. Anomalous modulation effect in the region of an-

ticrossings c and d. The laser frequency is swept through
+85 MHz at a repetition rate of 1.5 kHz and the cw laser

power is 80 mW.
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