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We obtain formulas for the reflection amplitude for s- and p-polarized light of a quasi-two-

dimensional system in terms of averages of its conductivity response to the electric and displace-

ment fields. Then we apply our results to a simple model Hamiltonian with parameters adjusted

to an inversion layer and to a metallic monolayer in order to compare the reflectance, the ellip-

sometric coefficients, and the electric field calculated with a nonlocal response versus the ones
calculated with several local approximations derived from the same Hamiltonian.

I. INTRODUCTION

There has been recent interest in the optical prop-
erties of quasi-two-dimensional systems. Some in-

stances of these systems are electrons trapped by
liquid helium, magnetic surface states, and adsorbed
overlayers. The transition layer around the interface
between a medium and vacuum, in which the
response functions of the medium differ from their
bulk values, can sometimes be considered a quasi-
two-dimensional system. ' ' Inversion and accumula-
tion layers' in metal-oxide-semiconductor (MOS)
structures seem to be the most intensely investigated
systems, both theoretically5 '4 and experimental-

ly,
' ' since they are quasi-two-dimensional electron

gases whose density can be easily varied so that
many-body effects can be displayed. ""Inversion
layers are formed when an electric field perpendicular
to the interface between the oxide and the semicon-
ductor bends the energy bands of the latter so much
that they cross the Fermi level. The energy levels in
inversion layer's form two-dimensional subbands,
each of which corresponds to a quantized level for
motion in the direction normal to the interface.

The differential absorptance of MOS structures
with and without inversion layers has been mea-
sured' ' obtaining resonances that differ from the
intersubband energies as calculated in the Hartree ap-
proximation. The reason for this is found in many-
body' and polarization effects, both of which are of
the same order of magnitude. ' Due to the polariza-
tion effects, the electronic motion in the direction
normal to the interface is better described by the con-
ductivity S (current-displacement-field response func-
tion) rather than by the usual conductivity o
(current-electric-field response function). s Of course,
many-body effects are to be taken into account when
both o. and S are calculated.

There is also a great deal of interest in the study of
surface excitations (surface polaritons, surface
plasmons, etc. '9) and their dispersion relations have

been calculated for extreme two dimensional and
for several local' and nonlocal " quasi-two-
dimensional systems.

Both absorption and the surface excitation disper-
sion relations, ""as well as several surface proper-
ties like reflectance, ellipsometric coefficients, surface
admittance, image forces, inelastic electron reflection,
and dispersion forces ' can be simply calculated from
the complex amplitude reflection and transmission
coefficients for s- and p-polarized light. %e will refer
to these, as well as to the closely related reflectance
and ellipsometric coefficients, as the optical coeffi-
cients. It is on these that we center our attention in
this paper.

The simple interpretations of reflectometric and el-
lipsometric measurements are given in terms of local,
homogeneous, and isotropic response functions. '
Nevertheless, the response functions of a medium
are in general nonlocal. There have been many at-
tempts to calculate the electromagnetic properties of
nonlocal systems with an abrupt interface in terms of
their bulk (translationally invariant) response func-
tions. " ' However, we are interested in quasi-two-
dimensional systems which have a smoothly varying
density in one direction and therefore have transla-
tional symmetry only in a plane. The fields and the
reflection coefficient for the jellium model of a
semi-infinite metal have been calculated taking into
account the transition layer. ""However the sole
calculation of the response functions involves already
a long numerical analysis, 3 and up to now, there has
been no definite quantitative calculation of the impor-
tance of nonlocal effects in the optical coefficients of
quantum-mechanical systems with nonabrupt inter-
faces. The aim of this paper is precisely to make this
quantitative determination for a very simple model of
a quasi-two-dimensional system. Our main interest
in this article is not the model of the system itself but
rather the comparison of the optical properties of the
system calculated with a nonlocal theory with the
ones obtained with a local theory. In order to isolate
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the nonlocal effects we start from a simple model
Hamiltonian from which we calculate the nonlocal
conductivity tensor, then we make different local ap-
proximations to it and calculate thc corresponding op-
tical coefficients, The only justification for our
choice of Hamiltonian is its simplicity. Of course
more realistic Hamiltonians can be constructed'3 and
they will be considered in future publications,

The structure of the paper is as follows: in Sec. II
we develop, following the perturbative approach of
Bagchi et al, 2 a formalism for the calculation of the
optical coefficients of an isolated quasi-two-
dimensional system in terms of its, in general nonlo-
cal and anisotropic, current response to the electric
and the displacement fields. The more realistic case
of a quasi-two-dimensional system over a substrate
can then be easily generated using for example,
standard multilayered film optics and it will bc done
elsewhere. Then we calculate the optical coefficients
taking into account that the fields ridiated by the sys-
tem act on itself. This leads to a "rcnormalization"
of the reflection coefficient, whose poles give the
long-wavelength limit for the surface-excitations
dispersion relations. In Sec. III we introduce dif-
ferent local approximations to the response functions
and discuss their effect on the optical coefficients. In
Scc. IV we introduce our model Hamiltonian for thc
quasi-two-dimensional system and perform a
quantum-mechanical calculation of the conductivity
tensor within the random-phase approximation
(RPA). In Sec. V we adjust the parameters of our
model to typical inversion or accumulation layers and
to metallic monolayers and we make a quantitative
comparison of the optical coefficients and the electric
fields between the different models introduced in

Sec. III. Section VI is devoted to conclusions.

II. CALCULATION OF THE OPTICAL COEFFICIENTS
FOR QUASI-TAO-DIMENSIONAI SYSTEMS

%C consider a quasi-two-dimensional system placed
symmetrically around z =0 with translational invari-

ance in the XY plane and characterized by a diagonal
(although not necessarily isotropic) nonlocal conduc-
tivity tensor with respect to the coordinate system
shown in Fig. 1. %ith this last assumption the s and
p character of the polarization of light is preserved
under reflection and refraction.

In order to calculate the complex reflection and
transmission coefficients we have to solve Maxwell's
equations for the electric field E, that is

F16. 1. Geometry of the system showing the Cartesian
coordinate system, the incident ~ave-vector components 0
and k, and the angle of incidence H. The system lies in the
X)'plane and LZ is the plane of incidence.

in the XY plane D is related to E by

))"(p,*;t)=ff Jl ""(p p' *,*';t t')— . —

x E"(p, z';r') d'p'dz'dh' .

Here p is the projection of r = (x,y, z) on the XY
plane, e". ls thc nonloc81 dielectric tensor, Grcck su-
perscripts refer to Cartesian components, and sum-
mation over repeated indices is assumed. Using the
convolution theorem Eq. (2) can also be written as

Dg „= e~g„z,z' E~q „z' dz',

where we have Fourier transformed thc fields as

D (p,z;t) = J)j ()pp (p)pxp('(0 p — t))

r
dz0 des

(2m)' 2e

8nd thc rcsponsc functIons as

a""(p —p, z,z;r —r )

exp i p —p'

—~(r —r') j )—
d2& des

(2m)' 2rr

(4b)

Q is a wave vector parallel to the Xy plane and m is
the frequency.

The integral relation between Do „and Eo given

by Eq. (3) can be written more concisely as

where D is the displacement vector and c is the speed
of light. Making use of the translational invariance

where ~& „is then an integral operator. In the fol-

lowing the symbol " on a response function will indi-
cate its corresponding integral operator.
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Using this notation the definition of the conduc-
tivity operator can be then written as

4mi .
f~Q —1 + O'Q (6)

r r

iQ—'az

r

iQ, —K- (z)
Q

r

+ g2- —— E- (z)= (~- E- ) .OJ 8 O'If' I M

g2 Qs8 2 Qss Q. sc

e now solve this equation for s and p polarization
separately choosing the XZ plane as the plane of in-

cidence thus Q = (Q, O, 0) (see Fig. 1).
In order to avoid a cumbersome notation, in what

follows we will omit the arguments z and/or z' and
the subindices Q, co unless it could lead to confusion.
%e also introduce

(f(z) ) =—Jl f(z,z') dz'

((f)) =—„I JIf(

where 1 is the identity. Using Eqs. (4), (5), and (6),
Maxwell's equation [Eq. (I)] becomes

The solution of Eq. (10) is known to be

G (z,z') = e" ~* *'~/-2ik

Therefore, normalizing the amplitude of the incident
wave to one, the equation to be solved is

E (z) = er~ —
I dz'e'"~' ' ~

& j)dz "rr»(z', z")E,(z")

(12)

%e solve this equation using a long-wavelength ap-
proximation by which we mean that the width t of
the system is much less than llk. Since for ~z~

and/or ~z'[ ) I, the conductivity or "(z,z') is vanish-

ingly small, assuming that Er(z') does not vary ap-

preciably within I, it can be taken out of the integrals
yielding

E(.) =-" — "E(o)(( ")) "~*~
kc2

where Er(0) can be determined directly from this
same equation.

The reflection and transmission coefficients r,- and

t, are defined by

for any function of two variables. (z) ~ elkr+ r e Ikr (14a)

A. s polarization

Er(z) r e'"*
g~ OO

(14b)

In this case E = (O, Er, 0) thus Eq. (7) becomes
1

d' +k2 E = 4wlN (-E)
dz' " c' (Sa) (8 )

22r((rr»))/c
cosH+2rr((rr") )/c

(15a)

Therefore taking the limits z +~ in Eq. (13) we

obtain

where (8 ) cosH

cosH+2rr ( (a») )/c
(15b)

k2 02
C

This integro-differential equation can now be
transformed into the following integral equation

E, =u —,'" G(rrE), ,

(Sb) where 8 is the angle of incidence given by
k = (co/c) cosH. For a given system ((o») ) just
depends on 0 = (cu/c) sinH and therefore Eq. (15)
gives the optical coefficients for s polarization as a
function only of the frequency and the angle of in-

cidence.

where u ~ er~ is the solution of (d2/dz2+ k2) u =0
outgoing when z ~ and it corresponds to the in-
cident wave. The second term on the right in Eq. (9)
represents the electric field radiated by the system, 6
is the Green's integral operator whose kernel satisfies

S. p polarization

In this case E = (E„,O,E,) and Eq. (7) can then be
written in matrix form as

II

d +k' G(z, z') =S(z —z')
dZ

r 1

i E„—
4rri u)

k2, E, ,
c2

6) +
c Qzig—r

(oE)„
(aE), (16)

and obeys the Sommerfeld radiation condition. Here
g(x) is the Dirac 5 function. which can be transformed into the following integral
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equation

4ni«) " (

(aK),
) )

where 6 is the Green's integral operator whose kernel satisfies

+
C2 gZ2

iQ—

z

—(Q G (z,z') G (z,z') 8(z —z')

G (;z') G (z,.') 0
(

(18)

and the Sommerfeld radiation condition; (u, U) = (1, Q/E) e ~—is the outgoing (when z +~) solution of Eq.
(16) when the right-hand side vanishes. Equation (18) can be easily solved'4«yielding

r

Gm(z zz) = —( c p(kid &l-
20)

(19a)

2 r r
G (z,z') = G (z, z') -i ' {e(k'* ' '0(z —z') —e '"' ' 'e(z' —z) {,

2M

2 C2
G"(z,z') = G (z,z') + — S(z z'), —

k
(19c)

where 0(z) is the Heaviside unit step function.
In order to solve Eq. (17) in the long-wavelength approximation as it was done for the s-polarization case, we

write it in terms of the fields E„and D, which are the ones that we can assume to vary smoothly within the width
I of the system. Then we have

4

E(z) =z'~—, dz'0 (zz') j dz" ~(z', z")E(z")+J(dz'«(zz') Jl dz"d (z',z")D(z") (20a)

)

2

D,(.) =-&"~-,'" J ~.'G (;.') j d."~(.',.")E„(.")+ „, j~~.'G (;.') Jtu. "S (.',.")D,(.")
C

(20b)

S"(z,z') -=" {8(z-z')-(.-')~(z,z')j4'
is the conductivity response to the displacement field. That is, the current density j is related to 5 by

(20c)

j SD

%e define the reflection and transmission coefficients for p polarization by

(Z) ~ tzlkr r - kz(k) (22a)

E„(z) (~e(~,
g ~+OO

or equivalently

D (Z) ~ Q(kzikdyr e Ikd)-
s

D, (z) +t,e(k'-,
g--~

(23b)
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where Q/k =tan8 (see Fig. I).
%e now solve Eq. (20} with a treatment similar to

the one used in the s-polarization case and taking ad-
vantage of the symmetry of the system we obtain

still vary smoothly.
(iv) Local homogeneous (LH)

0[.'„"(z,z') =g""((o ) )8(z —z'}/I (28)

2wcos8((a ))/c
I+2wcos8((o ))/c

2n sin'8((S ))/c (24 }
cos8+2asin28((S ))/c

t~(8, tu} = 1

I +2w cos8((o ) )/c

2n sin'8((S"))/c
cos8+2asin28((S ))/c

(24h)

III. LOCAL APPROXIMATIONS

In the last section we found expressions for the re-
flection and transmission coefficients for s and p po-
larization in terms of the conductivity response ten-
sor o~" and S~". In the nonlocal case the evaluation
of S [Eq. (20c}] requires the inversion of the in-

tegral operator q which might require a major com-
putational effort. This makes local approximations
attractive; however, they might also be inaccurate.
Therefore in order to evaluate the importance of
analyzing reflection experiments with a nonlocal
model, we generate several local approximations to
the exact nonlocal conductivity tensor which will be
compared below by introducing a simple microscopic
model.

%e define the following cases:
(i) Nonlocal (NL)

og", (z,z') —= o &"(z,z')

(ii) Local anisotropic (LA)

o[.'A(z. z'} =—(oui(z})&(z —z'} .

(25)

This approximation will be valid if the refracted field
has a smooth variation over the nonlocality range of
the conductivity tensor.

(iii) Local isotropic (LI)

o['f(z,z'} —= g&"at A(z, z'} (27)

In this local approximation we neglect the anisotropy
of the conductivity tensor, that is, we consider the
motion of the electrons in the z direction as if there
were no surface, although the electronic density may

The first and the second terms in the right of Eq.
(24a) correspond to the amplitudes of the fields radi-

ated by the currents induced along the x direction
and z direction, respectively. These results could also
be obtained directly by solving Maxwell's equations
for a strictly two-dimensional sheet with surface con-
ductivity response ((a )) and ((S )).

~here l is the thickness of the system. This is basi-
cally McIntyre and Aspnes24 model and it describes a
thin slab of a local, isotropic, and homogeneous ma-
terial whose conductivity is the average conductivity
of the original nonlocal system.

It is easy to see that in all these local approxima-
tions ((cr )) and ((arr)) and therefore r, and t,
[see Eq. (15)] and the first term in the right of Eq.
(24) for rr and tr, have the same value as in the ex-
act nonlocal case. Thus the difference among the
several approximations introduced above will appear
only in r~ and t~ through the quantity 5 which is it-
self given in terms of ((a ') (z) ) [see Eq. (24)]. It
is precisely through the calculation of this last quanti-
ty that the different approximations to the conduc-
tivity tensor manifest themselves. For example the
difference between the NL and the LA case is due to
the difference between the integral of the inverse and
the inverse of the integral of the dielectric tensor,
that is

IV. MICROSCOPIC CALCULATION OF
THE CONDUCTIVITY TENSOR

In this section we calculate, in the RPA, the nonlo-
cal conductivity tensor from a simple microscopic
model of a quasi-two-dimensional electron system.
Our model consists of electrons which are free to
move in the XY plane and are confined along the z
direction by a potential

v(z) = —vpg(z}, vp &0 . (30)

The translational symmetry in the XY plane allo~s us
to write the single-particle electronic eigenfunctions
as

(P z) e/K Pd (z) (31)

where. K and K arc thc quantum numbers which
specify the electronic states, K is a two-dimensional
wave vector on the XY plane, Q„(z} satisfies

A 2

(32)

((ei[.} (z)) &I/(e[[t.(z})

=I/( ( )) =(( ')'*( )) . (29)

This difference is important only in the neighborhood
of the surface of a system since for a translationally
invariant system ((&~I.}'*(z}) = ((et.A} (z) ) holds.
Therefore, in general the non!oval effects appear in
the optical coefficients as surface effects.
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and the electronic energy is

A2E2
EK = +e„

2m

cle) of radius EF and energy less than

eF = (EFz —«z) (0
2 fPl

(35)

The one-dimensional 5 potential has only one
bound state given by

«=mvo/t

e„=—t2«z/2m = —trdo

rrrr„(z) =J~e "*,

(34a)

(34b)

(34c)

and a continuous spectrum of unbound states
(a„&0), analogous to accumulation layers spectra as
calculated within the Hartree approximation. 7

The occupied states in the system are described by
« = nr va/t and K lytng inside a circle (the Fermi clf-

The Fermi momentum EEJ; is related to thc superfi-
cial electronic density nrr (number of electrons per
unit area) by

EF 2&np2

In Ref. 41 the conductivity tensor oo" „(z,z') is

calculated within the RPA for an electron system in

which the translational symmetry along the z direc-
tion is broken by the presence of a surface. Since the
radiation wave vectors wc are interested in are much
smaller than typical electronic wave vectors, taking
the limit 0 0 we obtain (see Appendix) a diagonal
nonisotropic conductivity tensor given by

o (z,z)=i 5(z —z)e'n (z). I

Nl M

noe E~2 2
'

K+I I ——exp[ —(«+q)z&] exp[(q —«)z&]+ —exp[ —(«+q)(z&+z&)] 0(z&)ma 4 (q —«) q

+exp[ —(«+q)(z) —z() ]0(z))0(—z()
'

r I

+ I ——" exp[(« —q)z(]+ —"exp[(«+q)(z)+z()1 0(—z))

+ (cd ~ rd;c.c.) (37a)

~ 2ienp $ Ko (z,z') = —«(q —«) I +—exp[ —(«+q)z&] exp[(q —«)z&] ——exp[ —(«+q)(z&+z&)] 0(z&)
NlM 4

+exp[ —(«+q)(z& —z&)]0(z&)0(—z&)

+ I+ —" exp[(« —q)z)]exp[(«+q)z(] ——"exp[(«+q)(z +z )) 8(—z )

+ (rd —cd;c.c.) (37b)

= —(e„+trd)
2N

Re(q) «0, Im(q) «0,

n(z) =n «e '"I'I

O7c)

(37d)

z& and z& are the bigger and smaller of z and z',
reSpeCtiVely, and (rd —Qr;C. C. ) iS a term Obtained

from the previous one by changing m to —~ and then
taking the complex conjugate.

There are several points about these expressions
which deserve comments. Since ~„ is negative then q
is real or imaginary depending on whether thc quo-
tient rd/aro is less or greater than one, respectively,
and therefore the conductivity becomes either pure
imaginary or complex. In the 0 0 limit the system
is able to absorb energy only through ionization.
Thus if ~ & ~p there is no ionization and the conduc-



23 OPTICAL PROPERTIES OF QUASI-T%0-DIMENSIONAL. . . : NONLOCAL. . . 5713

tivity is pure imaginary (the dielectric function is

real); on the other hand if «» cup the conductivity
has a real part (the dielectric function has an imag-
inary part) and there is energy absorption.

As can be seen from Eq. (34) and Eq. (37c) q is ei-
ther real and less than K or pure imaginary, thus
comparing Eqs. (37a) and (37b) with (37d) one can
see that the nonlocality range of the conductivity is
greater than the electronic density range (2n) '.
Therefore we expect that nonlocality will be of im-

portance in the optical properties of our model.

-2:0

-2

2:0

V. RESULTS

In this section we present the numerical results for
the conductivity and the optical coefficients for a
specific choice of parameters in our model. These
parameters are the strength of the potential Vp and
the number of electrons per unit area np or,
equivalently, the Fermi wave vector KF and the
quantum number K. %'e choose KF and K in order to
simulate a typical surface density (np —10'z cm z)

and width (-30 A) of an inversion or accumulation
layer in a MOS structure

a& =Q.g ~p

-2.0

(4 =14

-02--

2.0

Kr = +2 rrn p
=0.01op '

K =1.5KF,

(38a)

(38b)

where ap is Bohr's radius.
In Fig. 2 we show the reduced dimensionless con-

ductivity X (O, z') defined as

FIG. 2. The top panel shows the normalized density
n(z)/KFnp as a function of KFz. The middle panel sho~s
the real part of the reduced nonlocal conductivity X"(O,z')
as a function of KFz' for co=0.9cop. At this frequency the
imaginary part of X"(O,z') vanishes. The bottom panel
shows the real and imaginary parts of X'"(O,z') as a func-
tion of KFz' for co=14~p. The KFz' scale is the same in the
three panels.

X'*(z,z') —= o (z,z')/KFz((o ) )

where

ie2n
((o )) =

(39a)

(39b)

to calculate

((S**))= ~ dz[1 —((e ')**(z))]
4ni " (41)

is the Drude conductivity obtained by integrating Eq.
(37a). We also show the density profile n (z)/Krnp
which corresponds to the reduced local conductivity

XP(z) where

This quantity does depend on the approximation used
for o".

In the NL case we first solve numerically, using
the Gauss-Laguerre integration method, 2 the integral
equation

XL (z) = (cr (z))/Kr((o )) =n(z)/Krnp . (40) Jtdz eNL(z, z') ((eN„)"(z)) =1 (42)

It can be seen that for pp ( cpp, X*' is real (o'* is pure
imaginary) so there is no energy absorption, and for
co 0' cdp, X is complex. It is also seen that the elec-
tronic density of the ground state decays more rapidly
than the nonlocal conductivity for both co ) ~p and
0) ( Mp.

Now we present our results for the optical coeffi-
cients for the four cases: NL, LA, LI, and LH. As
discussed above r, depends only on ((o~) )
= I'e'np/mr« which is the same in all four cases. On
the other hand in order to evaluate r~ it is necessary

«r ((&NL) (z') ) and then use this result to calculate
numerically the integral in Eq. (41). In the LA case
we obtain an analytical expression for

((eLp) (z) ) = I/(eLA(z) )

and then perform a numerical integration in Eq. (41).
The other two cases are solved analytically. In order
to specify the LH case completely we choose as the
effective thickness of the system [Eq. (28)] twice the
electronic density range I =1/K.

%e will show, for each of the different cases
presented above, the reflectance and the ellipsometric
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et5K,

80

a= I.SK,

e 80'

4f
e

FIG. 5. (a) Reflectance (r~) as a function of the reduced frequency «&/««a for four different cases discussed in the text with

parameters corresponding to a metallic monolayer. (b) The fractional reflectance difference q —= (( rz NL[z —] ra LA
(z)/

z ((r&NL)z + )r~L„[z) between the NL and LA cases discussed in the text as a function of the reduced frequency eu/roc with

parameters corresponding to the meta1lic monolayer.

flectance at the plasma frequency

&/2

4mnoxe2
I5 3~o (45)

in the LH and LI cases. This peak is also present in
the ellipsometric coefficient @ and it appears as a
rapid change in the phase I [Figs. 4(c) and 4(b),
respectively]. In the LA case the peak appears dis-

placed from the plasma frequency and it is smeared
out in the NL case.

For the LI case it can be sho~n that there is energy
absorption at frequencies belo~ as~ so the phase 4
varies smoothly through ~~ as compared to the LH
case in which the variation is abrupt.

Since at ~o electrons are excited out of the local-
ized subband into the continuum, ~e see a discon-
tinuity in the slopes of the optical-coefficient curves

a,

A

LI LI

FIG. 6. Real and imaginary parts of ((a ) (z)) which in the long-wavelength approximations corresponds to E, (z)/D, (0), as
a function of EFz for the NL, LA, and LI cases discussed in the text. The parameters correspond to the inversion 1ayer and the
frequency is grus. In the LI case the imaginary part of ((« ')n(z)) vamshes.
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for the NL and LA cases (see insets of Fig. 4). This
discontinuity is absent in the isotropic (LI, LH, and
LHD) cases in which the electrons move freely along
the z direction.

Finally, it is seen that our model predicts an appre-
ciable difference between the optical coefficient as
calculated using the nonlocal conductivity tensor and
the local approximations discussed above. For the
inversion layer this difference is of the same order of
magnitude as the one due to the finite electronic life-
time in the LHD case.

Now we adjust the parameters of our model to
simulate a free-electron-like metallic monolayer. We
obtain then K+ =0.39ao ' and ~ =1.46E~ by simply
taking the surface density and work function corre-
sponding to bulk sodium. Figure 5(a) shows the re-
flectance as a function of frequency. As in Fig. 4(a),
there is a strong peak at the plasma frequency for
both the LI and LH cases and there is a discontinuity
in the slope for the NL and LA cases at coo. Since co~

is very near to coo, much of the structure of Fig. 4 is
lost and, as expected, all the curves coallesce into
one at high frequencies. At low frequencies the LI
and LH cases are poor approximations to the NL
case, on the other hand the LA case remains a fairly
good approximation. However, Fig. 5(b) shows that
the difference between the NL and the LA reflec-
tance can be as large as 10%.

As a by-product of our calculation we obtained the
inverse dielectric function ((e ') (z) ) which is pro-
portional to the electric field in the long-wavelength
approximation in which D, is constant within the
width of the system. This is shown in Fig. 6 as a
function of z for a frequency below ~~. In the LI
case the inverse dielectric function is real and has a

pole whenever the frequency equals the local plasma
frequency i»~(z) = i»~e "~*~. This pole is responsible
for the energy absorption in this case. In the LA
case this pole becomes a peak at a higher value of z
and the function ((e ')"(z) ) acquires an imaginary

part also shown in the figures. On the other hand in

the NL case this peak is very much flattened.

Notice that in the NL and also the LA case the en-

ergy loss function Im[ —((e ') (z) )] (Ref. 34) is
positive for some values of z and negative for others,
meaning that the electronic system can take energy
from the electromagnetic field in some place and give
some of it back at another place, ' """'clearly a
nonlocal effect.

VI. CONCLUSIONS

We have derived simple closed formulas for the
complex amplitude reflection and transmission coeffi-

cients in terms of appropriate averages of the conduc-
tivity responses 0- and S. These formulas are of very
general nature and can be applied to any quasi-two-
dimensional system in which the long-wavelength ap-
proximation holds. They were derived without par-
ticular assumptions as for example the separability of
the conductivity. '" On the other hand they can be
readily interpreted as the superposition of the fields
radiated by each independent component of the elec-
tronic motion taking into account the action of these
radiated fields on the system itself. The introduction
of the function S incorporates into the formalism the
so-called depolarization effects.

The dispersion relations for the normal modes of
the system are obtained from the poles of the reflec-
tion coefficients and are expressed directly in terms
of its response functions. For example, for TM
modes with the electronic motion restricted either to
the XY plane or to the z direction, we obtain immedi-
ately from our formulas [Eqs. (15) and (24)] previ-

ously reported dispersion relations, ""which also
reduce to the long-wavelength limit of the dispersion
relation obtained by Chen et al. ' for a local anisotro-
pic homogeneous system.

Here we have chosen a very simple model for a
quasi-two-dimensional system which allowed us to
obtain a simple expression for the nonlocal conduc-
tivity. Different approximations to this expression
were done in order to perform a quantitative compar-
ison of their corresponding optical coefficients.

Our results show that all approximations give the
same values for the optical coefficients in the high-
frequency range (i» » i»r ), but there are important
differences at certain angles of incidence and at fre-
quencies close to either coo or so~. With respect to the
spatial variation of the refracted electric field the
differences between the NL case and the different lo-
cal cases are even more striking. Therefore we be-
lieve that the theoretical interpretation of experimen-
tal data requires detailed nonlocal calculations.
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APPENDIX

Here we evaluate the conductivity tensor o [I~,„in

the RPA. We consider first Eq. (4.17) of Ref. 41 for
ir (z,z') which we rewrite as

1

j (z)j ~ (z') j (z)j (z')
~ (zz') = ""'"g(z — ')+—' + f(E ) "" "" +

mc» i» lf „'",e„+trr» —e 1+i' e„—tie» e i —i rt—
K

(Al)
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where e is the electronic charge, n (z) is the electronic density, f is the zero-temperature Fermi occupation func-
tion, q is an infinitesimal positive number and we define

—et
I

The sum over 11' in Eq. (Al) can be expressed in terms of

d, (z) d „'(z')
G+( z, z', e„+t«)1=—X fII+t«1 e I + l II

II II

and its derivatives as

o (z,z)- S(z —z)ie'n (z) t

Nl 0)

I I

+—,X f(Ex „) d(1z)$'„( z) G+(—z, z';&„+t«1)—d„"( )z1t1„(z'),G+(zz'; e+t«1)

g„"'(z)p„'(z—') G+(z,z';e„+t«1) + y„"(z)y„(z'), G+(z,z';e„+tcu)
Qz

+ («1 ~ «1'IC.C. ) (A4)

where $„' and $„"are the derivatives of d „and @„"

slid («« ~ «1'Ic.c.) 1s a secolld ter ill obtatned ffolll
the previous one by changing cv to —ao and then tak-
ing the complex conjugate.

The sum over ~ is trivial because there is only one
value of 1r below the Fermi level [Eqs. (34) and (35)].
The only factor depending on K is the Fermi function
so the sum over K gives a factor of n«

Since G+ in Eq. (A3) is the spectral representation
of the Green's operator, it satisfies

(A6b)
'I

1 ——" e"+ —"e * 8{z)+e~*8(-z), (A6c)

Iv(u, u) =2(q —u)

is the %ronskian,

(A6d)

I

u{z) =e "O(z)+ —"e'*+ 1 ——e-&* 8(—z),
q

II+— p' -u, g(z) G'(z, z';II') =g(z-z') (As)2'
Re(q) «0 and Im(q) ~0,

(A6e)

2111 u(z))u(z()
t' a (u, v)

(A6a)

and the Sommerfeld's radiation condition. The solu-
tion of Eq. (AS) is

and z& and z& are the bigger and smaller between z
and z' respectively. Now, substituting Eq. (A6) and
the wave functions {34c) into Eq. (A4) we find the
desired result Eq. (37b).

By a completely similar method, from Eq. (4.13) of
Ref. 41, we arrive at the following equation for

~ (,, ) = 'e "{'g(, , )+;2 et gf(el( „)(Jt'")'@".(z)g„(z')G'(z, z')+(~ —~;C.C. )
fPl QP M Nf K, sr

The sum over K is trivial and the sum over R gives a factor of n«KF/8. Substituting Eq. (A6) and the wave
functions (34c) into Eq. (A7) we obtain Eq. (37a).
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