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A model, self-consistent band structure is calculated for a thin film of n graphite layers bounded by two, partially

ionized intercalant layers for stages n = 2—8. The quantum mechanics of the electrons in the graphite layers is

modeled using a variant of the' three-dimensional linear combination of atomic orbitals Hamiltonian whose

parameters have been determined for pure graphite. The effects of the nonhomogeneous distribution of electrons in

the n layers {screening) are taken into account by adding a selfconsistently determined layer-potential term to the

tight-binding Hamiltonian. The layer charge densities, potentials, and total energies are presented for n = 2-8 along

with representative band structures for charge transfer per intercalant {f)off= 1 and 1/4 {referred to C»„X).The

stage dependence of the total energy in this model is related to the stage dependence of the chemical potential

{intercalant vapor pressure) in an intercalation reaction. Comparison of theory and experiment indicates the

significance of the electronic energy in stabilizing the high-stage structures.

INTRODUCTION

The existence of stage ordering in graphite in-
tercalation compounds' ' (a c-axis superlattice of
a sequence of n graphite layers and one intercalant
layer) has motivated many' ~ studies of the stage
dependence of both the lattice and electronic prop-
erties of these materials. In addition, recent
efforts have also been directed towards a funda-
mental understanding of the under1ying mechan-
isms" and long-range interactions that give rise
to the high (n-10) stages observed in somee ma-
terials. Since the sequence of stages constitutes
a particularly simple class of one-dimensionally
modulated structures (almost unique to interca-
lated graphite) an understanding of the origin,
phase diagrams, ' and effects of staging is of gen-
eral interest as well. ~" This paper focuses on
the effects of staging on the electronic structure
of graphite intercalation compounds, through a
self-consistent, model band-structure calculation.
Particular emphasis is placed on the role of the
unusual nature of the c-axis screening in deter-
mining the nonhomogeneous charge distribution.
Theoretical studies" "based on (semiclassical)
Thomas-Fermi theory have shown that the screen-
ing (and resulting contribution to the energy) of the
intercalant layers by the charges donated to the
graphite is long-ranged (nonexponential), so that
the nature of the screening in a full quantum treat-
ment is of intrinsic interest. Finally, total energy
calculations are presented, which indicate the role
of the electronic energy in stabilizing the ordered
high-stage structures. Our results for this quan-
tum-mechanical treatment are compared to those
obtained from a Thomas-Fermi" calculation.

The stage dependence of the electronic proper-
ties of graphite intercalation compounds has been
studied using both Fermi surface (e.g. , de Haas-
van Alphen'~" effect, magnetoref lection, "mag-
neto-oscillations" ") and full band (e.g. , optical
properties, "'0 electron spectroscopy" ")probes.
Although first-principles band-structure calcula-
tions have been performed for the stage-one com-
pounds C,K and C,I i, the prospects of performing
them for high-stage materials are slim. Several
model band structures, all based upon electrons
propagating in (modified) graphite bands have re-
cently been proposed. In these calculations, the
hybridization of the carbon and intercalant orbitals
is ignored and a parameter f is introduced to de-
fine the change transfer per intercalant to the car-
bon atoms. Holzwarth23 has pointed out that a
completely "rigid-band""" approach based upon
the mere raising (or lowering) of the Fermi level
of three-dimens io nal graphite is inappropr iate,
since the discrete c-axis quantization of a small
number of graphite layers is quite different from
the c-axis dispersion of prinstine graphite. Dres-
selhaus et al."have calculated a model band
structure for stage-n compounds taking into ac-
count the changes due to the existence of n layers
in the unit cell. However, their treatment ignores
the long-range Coulomb interactions which give
rise to screening. Blinowski et aE."have demon-
strated the importance of including these electro-
static effects in a calculation of band structures
for stages three (self-consistent) and four (non-
self-consistent) using a simplified tight-binding
model which they treat analytically. In the pres-
ent work, we present a self-consistent calculation
of the band structures, 1.ayer potentials, charge
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densities, and total energies for stages m=2-8
using the jdl tight-binding Hamiltonian as discus-
sed in Ref. 23, but with the long-range Coulomb
interactions included. The potential is self-con-
sistently determined to 0.002-10-6 eV (per carbon
atom) and all quantities are calculated from full-
zone integrations. We show how the Coulomb
terms, which can result in large (-0.25 eV) chan-
ges in the electronic energy levels are crucial for
a physically reasonable screening charge density.
The proper treatment of the self -consistent poten-
tial is also necessary for calculations of the stage
dependence of the total energy. It is the decrease
in total energy as the stage increases, that stabil-
izes the staged structures and that determines the
stage dependence of the chemical potential of the
intercalant in the intercalation process. (A pre-
liminary report of this work was presented in Ref.
5.)

In Sec. I, we present the tight-binding Hamil-
tonian including the self-consistent potential. Our
Hamiltonian is compared to that of Befs. 23, 13,
and 25 and the convergence criteria for self-con-
sistency are discussed. Section II contains our
results for the layer potentials and charge densi-
ties for stages 2-8 and charge transfers f=1 and
-', (referred to a C»„X compound). The results
of the total energy calculations are presented in
Sec. III where the range of stability" of a given
stage as a function of the chemical potential (for
intercalant atoms) is also calculated. In Sec. IV
we summarize our results and relate them to ex-
periment.

I. MODEL HAMILTONIAN

In this section, we derive our model Hamiltonian
from an expression for the total energy of n gra-
phite layers bounded by two intercalant layers.
Because of the periodicity of the staged structure,
each intercalant atom in the corresponding thin-
film model has charge f/2, where f is the charge
transfer per intercalant for the periodic, staged
compound. Although our calculations are pre-
sented for donor compounds (f& 0) the same quali-
tative results occur for acceptor (f& 0) compounds.

'The main assumptions of our model are the fol-
lowing:

(i) The hybridization between the graphite and in-
tercalant orbitals is negligible, so that an effective
charge transfer per intercalant (f) of electrons to
the p bands of graphite can be defined.

(ii) The quantum mechanics of the electrons in
the graphite layers is described by a linear com-
bination of atomic orbitals (LCAO) graphite m-band
Hamiltonian (suitably modified to describe the

thin film). Changes in the tight-binding parame
ters due to charge transfer are neglected.

(iii) The in p-lane spatial uarrations of the elec-
trostatic potential due to the charged intercalant
and graphite layers are neglected. Thus, as far
as the electrostatics are concerned, both the
graphite and the intercalant layers are treated as
charged sheets with an inhomogeneous potential
along the c axis only.

(iv) Hopping between graphite layers separated
(5-9 A) by an intercalant layer is neglected as is
hopping between next-nearest-neighbor graphite
layers. Thus, the n-layer sandwiches in a stage-
n material are decoupled and the problem reduces
to that of the thin fil.m.

Assumption (i) has been justified in first-princi-
ples calculations of the band structures of the
stage-one compounds'~" C,K and C,I i, where the
bands near the Fermi energy are well described by
an I CAO or tight-binding model. Blinowski" has
shown that (ii) and (iii) are reasonable assumptions
and typically lead to small corrections. [In gener-
al, one can show from Poisson's equation that
corrections to (iii) lead to exponentially small
terms of the form e"~', where G is the smallest
in-plane reciprocal-lattice vector. ] The justifica-
tion for assumption (iv) is that second-layer LCAO
matrix elements (y„y,) in graphite are -0.02
eV."" Since the bandwidth due to in-plane dis-
persion is -9 eV and because the range of both
first-layer I CAO matrix elements and the electro-
static potential are several tenths of an eV, sec-
ond-layer hopping can be neglected in the intercal-
ation compounds. Of course, in pristine graphite,
nonzero values for the second-layer matrix ele-
ments are crucial for obtaining semimetallic be-
havior. However, since pure graphite has only
10-' electrons per carbon, while the intercalation
compounds result in 10-'-10-' electrons per car-
bon, the small energies due to y, and y, can be
neglected, at least for stages 2-8 considered here.
Furthermore, corrections due to assumptions (i)-
(iii) are expected to yield changes of this ( 0.02
eV) order.

With these approximations, the total energy per
carbon atom (U„) of the n-graphite layers and the
two intercalant layers can be written

U„= (Ho) + U + U + U)q .

In Eq. (1), H, is the Hamiltonian describing the n-
graphite layers (without any Coulomb terms due to
charge transfer). U„, U„, and U«are the Cou-
lomb energies of interaction among the charged
graphite layers, the graphite and intercalant lay-
ers and the two intercalant layers. (The charges
are referred to neutral graphite layers. ) The



SEI.F-CONSISTENT CHARGE DENSITIES, BAND. . .

exact wave functions of the interacting system are
written g(r), where k is a two-dimensional (in-
plane) wave vector defined in the Brillouin zone
shown in Fig. 1, and p is a, band index (p =1, . . . ,
2n for stage n with only the w orbitals considered).
The wave function P(r) is expanded in a basis of
orthonormal orbitals (e.g. , Wannier functions)
Q(r —8„.) localized on the carbon atom in layer i
(i =1, . . . , n). The index o. = a, h denotes the two
atoms in the unit cell of a single graphite layer
(see Fig. 1). Thus,

graphite orbitals. A simplified version of 8 8(k)
for stages n=3, 4 is given in Ref. (19). Note that
E'J~(k) is equivalent to the Hamiltonian of Dressel-
haus et al." if second-layer interactions are set
equal to zero [see assumption (iv) above].

In the charged sheet [see assumption (iii) above]
approximation,

(4a)

j(r) = Qc'~e '"'s«p(r —8,),
(y(r —R,g) I

y(r —R„)&= 5, ,5

Using this notation, (If,& can be written

(2a}

(2b)

U~, =~~[(n —1) + 2q] Q q;,
V

(4b)

(4c)

&If.& =„-Zf,'(0," I If. I 0,"&

a a a8@&y k
Ã Py fga

(3)

In Eq. (3) f~~ is a weight factor composed of the
product of an energy normalization factor m„and a
Fermi function (expP[e (k) -e~]+I) ', where P= I/
ksT, e~(k) is the energy corresponding to g,'(r), and

e~ is the Fermi energy. The energy normalization
factor is chosen so that U„ is the energy per car-
bon atom in the n-layer sandwich. The normaliza-
tion also includes the factor of two to account for
the spin so (I/n)p»w„= 2, the maximum number of
w electrons per carbon atom. The matrix E',&~(k),

is given in Appendix A and is similar to the matr ix

ff,'~ (k), etc. , def ined by Holzwarth. "8'J~ (k) is the

LCAO matrix that describes the quantum mechanics
(both the in-plane and interplanar) using localized

V, = 2vv, e'c,/e, (5)

where op is the areal density of carbon atoms, cp
is the c-axis separation of two carbon layers (c,
=3.35 A), and e is an appropriate dielectric con-
stant (for an electric field E~)c) that describes the
screening by the graphite o electrons. Appendix
B presents a discussion of the dielectric constant
e; in our calculations, we used values of & =2 and

3 as lower and upper bounds, respectively (see
Appendix 8). The parameter g in Eq. (4} is the
ratio of the carbon-intercalant to carbon-carbon
distance. 'The quantity g does not enter into the
self-consistent band equations. It also does not
affect the range of stability of the chemical poten-
tial, discussed in Sec. III, and is merely an addi-
tive constant to the total energy of the n layers.

Since the average charge of n carbon atoms (rel-
ative to pure graphite) in the n carbon layers is

In Eq. (4) g is the stage or the number of graphite
layers in the thin film, q, is the average charge
per carbon atom in the fth layer (i = 1, . . . , n) and

f/n is the average charge transfer per carbon
atom in the n layers so that P, q; =j The e.nergies
U„, U„, and U;, are per carbon atom, and the en-
ergy scale V, is given by

V

X f=Qf,'(0,"I 0,"& -~ (ea)

(b)
~Au

2

yk, uf
(eb)

FIG. 1. (a) Real space lattice for graphite layers in
"AB stacking. " The solid line is the A layer and the
dashed line is the B layer displaced along the c axis by
cp The two atoms in the unit cell are shown for the A
(unprimed) and B layers. (b) Two-dimensional Brillouin
zone for a single graphite layer. The symmetry points
p, K, and M are located at (0, 0), (27r/a) (~, 0), and

(2m/a)(&, 1/243), respectively, where a is the graphite in-
plane lattice constant.

%e identify q, with

«I c~" I2 I, . (ec)

The energy per carbon atom can then be rewritten
using Eqs. (1), (3b), (4), and (6c) as (note that U„.
+ Uq;

———Uqq)
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U„=— Qf» Q c~;*c+E'„~(k)—~Q [i —j[ Q f~( c '[' —1 Q f~
(
c"'s)' —1 —U, ,

pk, 0. p' k', 8

The coefficients (c~P}are determined by the mini-
mization of U with respect to the ek, with the con-
straint that the ]("(r)}be orthonormal. These con-
ditions yield

E ~g k + VIS 86)~ c~~
——ep k Cpg, (8)

Bg

where V; is the self-consistent potential at layer
i due to the other charged layers

V =-Vo (9)

with the (q;} related to the (c~; }by Eq. (6c). With
a starting guess for the (q,}and hence the f V;}, Eq.
(8) is diagonalized and the eigenvalues (e~(k)} and
the eigenvectors {c",}are determined. After de-
termining the Fermi energy, ez and the weights f&~,

the new charge distribution (q;}and the potential
{V,.}are recomputed. The process is iterated to
consistency, and for our calculations we require
the input and output layer potentials [V;}to differ
by less than 0.002 eV.

The final expression for the energy U„ is ob-
tained by multiplying Eq. (8) by c",*, comparing to
Eq. (7), and using P, ~ c&,

'
~

' = 1 (orthono rmality) to
find that

U„=- Pf,'e, (k) -P —'+I,IV,. —U;;, (10)
-pk

where q; and V, are determined by the self-con-
sistent solution for the (c,}using Eqs. (6c) and

(9), and U« is given by Eq. (4c).
Equations (6c), (9), (8), and (10) are the main

results of this section for determining the charge
and potential distributions among the layers, ei-
genvalues, and wave functions, and total energies
per carbon atom, respectively. The self-consis-
tent numerical solutions of these equations are dis-
cussed in Sec. II.

I

used for the effective diectric constant e [Eq. (5)]
as discussed in Appendix B. Self-consistency was
assumed to be reached when the input and output
layer potentials [V,}differed by 10-' eV per carbon
atom in each layer. (The calculations for the
charge densities for e =2 are self-consistent to
0.002 eV. ) Integrations were performed over a
coarse mesh of -650 equally spaced" points for the
full irreducible wedge of the two-dimensional
Brillouin zone, and an additional fine mesh of -300
points was used in a small region of the Brillouin
zone near the K[k =2m(a( —', , 0)] point.

Figure 2 shows representative energy bands for
n=5. In Fig. 2(b), the bands for f = —,

' (correspond-
ing to a charge transfer per intercalant f= 1 re-
ferred to a C»„X compound) and a value of & =3
are shown. The lower-energy conduction bands
have wave functions mostly localized in the bound-
ing graphite layers, while the highest-lying bands
have wave functions mostly localized in the inter-
ior graphite layers. Figure 2(a) shows the same
bands (f= —,', ) for a value of e- ~ or f V;}=-0, cor-
responding to a rigid-band, non-self-consistent
solution of the n-layer LCAO Hamiltonian. Note
the large (-0.25 eV) changes in the band structure
which result from the self-consistent potential.
These changes are less significant for smaller
values of the charge transfer as shown in Fig. 2(c)
where the energy bands for n= 5, f= 4', (corres-
ponding to f= ~ for C»„X), and e=3 are shown.
The energy bands for the smaller value of a=2 are
similar to those for e = 3 with the effects of the
potential and the modifications of the rigid-band
even larger.

II. ENERGY BANDS, LAYER POTENTIALS,
AND CHARGE DENSITIES

~X'JJ
'

This section presents the solutions of Eqs. (8),
(9), and (6c) for the energy bands, and the poten-
tial and charge distributions, for the model de-
scribed in Sec. I. The results are contrasted with
those of a non-self-consistent rigid-band solution
of Eq. (8) (i.e. , [V,}=0)to demonstrate the impor-
tance of including the Coulomb terms (V;}.

The self-consistent solution of Eqs. (6c), (8),
and (9) is straightforward. The LCAO parameters
which enter the matrix E'~z(k) are discussed and
given in Appendix A. Values of e =2 and e =3 were

I' M

5 5
K

k

I' M

55
K

k

r
5

(b) (c)

FIG. 2. Energy bands [(&&(k) ] for stage n=5. e& is
the Fermi energy and the 1, X, and M points are defined
in Fig. 1(b). (a) f=&& (charge transfer per intercalant

f= 1 for Ctm X}non-self-consistent (e-~, (V / = 0) re-
fl

suits. (b) j=- (f= 1 for Ctm„X) self-consistent calcu-i2 i
lation e = 3. (c)f=48 (f= 4 for CI2„X) self-consistent
calculation e = 3.
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TABLE 1. c-axis charge distribution(qJ stage n=8;
f=1;f=-" (units: electrons per carbon at m).

Self-consistent
bands

Layer ~ 6=3 6=2
Non-self-
consistent

Thomas-
Fermi (& = 3.4) d

0.0325 0.0347
0.0058 Q.0047
0.0022 0.0015
0.0012 0.0007

0.0106
0.0103
0.0104
0.0104

0.0327
Q.Q 058
0.0020
0.0011

'f is the charge transfer per intercalant atom, here
referred to a C~2„Xcompound.

~f/n is the average charge transfer per carbon atom
in the n layers so thatQ&q&=f.' Layers are labeled consecutively with layer 1 being
the graphite layer adjacent to the intercalant (bounding
layer).

See Appendix 8 for a discussion of the different di-
electric constants. (The agreement for smaller values
off is not quite as good since for small f, interlayer
hopping, neglected in the Thomas-Fermi treatment, is
more important. )

Although the electronic energy bands are one in-
dication of the importance of the potential (V,}, a
quantity that is much more sensitive to the poten-
tial is the layer charge per carbon atom fq;}.

Table I compares the layer charges for n, =8 and

f= —,', (f=1 for C»„X) obtained from the self-con-
sistent and non-self-consistent ((V;}=0)calcula-
tions. Also shown are the layer charges obtained
by integrating the continuum charge density of the
Thomas- Fermi"" "model, around each layer.
The self-consistent solution for (q;} shows the ef-
fects of the screening in good agreement with the
simple Thomas-Fermi results, ""* ' which neg-
lect" c-axis hopping. On the other hand, the neg-
lect of the layer potentials (V,.}(e —~) results in
an almost uniform charge density. Also shown in
Table I are results for q =2 which show how the
charge distribution is less homogeneous for smal-
ler values of e (Ref. 11) for both the Thomas-
Fermi and band calculations. For all cases, the
band calculation results in a nzore homogeneous
charge distribution than does the Thomas-Fermi
model. This is probably due to the effects of c-
axis hopping.

Compl. ete results for stages n = 2 —8 for values
of f= —,', and 4, (f=1 and ~~ for C»„X) are shown in
Tables II and III for values of e =3 and 2, respec-
tively. Along with the layer charges per carbon
atom, we also list the l.ayer potential. s, with the
bounding graphite layer (i.e. , the graphite layer

TABLE II. Layer potentials and c-axis charge distributions (self-consistent bands &= 3),

Layer b
Charge

(per cm'bon)
Potential '

(eV)
Charge

(per carbon)

af~
&S

Potential '
(eV)

(n= 3)
1
2

(n= 4)
1
2

(n= 5)
1
2
3

(n= 6)
1
2
3

{n=7)
1
2
3
4

(n= 8)
1
2
3

0.0353
0.0128

0.0335
0.0082

0.0329
0.0068
0.0039

0.0326
0.0062
0.0029

0.0326
0.0060
0.0023
0.0017

0.0325
0.0058
0.0022
0.0012

0.0
0.494

0.0
0.628

0.0
0.672
0.822

0.0
0.702
0.925

0.0
0.701
0.943
1.010

0.0
0.705
0.963
1.055

0.0083
0.0043

0.0074
0.0031

0.0070
0.0024
0.0020

0.0069
0.0022
0.0014

0.0068
0,0022
0.0011
0.0007

0.0067
0.0020
0.0010
0.0007

0.0
0.165

0.0
0.236

0.0
0.262
0.337

0.0
0.274
0.380

0.0
0.277
0.388
0.415

0.0
0.284
0.414
0.466

See Table I, Befs. a and b.
bSee Table I, Ref. c.
'Potential is relative to boundirg graphite layer (layer 1).
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TABLE III. Layer potentials and c-axis charge distribution (self-consistent bands & =2).

Layer b

f g a
f2

Charge Potential
(per carbon) (eV)

Charge
(per carbon)

g a
&8

Potential '
(eV)

(n= 3)
1
2

(n= 4)
1
2

(n= 5)
1
2
3

(n= 6)
1
2
3

(n= 7)
1
2
3
4

(n= 8)
1
2
3

0.0365
0.0104

0.0354
0.0063

0.0349
0.0054
0.0028

0.0348
0.0049
0.0020

0.0346
0.0049
0.0017
0.0011

0.0347
0.0047
0.0015
0.0007

0.0
0.597

0.0
0.731

0.0
0.788
0.951

0.0
0.799
1.024

0.0
0.819
1.074
1.136

0.0
0.822
1.086
1.170

0.0086
0.0037

0.0079
0.0025

0.0077
0.0020
0.0014

0.0076
0.0019
0.0009

0.0075
,0.0018
0.0008
0.0006

0.0075
0.0018
0.0007
0.0005

0.0
0.209

0.0
0.288

0.0
' 0.317
0.396

0.0
0.330
0.438

0.0
0.339
0.466
0.496

0.0
0.345
0.483
0.537

'See Table I, Refs. a and b.
"See Table I, Ref. c.
'Potential is relative to bounding graphite layer (layer 1).

adjacent to the intercalate potential set equal to
zero. The potential differences between the layers
are as large as -0.7 eV between the bounding and
its nearest graphite layer. While the potential
differences between the interior-most layers are
smaller, especially for small values of f, it is not
clear a priori that they can be neglected in a gen-
eral band-structure calculation.

III. STAGING ENERGIES: STABILITY OF PURE
STAGES

This section presents the results of our calcula-
tions of the total energy for the "thin-film" model
discussed above. The role of the electronic ener-
gy in stabilizing the stage ordering is then demon-
strated in a calculation of the stage dependence
of the chemical potential. For discussions of
elastic interactions and staging in graphite inter-
calation compounds, see Befs. 4 and 12.

In this section, we assume for computational
convenience, that the sequence of stages is de-
scribed by the chemical formula C,„X, where n=1,
2, . . . describes the stage, and t is stage indepen-
dent. Assuming that all inter layer intercalant-

intercalant interactions are electronic in origin,
we write the total energy for the intercalant, E„,
as

In Eq. (11) U„ is given by Eq. (10) and p is the
chemical potential for the intercalant atoms.
Since the zero of energy is arbitrary, LL(. is defined
to include all stage-indePendent energies, such as
the energy of the intercalant layer due to in-plane
intercalant-intercalant interactions. U„ is the
energy per carbon atom of pristine, bulk graphite,
so that E„reflects only the effects of intercalation.
Thus, although Eq. (11) cannot predict the depen-
dence of p on the in-plane intercalant density, it
does describe the stage dependence of p, for con-,

stant in-plane intercalant density (i.e., t indepen-
dent of n).

At zero-temperature, the transitions between
stages are first order, ' ' and the phase boundary
(p,, „) between stages n and n' is given by

U„- U„,
n-' -n -'&
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Equation (12) is obtained from Eq. (11) by equating
the energies E„ for stages n and n' at p, = p,„
(At each phase boundary one must check to make
sure that no other stage has lower energy. ) As-
suming a simple sequence of stages 1,2, . . . as p,

is lowered (p„„.= p.„„„),the range of stability of
a given stage is defined by & p,„, where

~e ~n, n-l ~n, n+1 ' (13)

Writing the electronic energy per intercalant E„
=—tnU„, we have""

'p„=n(E„., +E„,—2E„). (14)

Thus, the range of chemical potential over which
a given stage is stable (6p„) is an important ex-
perimental parameter since it is directly related
to the interlayer interactions responsible for sta-
ging. For the 'Thomas-Fermi model of the total
energy"

n -'
E =E 1+nil+-n 0 (15)

3

1
4

I
I

I
I

I
I

I
I

I

I

I

I
I

I

I
7
o.

I

0.20

p. (eV)

O.
I

0.20

p. (ev)

(b)

FIG. 3. Stage dependence of the chemical potential
P defined in the text (j=~a, f=l for CI2„X). (a) Self-
consistent band calculation (E = 3). (b) Continuum
Thomas-Fermi model (a=3.4, see Appendix 8). The
physical quantity of importance is Apfl= Q g $ /Ag graf.

where n =0.96. For C»„X with unit charge trans-
fer (f=1,f= —,',) and for a dielectric constant a=3.4
(see Sec. II and Appendix B), E,=1.26 eV and n,
=2.98.

The Thomas-Fermi result for the stage depen-
dence of the chemical potential is shown in Fig. 3
along with results for the self-consistent calcula-
tion described above (f= —,'2, e =3). Since the quan-
tity that determines 4 p,„ is the energy per intex-
calant it was necessary to calculate the layer po-
tentials to self-consistency within 10 eV to get
energy resolution (per intercalant) of 0.001 eV.

In Fig. 3, we plot p, = p, —p,„where p., is an arbi-
trary zero of energy, chosen so that p, ,=0. In
Sec. IV, values for 4p.„are compared with exper-
iment. Here we note that although there is good
agreement between the Thomas-Fermi model and
the self-consistent bands, with respect to the
charge distribution (see Table I), the differences
in 4p,„are more severe. The fact that the band
calculation results in larger values of 4 p.„ is prob-
ably due to the inclusion of both interlayer hopping
energies and the explicit response of the valence
electrons in the thin-film calculation.

IV. DISCUSSION

The self-consistent LCAO band structure for
our model of n graphite layers, bounded by two
partially-ionized intercalant layers, verifies the
long-range nature of the screening of the inter-
calant layers by the charge donated to the graph-
ite, as predicted by the simple Thomas-Fermi
model. "' " In addition, the present work re-
sults in energy bands which are quite different
from those predicted by rigid-band models, and
in layer potentials, which can be used in future,
more realistic, calculations. The long-range
(power-law) nature of the screening results in
long-range, effective interactions between inter-
calant layers, "thus stabilizing the relatively
high-stage structures observed in graphite inter-
calation compounds. An important, experimen-
tally measurable, quantity that reflects the sta-
bility of the staged structures is the range of sta-
bility of the chemical potential (A p,„) which can be
calculated from our model as defined in Sec. III.

A direct comparison of the theoretical and ex-
perimental values for 4p,„ is difficult since neither
the exact stoichiometries (and their stage depen-
dence) nor the effective charge per intercalant f
(and its stage dependence) have been determined.
¹vertheless, a preliminary comparison of theo-
retical and experimental" values of 4p,„ for alkali-
metal intercalation compounds (K, Rb, Cs, n =3,
4, 5) is presented in Table IV. The theoretical
calculation is for a compound with stage-indepen-
dent stoichiometry C»P and for values of —,'~f
& 1. The overall agreement between theory and
experiment is gratifying considering the uncert-
ainties in the stoichiometry and charge transfer.
Furthermore, the theoretical results are for low
temperature, while the experiments were per-
formed at relatively high temperatures (&500 K),3"a
where departures from ideal C»Q stoichiometry
could be impor. tant as pointed out experimentally
by Herold and theoretically in Refs. 5 and V. To

'

minimize entropy effects, the experimental values
of 4p,„were computed from the enthalpy data of
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Ref. 31. [The values of ~ given in Table III of
Ref. 31 are equivalent, for each two-phase equi-
librium, to (E„-E„„)of Eq. (14).] Further ex-
periments on well-characterized samples and for
high stages are clearly needed. In addition, sim-
ilar thermodynamic data for acceptor compounds
where the thin-film approximation should be most
applicable" are also of interest. The agreement
between theory and experiment for b, p, „ for the
alkali metals within a factor of 2 is a good in-
dication of the dominance of electronic interac-
tions in the equilibrium staged phases (in non-
equilibrium or nonhomogeneous samples, elastic
interactions'" become important). A further
comparison of &p.„ for materials with large (alka-
lis) and small (acceptors) values of f (see Table
IV) would be a sensitive test of this mechanism.

On the theoretical front, theories for tempera-
ture effects on staging"' as well as an understan-
ding" of why only Pure stage ordering has been
observed are topics of current interest. Although
more detailed band calculations for high-stage
compounds remain to be done (including such in-
teractions as the in-Plane interactions between
electrons and those effects of the intercalant po-
tential that are neglected in the sheet approxima-
tion), the present calculation of self-consistent
layer potentials should be useful in any future
"first-principle s" studie s.

APPENDIX A

+ e "'+ ' cos(-,'k„a)] (Al)

S„=~,', cosk„a+2 cos 2- -3 cos —,'k„a A2

This appendix presents an explicit expression
for the LCAO Hamiltonian HO discussed in Sec.
I. The LCAO Hamiltonian is based on the pure
graphite Hamiltonian discussed in Ref. 25. The
extension of that work to describe thin film of
n layers was first presented in Ref. 23.

The basis for the LCAO Hamiltonian is a set of
orthonormal functions (see Sec. I.) (P (r - jIt, )],
where n =a, 5 labels the two inequivalent atoms in
the layer and i labels the layer. The layer geom-
etry is shown in Fig. 1(a) where the "/t" layers
(solid line) are denoted as even layers 0, 2, 4 and
the "B"layers (dashed line) are denoted as odd
layers 1, 3, in the n-layer unit cell. The ma-
trix elements of the Hamiltonian
(Q(r —R;) ~HO

~

iP(r —Rii, )) are denoted by B"8 with

E"=M" [ '"~ '+2e "+ 2 'cos( —,'k~)]

+M '(e 2""~' ~3+ 2e "+ '/'cosk„a)

+M'~'[e '"~' ' 'cos(-,'k„a)

+ 8 2iyya/&3cosk
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TABLE D/'. &p„n= 3,4, 5: Theory and experiment.

EOi 3~00i
aa ~ aa

8"=-'M' "[e "~ '+2 cos(-'k„a)e "i" '
J

@01 &MAil [~ ikya/ ~ 2 os( k )
iky'a/2w3]

EOO 8OO
ba Nb&

(A3)

(A4)

(A5)

(A6)

Expt. '

Theory

Cg2„K

Cg2+1

Cga~Cs

f~ i
2

f 4

0.095

0.100

0.065

0.069

0.029

0.176

0.026

0.069

0.030

0.036

0.019

0.072

p3(eV) 404(eV) Ap, 5(eV)

0.030(~)"

0.039( '7)

0.024

0.007

0.044

EOO BOObb oa& (A7)

(A8)

Ell @00+
gb Nbv

gll @00
ee aa&

(A9}

(A10)

Note that Eq. (A7) is only approximate, consistent
with our neglect of second-layer interactions, etc. ,
which contribute energies of ~0.02 eV. The ma-
trix elements corresponding to "odd" layers are

'See Bef. 31. The stoichiometry C~2„X was assumed
in the analysis of the data and also in the present calcu-
lation.

The compound C»„~was not observed (Bef. 31) so the
values of &p& are hypothetical.

'Besults are for an effective dielectric constant &= 3.
See Table I:, Bef. a for definition of f.

pl 0 @00
ee ga&

glO EOlg
ab cb

E10 EOl+
bN ob

E10 glOg
bb bb

(A11)

(A12)

(A13)

(A14)
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bb bby

gll @00
ba ab

(A18)

(A18)

Since second-layer interactions are neglected
(see Sec. I), the matrix elements for the other
"even" and "odd" layers are identical to those
listed for layers 0 and 1.

The coefficients M" ~' are defined in Ref. 23,
where n, p=a, b and (nmlf define the distance
vector t„,=nax+(m/v 3 )ay+c, lz between the
atoms at 0,. and R~,. Q is the in-plane lattice
constant and c, is the interlayer distance c,
=3.35 A). Values of M,",' = -4.60 eV, M~2O

=-0.74 eV, M,',"=0.25 eV, M,b"=0.24 eV, a d
M»'=0. 58 eV were used in the present calcula-
tion (see Ref. 29 of our Ref. 23). We have neg-
lected all matrixelements «0.02 eV since changes
in the CACAO matrix elements due to our approxi-
mations (see Sec. I) are of this order. Thus, we
have set M~ 20=M~oo= 0eb ac

APPENDIX 8
This appendix discusses the effective dielectric

constant relevant to our calculations. Since we
treat only the ~ bands, the screening due to the g and
core electronsge. g. , c-w transitions induced by the
electric field E llc), is accounted for by reducing
the potenital by a factor e. However, since m-m

transitions are implicitly included in our self-
consistent calculations, which allow charge trans-
fer from layer to layer for al/ the m electrons, the
bulk graphite value"" cannot be used without
modification. We therefore need an estimate of a
for a single graphite layer where m-m transitions

are forbidden by symmetry for E II c.
A lower bound on this effective g can be obtained

from atomic data, which includes all o-w transit-
ions within a single atom. The polarizability of a
single carbon atom has been estimated" to be
1.78 A . From formula (A8) of Blinowski and

Rlgaux~ we find c~g
The experimental determination of z for three-

dimensional graphite is not yet clear. Zanini
et al."estimate &„-3.4, after subtracting off a
Drude term for the conductivity «0.1 eV. Earlier
estimates in the literature indicated'4 &, = 2.3 as
well as" &

~

= 3.3 at photon energies of = 2 eV. The
contribution of the m-m transitions to these values
of &„ can be estimated from the calculation of
Johnson and Dresselhaus" for the real part of the
dielectric constant for E II c which yields &e„=
0.25 eV. Thus the relevant value for z =g„-4g„
in our calculations is in the range 2 & g ~ 3, with
&=2 as a lower bound from the atomic polarizabil-
ity. This range for z is also consistent with the
electron-energy-loss data of Venghaus" for
energies -5 eV where the main contribution to
E is from m-0 transitions. We have therefore
presented results for the self-consistent calcula-
ti.ons using & =2 as a lower limit and & =3 as an
upper limit. Since the Thomas-Fermi ' 0 calcu-
lations do not include the effects of ~-m transit-
ions, they are calculated with the full graphite
dielectric constant. Good agreement for the
charge densities for n =3-8 calculated using the
Thomas-Fermi and self-consistent band models
was found when values of c =3.4 and 3.0 were
used, respectively.
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